organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1260-o1261

Tri­ethyl­ammonium (S)-(−)-O-[1-(2-naphth­yl)eth­yl] (4-meth­­oxy­phen­yl)di­thio­phospho­nate

aDepartment of Chemistry, Pamukkale University, 20017 Kınıklı, Denizli, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 26 April 2011; accepted 26 April 2011; online 29 April 2011)

The crystal structure of the title compound, C6H16N+·C19H18O2PS2, consists of the dithio­phospho­nate anions and the triethyl­ammonium cations, which are linked by N—H⋯S hydrogen bonds and weak C—H⋯O hydrogen bonds. In the anion, the benzene ring is oriented with respect to the naphthalene ring system at a dihedral angle of 24.92 (5)°. In the crystal, weak C—H⋯π inter­actions also occur.

Related literature

For dithio­phospho­rus compounds and their complexes, see: Heiduc et al. (2006[Heiduc, I., Mezei, G., Micu-Semeniuc, R., Edelman, F. T. & Fisher, A. (2006). Z. Anorg. Allg. Chem. 632, 295-300.]); Karakuş et al. (2007[Karakuş, M., Aydoğdu, Y., Çelik, O., Kuzucu, V., İde, S. & Hey-Hawkins, E. (2007). Z. Anorg. Allg. Chem. 633, 405-410.]); Gataulina et al. (2008[Gataulina, A. R., Safin, D. A., Gimadiev, T. R. & Pinus, M. V. (2008). Transition Met. Chem. 33, 921-924.]). For the roles of dithio­phospho­rus compounds in agricultural, industrial and medicinal products such as additives to lubricant oils, solvent extraction reagents for metals, floatation agents for minerals, pesticides and insecticides, see: Thomas et al. (2001[Thomas, C. M., Neels, A., Stoekli-Evans, H. & Süss-Fink, G. (2001). J. Organomet. Chem. 633, 85-90.]); Gray et al. (2003[Gray, I. P., Milton, H. L., Slawin, A. M. Z. & Woolins, J. D. (2003). Dalton Trans. pp. 3450-3457.]). For the synthetic routes reported for dithio­phospho­rus-type ligands, see: Alberti et al. (2007[Alberti, E., Ardizzoia, G. A., Brenna, S., Castelli, F., Gali, S. & Maspero, A. (2007). Polyhedron, 26, 958-966.]). For the preparation of ferrocenyl and aryl­dithio­phospho­nates and their complexes with a range of transition metals, see: Gray et al. (2004[Gray, I. P., Milton, H. L., Slawin, A. M. Z. & Woolins, J. D. (2004). Dalton Trans. pp. 2477-2486.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C19H18O2PS2

  • Mr = 475.62

  • Orthorhombic, P 21 21 21

  • a = 9.3782 (3) Å

  • b = 12.3467 (5) Å

  • c = 21.9651 (8) Å

  • V = 2543.33 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 K

  • 0.52 × 0.36 × 0.32 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.862, Tmax = 0.912

  • 43596 measured reflections

  • 6343 independent reflections

  • 5946 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.06

  • 6343 reflections

  • 289 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2752 Friedel pairs

  • Flack parameter: −0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C13/C18/C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.84 (3) 2.52 (3) 3.2911 (17) 154 (2)
C20—H20A⋯O1 0.97 2.56 3.505 (2) 166
C7—H7BCg2ii 0.96 2.90 3.658 (3) 137
C24—H24BCg1iii 0.97 2.79 3.750 (2) 171
Symmetry codes: (i) x-1, y, z; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Dithiophosphorus compounds and their complexes have been widely investigated in last decades (Heiduc et al., 2006; Karakuş et al., 2007; Gataulina et al., 2008). They have been utilized in agricultural, industrial and medicinal products such as additive to lubricant oils, solvent extraction reagents for metals, floatation agents for minerals, pectidites and insecticides (Thomas et al., 2001; Gray et al., 2003). For example, tin diphenyldithiophosphinato complexes show an antiproliferation activity towards certain leukaemia cells (Gray et al., 2003). In general, dithiophosphorus type ligands are not commercially available, but a few synthetic routes were reported in the literature (Alberti et al., 2007). When compared to the other dithiophosphorus derivatives, there is very limited research on dithiophosphonates in the last century, due to the difficulties in sythesizing these compounds. Recently, ferrocenyl and aryldithiophosphonates and their complexes with a range of transition metals were prepared by Woolins et al. (Gray et al., 2003; Gray et al., 2004). The present study was undertaken to ascertain the crystal structure of the title compound to contribute to this relatively less developed area.

The title compound consists of a dithiophosphonate bridged napthylethyl and methoxyphenyl groups and a triethylammonium moiety linked by a C-H···O hydrogen bond (Table 1 and Fig. 1), where the bond lengths are close to standard values (Allen et al., 1987).

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C6), B (C10—C13/C18/C19) and C (C13—C18) are planar. The naphthalene group, containing the rings B and C are also nearly planar [with a maximum deviation of -0.022 (2) Å for atom C13] with a dihedral angle of B/C = 1.67 (7)°. Ring A is oriented with respect to the planar naphthalene group at a dihedral angle of 24.92 (5)°.

In the crystal, C—H···O and N-H···S hydrogen bonds link the molecules into chains along [100] (Table 1 and Fig. 2). There also exist two weak C-H···π interactions (Table 1).

Related literature top

For dithiophosphorus compounds and their complexes, see: Heiduc et al. (2006); Karakuş et al. (2007); Gataulina et al. (2008). For the roles of dithiophosphorus compounds in agricultural, industrial and medicinal products such as additive to lubricant oils, solvent extraction reagents for metals, floatation agents for minerals, pectidites and insecticides, see: Thomas et al. (2001); Gray et al. (2003). For the synthetic routes reported for dithiophosphorus-type ligands, see: Alberti et al. (2007). For the preparation of ferrocenyl and aryldithiophosphonates and their complexes with a range of transition metals, see: Gray et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (0.51 g, 1.23 mmol) and (S)-(-)-1-(2-naphthyl)ethanol (0.43 g, 2.46 mmol) were suspended in toluene (20 ml). The mixture was refluxed until all solids had dissolved. The yellow solution was cooled to room temperature, filtered and treated with excess triethyl amine. The product was precipitated at 291 K from hexane/toluene (1:4) as colorless crystals. They were isolated by filtration, washed with n-pentane and dried in air (yield; 0.85 g, 72.64%, m.p. 359-360 K).

Refinement top

H1 atom is located in a difference Fourier synthesis and refined isotropically. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. C—H···O hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The C-H···O and N-H···S hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
Triethylammonium (S)-(-)-O-[1-(2-naphthyl)ethyl] (4-methoxyphenyl)dithiophosphonate top
Crystal data top
C6H16N+·C19H18O2PS2F(000) = 1016
Mr = 475.62Dx = 1.242 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9895 reflections
a = 9.3782 (3) Åθ = 2.7–28.4°
b = 12.3467 (5) ŵ = 0.29 mm1
c = 21.9651 (8) ÅT = 294 K
V = 2543.33 (16) Å3Block, colorless
Z = 40.52 × 0.36 × 0.32 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6343 independent reflections
Radiation source: fine-focus sealed tube5946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1112
Tmin = 0.862, Tmax = 0.912k = 1516
43596 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.2869P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6343 reflectionsΔρmax = 0.78 e Å3
289 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 2752 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C6H16N+·C19H18O2PS2V = 2543.33 (16) Å3
Mr = 475.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.3782 (3) ŵ = 0.29 mm1
b = 12.3467 (5) ÅT = 294 K
c = 21.9651 (8) Å0.52 × 0.36 × 0.32 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6343 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5946 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.912Rint = 0.030
43596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.78 e Å3
S = 1.06Δρmin = 0.26 e Å3
6343 reflectionsAbsolute structure: Flack (1983), 2752 Friedel pairs
289 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60412 (5)0.18821 (4)0.04905 (2)0.02652 (11)
S20.57588 (5)0.14708 (4)0.19936 (2)0.02634 (11)
P10.48082 (5)0.18524 (4)0.12180 (2)0.01859 (10)
O10.34594 (14)0.10520 (11)0.11076 (6)0.0211 (3)
O20.14963 (18)0.59555 (13)0.14733 (7)0.0327 (3)
N10.09897 (17)0.20257 (14)0.15241 (7)0.0233 (3)
H10.187 (3)0.190 (2)0.1517 (11)0.029 (6)*
C10.38210 (18)0.31092 (15)0.12904 (8)0.0192 (3)
C20.3729 (2)0.36634 (17)0.18402 (8)0.0235 (4)
H20.41930.33920.21820.028*
C30.2957 (2)0.46103 (17)0.18858 (9)0.0264 (4)
H30.29040.49720.22570.032*
C40.2256 (2)0.50278 (16)0.13774 (9)0.0235 (4)
C50.2361 (2)0.44975 (16)0.08213 (9)0.0229 (4)
H50.19110.47770.04780.027*
C60.3143 (2)0.35486 (17)0.07823 (8)0.0222 (4)
H60.32170.31970.04090.027*
C70.0639 (3)0.6348 (2)0.09831 (11)0.0393 (5)
H7A0.01050.69670.11170.059*
H7B0.00070.57900.08540.059*
H7C0.12410.65510.06490.059*
C80.3722 (2)0.00862 (16)0.09988 (10)0.0261 (4)
H80.47520.02090.09700.031*
C90.3140 (3)0.07059 (18)0.15388 (11)0.0331 (5)
H9A0.32980.14670.14800.050*
H9B0.21360.05710.15760.050*
H9C0.36170.04730.19030.050*
C100.3016 (2)0.03846 (18)0.03867 (10)0.0291 (4)
C110.2350 (2)0.04142 (18)0.00213 (10)0.0295 (4)
H110.23600.11340.01460.035*
C120.1688 (2)0.01411 (19)0.05147 (11)0.0322 (4)
H120.12350.06720.07440.039*
C130.1694 (2)0.09410 (19)0.07195 (10)0.0308 (4)
C140.1044 (2)0.1237 (2)0.12876 (11)0.0358 (5)
H140.05770.07180.15210.043*
C150.1116 (3)0.2262 (2)0.14773 (11)0.0381 (5)
H150.07040.24480.18480.046*
C160.1806 (3)0.3082 (2)0.11267 (11)0.0406 (5)
H160.18400.37900.12700.049*
C170.2415 (3)0.28267 (19)0.05816 (11)0.0363 (5)
H170.28520.33620.03500.044*
C180.2382 (2)0.17606 (17)0.03732 (9)0.0264 (4)
C190.3031 (2)0.14337 (19)0.01921 (10)0.0301 (4)
H190.34750.19550.04320.036*
C200.0239 (2)0.14297 (19)0.10174 (10)0.0304 (4)
H20A0.07800.14360.10930.037*
H20B0.04100.18030.06360.037*
C210.0742 (3)0.0270 (2)0.09624 (13)0.0425 (6)
H21A0.04520.01300.13160.064*
H21B0.03300.00530.06060.064*
H21C0.17630.02560.09300.064*
C220.0597 (2)0.16311 (18)0.21476 (9)0.0292 (4)
H22B0.07390.08540.21640.035*
H22A0.12350.19600.24420.035*
C230.0930 (2)0.1883 (2)0.23275 (10)0.0356 (5)
H23A0.11280.15720.27190.053*
H23B0.10600.26530.23460.053*
H23C0.15690.15820.20310.053*
C240.0782 (2)0.32156 (17)0.14353 (10)0.0305 (4)
H24A0.11390.34160.10360.037*
H24B0.02300.33750.14450.037*
C250.1526 (3)0.3895 (2)0.19115 (12)0.0438 (6)
H25A0.14990.46430.17920.066*
H25B0.10510.38100.22960.066*
H25C0.25000.36650.19490.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0237 (2)0.0337 (2)0.0222 (2)0.0015 (2)0.00873 (17)0.0038 (2)
S20.0195 (2)0.0391 (3)0.0204 (2)0.00257 (18)0.00307 (17)0.0067 (2)
P10.01450 (18)0.0253 (2)0.01599 (19)0.00017 (17)0.00075 (15)0.00270 (18)
O10.0184 (6)0.0224 (6)0.0225 (6)0.0001 (5)0.0014 (5)0.0009 (5)
O20.0394 (8)0.0292 (8)0.0294 (8)0.0085 (6)0.0055 (6)0.0048 (6)
N10.0169 (7)0.0286 (9)0.0245 (8)0.0022 (6)0.0012 (6)0.0043 (6)
C10.0180 (7)0.0228 (8)0.0167 (8)0.0016 (7)0.0001 (6)0.0010 (7)
C20.0263 (9)0.0282 (10)0.0161 (8)0.0030 (7)0.0046 (6)0.0013 (7)
C30.0322 (10)0.0281 (10)0.0190 (9)0.0016 (8)0.0033 (7)0.0057 (7)
C40.0233 (9)0.0222 (9)0.0248 (10)0.0021 (7)0.0008 (7)0.0013 (7)
C50.0236 (9)0.0276 (10)0.0176 (9)0.0016 (7)0.0029 (7)0.0024 (7)
C60.0227 (8)0.0288 (9)0.0150 (8)0.0007 (7)0.0002 (6)0.0009 (7)
C70.0469 (14)0.0349 (12)0.0360 (12)0.0139 (11)0.0034 (10)0.0013 (10)
C80.0228 (9)0.0237 (9)0.0317 (10)0.0011 (7)0.0058 (8)0.0022 (8)
C90.0378 (12)0.0277 (11)0.0338 (11)0.0008 (9)0.0010 (9)0.0060 (9)
C100.0249 (9)0.0300 (10)0.0325 (11)0.0059 (8)0.0099 (8)0.0050 (9)
C110.0312 (10)0.0282 (10)0.0292 (11)0.0023 (8)0.0028 (8)0.0004 (8)
C120.0323 (10)0.0318 (11)0.0324 (11)0.0051 (9)0.0000 (9)0.0051 (9)
C130.0269 (10)0.0309 (11)0.0346 (11)0.0006 (8)0.0049 (8)0.0011 (9)
C140.0275 (10)0.0462 (13)0.0336 (11)0.0018 (9)0.0005 (9)0.0022 (10)
C150.0341 (11)0.0497 (14)0.0304 (11)0.0024 (10)0.0062 (9)0.0061 (10)
C160.0425 (13)0.0359 (12)0.0432 (13)0.0048 (11)0.0009 (10)0.0022 (11)
C170.0392 (12)0.0289 (11)0.0409 (13)0.0010 (9)0.0019 (10)0.0011 (9)
C180.0200 (8)0.0276 (10)0.0316 (10)0.0024 (7)0.0021 (7)0.0047 (8)
C190.0261 (10)0.0301 (10)0.0341 (11)0.0026 (8)0.0016 (8)0.0056 (9)
C200.0208 (9)0.0390 (11)0.0315 (10)0.0016 (8)0.0026 (7)0.0054 (9)
C210.0301 (11)0.0376 (13)0.0597 (16)0.0023 (10)0.0012 (11)0.0117 (11)
C220.0237 (9)0.0366 (12)0.0271 (9)0.0038 (8)0.0005 (7)0.0099 (8)
C230.0259 (10)0.0507 (13)0.0302 (10)0.0059 (10)0.0052 (8)0.0083 (10)
C240.0340 (10)0.0279 (10)0.0295 (9)0.0025 (9)0.0022 (8)0.0040 (8)
C250.0553 (15)0.0315 (12)0.0445 (14)0.0017 (11)0.0031 (12)0.0052 (11)
Geometric parameters (Å, º) top
S1—P11.9726 (6)C11—H110.9300
S2—P11.9798 (6)C12—C131.410 (3)
P1—O11.6234 (14)C12—H120.9300
P1—C11.8140 (19)C13—C141.436 (3)
O1—C81.447 (2)C13—C181.421 (3)
O2—C41.365 (2)C14—C151.335 (4)
O2—C71.429 (3)C14—H140.9300
N1—C201.509 (3)C15—C161.427 (4)
N1—C221.500 (2)C15—H150.9300
N1—C241.495 (3)C16—C171.364 (3)
N1—H10.84 (3)C16—H160.9300
C1—C21.391 (3)C17—C181.394 (3)
C2—C31.379 (3)C17—H170.9300
C2—H20.9300C18—C191.441 (3)
C3—H30.9300C19—H190.9300
C4—C31.395 (3)C20—H20A0.9700
C4—C51.390 (3)C20—H20B0.9700
C5—C61.385 (3)C21—C201.513 (3)
C5—H50.9300C21—H21A0.9600
C6—C11.395 (2)C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
C7—H7A0.9600C22—C231.518 (3)
C7—H7B0.9600C22—H22A0.9700
C7—H7C0.9600C22—H22B0.9700
C8—C91.513 (3)C23—H23A0.9600
C8—C101.543 (3)C23—H23B0.9600
C8—H80.9800C23—H23C0.9600
C9—H9A0.9600C24—H24A0.9700
C9—H9B0.9600C24—H24B0.9700
C9—H9C0.9600C25—C241.512 (3)
C10—C111.417 (3)C25—H25A0.9600
C10—C191.364 (3)C25—H25B0.9600
C11—C121.373 (3)C25—H25C0.9600
S1—P1—S2115.95 (3)C13—C12—H12119.8
O1—P1—S1110.31 (5)C12—C13—C14121.1 (2)
O1—P1—S2109.54 (5)C12—C13—C18120.4 (2)
O1—P1—C197.83 (8)C18—C13—C14118.5 (2)
C1—P1—S1110.75 (6)C13—C14—H14120.3
C1—P1—S2110.97 (6)C15—C14—C13119.4 (2)
C8—O1—P1118.90 (12)C15—C14—H14120.3
C4—O2—C7117.52 (17)C14—C15—C16121.8 (2)
C20—N1—H1110.5 (18)C14—C15—H15119.1
C22—N1—C20113.63 (17)C16—C15—H15119.1
C22—N1—H1101.4 (17)C15—C16—H16120.0
C24—N1—C20108.81 (16)C17—C16—C15120.0 (2)
C24—N1—C22113.99 (16)C17—C16—H16120.0
C24—N1—H1108.2 (18)C16—C17—C18119.8 (2)
C2—C1—P1121.93 (14)C16—C17—H17120.1
C2—C1—C6118.37 (17)C18—C17—H17120.1
C6—C1—P1119.70 (14)C13—C18—C19117.0 (2)
C1—C2—H2119.6C17—C18—C13120.5 (2)
C3—C2—C1120.87 (17)C17—C18—C19122.5 (2)
C3—C2—H2119.6C10—C19—C18122.1 (2)
C2—C3—C4120.19 (18)C10—C19—H19118.9
C2—C3—H3119.9C18—C19—H19118.9
C4—C3—H3119.9N1—C20—C21112.04 (19)
O2—C4—C3115.63 (17)N1—C20—H20A109.2
O2—C4—C5124.61 (18)N1—C20—H20B109.2
C5—C4—C3119.75 (18)C21—C20—H20A109.2
C4—C5—H5120.3C21—C20—H20B109.2
C6—C5—C4119.39 (17)H20A—C20—H20B107.9
C6—C5—H5120.3C20—C21—H21B109.5
C1—C6—H6119.3C20—C21—H21C109.5
C5—C6—C1121.41 (17)C20—C21—H21A109.5
C5—C6—H6119.3H21B—C21—H21A109.5
O2—C7—H7A109.5H21B—C21—H21C109.5
O2—C7—H7B109.5H21C—C21—H21A109.5
O2—C7—H7C109.5N1—C22—C23113.76 (17)
H7A—C7—H7B109.5N1—C22—H22B108.8
H7A—C7—H7C109.5N1—C22—H22A108.8
H7B—C7—H7C109.5C23—C22—H22A108.8
O1—C8—C9107.47 (16)C23—C22—H22B108.8
O1—C8—C10107.62 (16)H22B—C22—H22A107.7
O1—C8—H8109.2C22—C23—H23A109.5
C9—C8—C10114.04 (18)C22—C23—H23B109.5
C9—C8—H8109.2C22—C23—H23C109.5
C10—C8—H8109.2H23A—C23—H23B109.5
C8—C9—H9A109.5H23A—C23—H23C109.5
C8—C9—H9B109.5H23B—C23—H23C109.5
C8—C9—H9C109.5N1—C24—C25113.29 (18)
H9A—C9—H9B109.5N1—C24—H24A108.9
H9A—C9—H9C109.5N1—C24—H24B108.9
H9B—C9—H9C109.5C25—C24—H24A108.9
C11—C10—C8121.10 (18)C25—C24—H24B108.9
C19—C10—C8119.7 (2)H24A—C24—H24B107.7
C19—C10—C11119.2 (2)C24—C25—H25A109.5
C10—C11—H11119.5C24—C25—H25B109.5
C12—C11—C10120.9 (2)C24—C25—H25C109.5
C12—C11—H11119.5H25A—C25—H25B109.5
C11—C12—C13120.3 (2)H25A—C25—H25C109.5
C11—C12—H12119.8H25B—C25—H25C109.5
S1—P1—O1—C862.17 (14)C5—C6—C1—P1179.00 (15)
S2—P1—O1—C866.62 (14)C5—C6—C1—C21.7 (3)
C1—P1—O1—C8177.78 (14)O1—C8—C10—C113.9 (2)
S1—P1—C1—C2133.20 (14)O1—C8—C10—C19176.08 (17)
S1—P1—C1—C646.06 (16)C9—C8—C10—C11123.0 (2)
S2—P1—C1—C22.94 (17)C9—C8—C10—C1957.0 (3)
S2—P1—C1—C6176.32 (13)C8—C10—C11—C12178.18 (19)
O1—P1—C1—C2111.53 (16)C19—C10—C11—C121.8 (3)
O1—P1—C1—C669.20 (16)C8—C10—C19—C18179.61 (18)
P1—O1—C8—C9113.03 (16)C11—C10—C19—C180.4 (3)
P1—O1—C8—C10123.74 (14)C10—C11—C12—C131.7 (3)
C7—O2—C4—C3173.5 (2)C11—C12—C13—C14178.2 (2)
C7—O2—C4—C56.5 (3)C11—C12—C13—C180.1 (3)
C22—N1—C20—C2168.7 (2)C12—C13—C14—C15177.6 (2)
C24—N1—C20—C21163.15 (19)C18—C13—C14—C150.7 (3)
C20—N1—C22—C2368.3 (2)C12—C13—C18—C17178.6 (2)
C24—N1—C22—C2357.1 (2)C12—C13—C18—C191.2 (3)
C20—N1—C24—C25178.55 (19)C14—C13—C18—C170.3 (3)
C22—N1—C24—C2553.5 (2)C14—C13—C18—C19179.57 (19)
P1—C1—C2—C3179.18 (16)C13—C14—C15—C160.9 (4)
C6—C1—C2—C31.6 (3)C14—C15—C16—C170.0 (4)
C1—C2—C3—C40.1 (3)C15—C16—C17—C181.0 (4)
O2—C4—C3—C2178.63 (18)C16—C17—C18—C131.2 (3)
C5—C4—C3—C21.3 (3)C16—C17—C18—C19178.7 (2)
O2—C4—C5—C6178.79 (19)C13—C18—C19—C101.1 (3)
C3—C4—C5—C61.1 (3)C17—C18—C19—C10178.7 (2)
C4—C5—C6—C10.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C13/C18/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.84 (3)2.52 (3)3.2911 (17)154 (2)
C20—H20A···O10.972.563.505 (2)166
C7—H7B···Cg2ii0.962.903.658 (3)137
C24—H24B···Cg1iii0.972.793.750 (2)171
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H16N+·C19H18O2PS2
Mr475.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)9.3782 (3), 12.3467 (5), 21.9651 (8)
V3)2543.33 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.52 × 0.36 × 0.32
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.862, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
43596, 6343, 5946
Rint0.030
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.06
No. of reflections6343
No. of parameters289
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.26
Absolute structureFlack (1983), 2752 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C13/C18/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.84 (3)2.52 (3)3.2911 (17)154 (2)
C20—H20A···O10.972.563.505 (2)166
C7—H7B···Cg2ii0.962.903.6578 (28)137
C24—H24B···Cg1iii0.972.793.7496 (24)171
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 107T817).

References

First citationAlberti, E., Ardizzoia, G. A., Brenna, S., Castelli, F., Gali, S. & Maspero, A. (2007). Polyhedron, 26, 958–966.  CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGataulina, A. R., Safin, D. A., Gimadiev, T. R. & Pinus, M. V. (2008). Transition Met. Chem. 33, 921–924.  CrossRef CAS Google Scholar
First citationGray, I. P., Milton, H. L., Slawin, A. M. Z. & Woolins, J. D. (2003). Dalton Trans. pp. 3450–3457.  CrossRef Google Scholar
First citationGray, I. P., Milton, H. L., Slawin, A. M. Z. & Woolins, J. D. (2004). Dalton Trans. pp. 2477–2486.  CrossRef Google Scholar
First citationHeiduc, I., Mezei, G., Micu-Semeniuc, R., Edelman, F. T. & Fisher, A. (2006). Z. Anorg. Allg. Chem. 632, 295–300.  Google Scholar
First citationKarakuş, M., Aydoğdu, Y., Çelik, O., Kuzucu, V., İde, S. & Hey-Hawkins, E. (2007). Z. Anorg. Allg. Chem. 633, 405–410.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, C. M., Neels, A., Stoekli-Evans, H. & Süss-Fink, G. (2001). J. Organomet. Chem. 633, 85–90.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1260-o1261
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds