organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1268

3-[(Cyclo­hexyl­­idene)amino]-1-(4-methyl­phen­yl)thio­urea

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: zhangyanling315@126.com

(Received 21 April 2011; accepted 25 April 2011; online 29 April 2011)

In the title compound, C14H19N3S, the cyclo­hexane ring has a chair conformation. The almost planar amino­thio­urea unit (r.m.s. deviation = 0.0062 Å) is aligned at a dihedral angle of 45.23 (8)° with respect to the benzene ring. Inter­molecular N—H⋯N and N—H⋯S hydrogen bonding stabilizes the crystal structure.

Related literature

For related structures and the biological applications of thio­semicarbazones, see: Hu et al. (2006[Hu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19N3S

  • Mr = 261.38

  • Orthorhombic, I b c a

  • a = 14.9151 (4) Å

  • b = 22.5593 (5) Å

  • c = 17.1642 (3) Å

  • V = 5775.3 (2) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 1.87 mm−1

  • T = 291 K

  • 0.40 × 0.25 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.521, Tmax = 0.652

  • 7202 measured reflections

  • 2583 independent reflections

  • 2024 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.162

  • S = 1.02

  • 2583 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.89 (3) 2.48 (3) 3.268 (3) 148 (2)
N2—H2⋯S1ii 0.86 (3) 2.70 (3) 3.531 (2) 164 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, -z]; (ii) [x, -y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones have attracted much attention as they show potential application in the biological field (Hu et al., 2006). There are a few single-crystal reports about them. Detailed information on their molecular and crystal structures is necessary to understand their anticancer activity. The molecular structure of (I) is shown in Fig 1. The cyclohexane ring adopts a chair conformation. The almost planar aminothiourea unit (r.m.s. deviation = 0.0062 Å) is aligned at a dihedral angle of 45.23 (8)° with respect to the plane of the benzene ring. In the crystal structure of the title compound, there are N—H···N an N—H···S hydrogen-bond interactions (Table 1).

Related literature top

For related structures and the biological applications of thiosemicarbazones, see: Hu et al. (2006).

Experimental top

N-(p-Tolyl)thiosemicarbazide (1.8 g, 10 mmol) and cyclohexanone (0.98 g, 10 mmol) was dissolved in 95% ethanol (15 ml) and the solution was refluxed for 0.5 h. Fine colorless crystals appeared on cooling. They were filtered and washed by 95% ethanol to give 1.6 g of the title compound in 61.5% yield. Single crystals suitable for X-ray measurements were obtained from methanol by slow evaporation at room temperature.

Refinement top

Imino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93–0.97 and refined using a riding model, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
3-[(Cyclohexylidene)amino]-1-(4-methylphenyl)thiourea top
Crystal data top
C14H19N3SF(000) = 2240
Mr = 261.38Dx = 1.202 Mg m3
Orthorhombic, IbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -I 2b 2cCell parameters from 2807 reflections
a = 14.9151 (4) Åθ = 3.2–70.3°
b = 22.5593 (5) ŵ = 1.87 mm1
c = 17.1642 (3) ÅT = 291 K
V = 5775.3 (2) Å3Prismatic, colorless
Z = 160.40 × 0.25 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2583 independent reflections
Radiation source: fine-focus sealed tube2024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 67.1°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 717
Tmin = 0.521, Tmax = 0.652k = 2626
7202 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1042P)2 + 0.7804P]
where P = (Fo2 + 2Fc2)/3
2583 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H19N3SV = 5775.3 (2) Å3
Mr = 261.38Z = 16
Orthorhombic, IbcaCu Kα radiation
a = 14.9151 (4) ŵ = 1.87 mm1
b = 22.5593 (5) ÅT = 291 K
c = 17.1642 (3) Å0.40 × 0.25 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2583 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2024 reflections with I > 2σ(I)
Tmin = 0.521, Tmax = 0.652Rint = 0.032
7202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.37 e Å3
2583 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88952 (5)0.07068 (3)0.17935 (3)0.0599 (3)
N10.84361 (13)0.02381 (8)0.04022 (10)0.0481 (5)
N20.78485 (14)0.01953 (8)0.14881 (10)0.0498 (5)
N30.74084 (15)0.05790 (8)0.09883 (10)0.0514 (5)
C10.89252 (14)0.06343 (9)0.00784 (12)0.0450 (5)
C20.89188 (19)0.12432 (11)0.00239 (14)0.0557 (6)
H2A0.85720.14130.04140.067*
C30.94341 (19)0.15961 (10)0.04609 (14)0.0597 (6)
H30.94350.20040.03850.072*
C40.99514 (19)0.13567 (10)0.10592 (13)0.0544 (6)
C50.99072 (18)0.07526 (10)0.11773 (13)0.0520 (5)
H51.02210.05850.15900.062*
C60.94050 (17)0.03922 (10)0.06944 (12)0.0505 (5)
H60.93880.00140.07820.061*
C71.0565 (2)0.17332 (13)0.15541 (18)0.0741 (8)
H7A1.02210.19280.19510.111*
H7B1.10110.14860.17930.111*
H7C1.08530.20250.12330.111*
C80.83781 (15)0.02349 (9)0.11831 (12)0.0460 (5)
C90.68926 (18)0.09724 (10)0.12732 (14)0.0538 (6)
C100.6399 (2)0.13589 (14)0.07092 (18)0.0749 (8)
H10A0.66170.12840.01860.090*
H10B0.57650.12620.07230.090*
C110.6526 (3)0.20137 (15)0.0908 (2)0.0911 (11)
H11A0.61660.22540.05590.109*
H11B0.71490.21220.08350.109*
C120.6250 (3)0.21354 (16)0.1747 (2)0.0961 (11)
H12A0.56150.20580.18080.115*
H12B0.63580.25490.18690.115*
C130.6773 (2)0.17499 (16)0.2301 (2)0.0873 (10)
H13A0.74010.18610.22790.105*
H13B0.65630.18200.28270.105*
C140.6686 (2)0.10938 (14)0.21164 (16)0.0694 (7)
H14A0.60810.09630.22320.083*
H14B0.70960.08700.24430.083*
H10.8188 (16)0.0081 (12)0.0192 (16)0.052 (7)*
H20.799 (2)0.0305 (14)0.195 (2)0.075 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0824 (5)0.0632 (4)0.0341 (3)0.0172 (3)0.0022 (3)0.0052 (2)
N10.0605 (11)0.0528 (9)0.0309 (8)0.0072 (9)0.0017 (8)0.0002 (7)
N20.0634 (11)0.0556 (10)0.0305 (8)0.0083 (9)0.0003 (9)0.0003 (7)
N30.0674 (12)0.0519 (9)0.0349 (9)0.0070 (9)0.0031 (9)0.0016 (7)
C10.0521 (12)0.0514 (11)0.0316 (10)0.0003 (9)0.0032 (9)0.0030 (8)
C20.0735 (15)0.0532 (11)0.0403 (11)0.0110 (11)0.0104 (11)0.0009 (9)
C30.0864 (17)0.0448 (11)0.0478 (12)0.0051 (11)0.0066 (13)0.0030 (9)
C40.0675 (14)0.0561 (12)0.0395 (11)0.0009 (11)0.0037 (11)0.0078 (9)
C50.0638 (13)0.0580 (12)0.0344 (10)0.0066 (11)0.0062 (10)0.0002 (9)
C60.0673 (14)0.0482 (10)0.0358 (10)0.0004 (10)0.0008 (10)0.0013 (8)
C70.094 (2)0.0640 (14)0.0641 (16)0.0064 (15)0.0204 (16)0.0083 (13)
C80.0529 (12)0.0526 (11)0.0323 (10)0.0015 (9)0.0001 (9)0.0013 (8)
C90.0626 (14)0.0548 (11)0.0441 (12)0.0055 (11)0.0049 (11)0.0044 (9)
C100.092 (2)0.0761 (16)0.0568 (15)0.0252 (16)0.0137 (15)0.0025 (13)
C110.114 (3)0.0713 (17)0.088 (2)0.0287 (19)0.002 (2)0.0052 (16)
C120.109 (3)0.0764 (19)0.103 (3)0.0260 (19)0.007 (2)0.0240 (19)
C130.088 (2)0.102 (2)0.0714 (19)0.0172 (19)0.0029 (17)0.0367 (18)
C140.0722 (16)0.0869 (18)0.0490 (14)0.0193 (15)0.0081 (13)0.0049 (13)
Geometric parameters (Å, º) top
S1—C81.681 (2)C7—H7A0.9600
N1—C81.343 (3)C7—H7B0.9600
N1—C11.418 (3)C7—H7C0.9600
N1—H10.89 (3)C9—C101.497 (4)
N2—C81.356 (3)C9—C141.505 (3)
N2—N31.384 (3)C10—C111.528 (5)
N2—H20.86 (3)C10—H10A0.9700
N3—C91.272 (3)C10—H10B0.9700
C1—C21.385 (3)C11—C121.523 (5)
C1—C61.389 (3)C11—H11A0.9700
C2—C31.385 (4)C11—H11B0.9700
C2—H2A0.9300C12—C131.506 (5)
C3—C41.393 (4)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.379 (3)C13—C141.519 (5)
C4—C71.510 (4)C13—H13A0.9700
C5—C61.382 (3)C13—H13B0.9700
C5—H50.9300C14—H14A0.9700
C6—H60.9300C14—H14B0.9700
C8—N1—C1128.10 (19)N3—C9—C10117.1 (2)
C8—N1—H1112.0 (17)N3—C9—C14128.3 (2)
C1—N1—H1119.4 (17)C10—C9—C14114.6 (2)
C8—N2—N3118.98 (17)C9—C10—C11111.0 (3)
C8—N2—H2115 (2)C9—C10—H10A109.4
N3—N2—H2121 (2)C11—C10—H10A109.4
C9—N3—N2119.01 (19)C9—C10—H10B109.4
C2—C1—C6119.4 (2)C11—C10—H10B109.4
C2—C1—N1123.2 (2)H10A—C10—H10B108.0
C6—C1—N1117.39 (19)C12—C11—C10110.6 (3)
C3—C2—C1119.4 (2)C12—C11—H11A109.5
C3—C2—H2A120.3C10—C11—H11A109.5
C1—C2—H2A120.3C12—C11—H11B109.5
C2—C3—C4121.8 (2)C10—C11—H11B109.5
C2—C3—H3119.1H11A—C11—H11B108.1
C4—C3—H3119.1C13—C12—C11110.7 (3)
C5—C4—C3117.7 (2)C13—C12—H12A109.5
C5—C4—C7120.1 (2)C11—C12—H12A109.5
C3—C4—C7122.1 (2)C13—C12—H12B109.5
C4—C5—C6121.3 (2)C11—C12—H12B109.5
C4—C5—H5119.4H12A—C12—H12B108.1
C6—C5—H5119.4C12—C13—C14112.8 (3)
C5—C6—C1120.3 (2)C12—C13—H13A109.0
C5—C6—H6119.8C14—C13—H13A109.0
C1—C6—H6119.8C12—C13—H13B109.0
C4—C7—H7A109.5C14—C13—H13B109.0
C4—C7—H7B109.5H13A—C13—H13B107.8
H7A—C7—H7B109.5C9—C14—C13111.1 (3)
C4—C7—H7C109.5C9—C14—H14A109.4
H7A—C7—H7C109.5C13—C14—H14A109.4
H7B—C7—H7C109.5C9—C14—H14B109.4
N1—C8—N2115.25 (19)C13—C14—H14B109.4
N1—C8—S1126.08 (17)H14A—C14—H14B108.0
N2—C8—S1118.67 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.89 (3)2.48 (3)3.268 (3)148 (2)
N2—H2···S1ii0.86 (3)2.70 (3)3.531 (2)164 (3)
Symmetry codes: (i) x+3/2, y, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H19N3S
Mr261.38
Crystal system, space groupOrthorhombic, Ibca
Temperature (K)291
a, b, c (Å)14.9151 (4), 22.5593 (5), 17.1642 (3)
V3)5775.3 (2)
Z16
Radiation typeCu Kα
µ (mm1)1.87
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.521, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
7202, 2583, 2024
Rint0.032
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.162, 1.02
No. of reflections2583
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.89 (3)2.48 (3)3.268 (3)148 (2)
N2—H2···S1ii0.86 (3)2.70 (3)3.531 (2)164 (3)
Symmetry codes: (i) x+3/2, y, z; (ii) x, y, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of the Education Department of Henan Province, China (2010B150029), the Natural Science Foundation of Henan Province, China (112102310538, 082300420110) and the Scientific Research Foundation of Xuchang University, China (2009086) for supporting this work.

References

First citationHu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1268
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds