organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1045

Benz­yl(phen­yl)phosphinic acid

aLaboratório de Materiais Inorgânicos, Universidade Federal de Santa Maria, Av. Roraima, 1000 Camobi, 97105-900 Santa Maria, RS, Brazil
*Correspondence e-mail: rburrow@ewald.base.ufsm.br

(Received 13 January 2011; accepted 3 March 2011; online 7 April 2011)

The title compound, C13H13O2P, crystallized as enanti­omerically pure crystals; for the crystal measured, the P atom has R stereochemistry. The crystal structure displays O—H⋯O hydrogen bonding, which links individual mol­ecules related by a 21 screw axis parallel to the crystallographic a-axis direction into continuous chains.

Related literature

For background to phosphinic acids, see: Beckmann et al. (2009[Beckmann, J., Duthie, A., Rüttinger, R. & Schwich, T. (2009). Z. Anorg. Allg. Chem. 635, 1412-1419.]); Burrow et al. (2000[Burrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357-e358.]); Chen & Suslick (1993[Chen, C.-T. & Suslick, K. S. (1993). Coord. Chem. Rev. 128, 293-322.]); Siqueira et al. (2006[Siqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 536-540.]); Vioux et al. (2004[Vioux, A., Le Bideau, J., Hubert Mutin, P. & Leclerq, D. (2004). Top. Curr. Chem. 232, 145-174.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Geom­etrical analysis was performed with Mogul (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13O2P

  • Mr = 232.20

  • Orthorhombic, P 21 21 21

  • a = 5.7326 (2) Å

  • b = 12.3430 (3) Å

  • c = 16.7794 (4) Å

  • V = 1187.27 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.65 × 0.34 × 0.22 mm

Data collection
  • Bruker X8 Kappa APEXII diffractometer

  • Absorption correction: gaussian (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.964

  • 14337 measured reflections

  • 3451 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 3451 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1447 Friedel pairs

  • Flack parameter: 0.00 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.93 (3) 1.58 (3) 2.4838 (18) 163 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Phosphinic acids have found use for the construction of coordination polymers [Siqueira et al., 2006; Beckmann et al., 2009] for a wide range of applications [Vioux et al., 2004; Chen & Suslick,1993]. Continuing our research on phosphinic acids [Burrow et al., 2000], we report the synthesis and crystal structure of the title compound, (I).

The crystal structure of (I) is from an enantiomerically pure crystal (Flack parameter = 0.00 (11); 1447 Friedel pairs; Flack & Bernardinelli, 2000] with the P atom possessing R stereochemistry. An analysis of the geometry of (I) by Mogul [Bruno et al., 2004] using the CSD. [Allen, 2002] shows no unusual features for the benzyl and phenyl groups. However, an unusually long PO bond [P1O2 = 1.5104 (13) Å; average in Mogul:1.484 (17) Å for 16 observations, |z score| = 1.568] and a wider C—P—C angle [C11—P1—C21 angle = 109.493 (9)°; average in Mogul: 106.9(2.0) °, |z score| = 1.281] are found.

The individual molecules of (I) related by a 21 screw axis parallel to the crystallographic a direction are joined by hydrogen bonding of the type OH···O=P—OH···O=P to form continuous chains. The short P—O···O=P distance of 2.4838 (18) Å indicates a strong hydrogen bond. This is slightly shorter than the average O···O interaction distance in the CSD. [2.51 (5) Å, 45 observations] for other phosphinic acids.

Related literature top

For background to phosphinic acids , see: Beckmann et al. (2009); Burrow et al. (2000); Chen & Suslick (1993); Siqueira et al. (2006); Vioux et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002). Geometrical analysis was performed with Mogul (Bruno et al., 2004).

Experimental top

To a solution of phenylphosphinic acid (2.0 g, 14.1 mmol) in dichloromethane, 30 ml diisopropylethylamine (5.16 ml, 29.6 mmol) and trimethylsilyl chloride (3.74 ml, 29.6 mmol) were separately added at 0 °C under argon. The reaction mixture was stirred at room temperature for 2–3 h, cooled to 0 °C and 1-(bromomethyl)benzene (1.84 ml, 15.5 mmol) was added. After further stirring at room temperature for 48 h, the solvent was removed under vacuum. The residue was suspended in hydrochloric acid (2 M, 20 ml) and filtered on a glass frit. The white solid was washed with acetone and dried giving a yield of 1.70 g (65%) of pure product. IR: 1494 (m), 1439 (s), 1242 (m), 1132 (versus), 1069 (s), 969 (versus), 845 (s), 787 (s), 751 (s), 734 (s), 701 (s), 585 (m), 524 (s), 477 (s), 466 (m) cm-1. TGA: 310–361 °C: 99% loss. DTA: 181–193 °C & 310–361 °C endothermic peaks. Crystals suitable for single-crystal X-ray analysis were grown from an acetone solution in a desiccator with silical gel.

Refinement top

The H atom on O1 was found in the difference Fourier map and its position was allowed to refine freely while its isotropic displacement factor was set to 1.5 times that of O1. The H atoms were positioned geometretically and allowed to ride on their parent atoms, with C—H bond lengths of 0.93 Å (aromatic CH) and 0.97 Å (methylene CH2) and isotropic displacement parameters equal to 1.2 times Ueq of the parent atom.

Computing details top

Data collection: APEX2, BIS and COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular of (I) structure of the title compound, showing 30% probability ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I) in the crystallographic a direction with the crystallographic b axis pointing up. The O—H···O intermolecular hydrogen bond is shown dashed.
Benzyl(phenyl)phosphinic acid top
Crystal data top
C13H13O2PDx = 1.299 Mg m3
Mr = 232.20Melting point = 454–456 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4929 reflections
a = 5.7326 (2) Åθ = 3.3–28.0°
b = 12.3430 (3) ŵ = 0.21 mm1
c = 16.7794 (4) ÅT = 295 K
V = 1187.27 (6) Å3Block, colourless
Z = 40.65 × 0.34 × 0.22 mm
F(000) = 488
Data collection top
Bruker X8 Kappa APEXII
diffractometer
3451 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0.0833 pixels mm-1θmax = 30.0°, θmin = 3.5°
ϕ and ω scansh = 88
Absorption correction: gaussian
(SADABS; Bruker, 2009)
k = 1717
Tmin = 0.880, Tmax = 0.964l = 2023
14337 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.2054P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3451 reflectionsΔρmax = 0.47 e Å3
148 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack & Bernardinelli (2000), 1447 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (11)
Crystal data top
C13H13O2PV = 1187.27 (6) Å3
Mr = 232.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7326 (2) ŵ = 0.21 mm1
b = 12.3430 (3) ÅT = 295 K
c = 16.7794 (4) Å0.65 × 0.34 × 0.22 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
3451 independent reflections
Absorption correction: gaussian
(SADABS; Bruker, 2009)
3119 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.964Rint = 0.028
14337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.47 e Å3
S = 1.05Δρmin = 0.23 e Å3
3451 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1447 Friedel pairs
148 parametersAbsolute structure parameter: 0.00 (11)
0 restraints
Special details top

Experimental. SADABS (Bruker, 2009) was used to perform the numeric absorption correction based on the crystal dimensions determined by face indexing.

The number of Friedel pairs measured is 1447. The crystal was not cut to size as it tended to fracture.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0173 (3)0.51865 (12)0.54568 (9)0.0333 (3)
C120.2219 (4)0.53887 (16)0.58763 (12)0.0445 (4)
H120.33420.48490.59260.053*
C130.2585 (4)0.64005 (18)0.62216 (13)0.0530 (5)
H130.39350.65300.65130.064*
C140.0955 (4)0.72087 (17)0.61322 (14)0.0539 (5)
H140.12150.78860.63590.065*
C150.1073 (4)0.70186 (17)0.57065 (15)0.0539 (5)
H150.21700.75670.56460.065*
C160.1464 (3)0.60086 (15)0.53698 (12)0.0428 (4)
H160.28280.58810.50850.051*
C210.1121 (4)0.37609 (16)0.41002 (11)0.0463 (4)
H21A0.27680.39040.41810.056*
H21B0.09710.30220.39100.056*
C220.0212 (3)0.45208 (15)0.34658 (10)0.0400 (4)
C230.1432 (5)0.54488 (18)0.32764 (13)0.0561 (5)
H230.28200.56060.35390.067*
C240.0593 (6)0.6153 (2)0.26926 (16)0.0756 (8)
H240.14250.67770.25660.091*
C250.1438 (6)0.5929 (3)0.23093 (16)0.0769 (9)
H250.20010.64030.19240.092*
C260.2657 (6)0.5010 (3)0.24868 (14)0.0720 (7)
H260.40330.48550.22160.086*
C270.1855 (4)0.4311 (2)0.30663 (12)0.0535 (5)
H270.27090.36930.31900.064*
H10.101 (5)0.234 (3)0.5458 (19)0.080*
O10.0790 (3)0.30554 (11)0.56144 (9)0.0480 (3)
O20.2947 (2)0.37242 (9)0.49255 (9)0.0444 (3)
P10.03542 (8)0.38743 (3)0.50410 (3)0.03482 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0375 (8)0.0272 (6)0.0350 (7)0.0003 (6)0.0014 (6)0.0005 (5)
C120.0399 (9)0.0415 (9)0.0520 (10)0.0028 (8)0.0048 (8)0.0043 (8)
C130.0490 (11)0.0526 (11)0.0574 (11)0.0089 (9)0.0107 (9)0.0098 (9)
C140.0639 (14)0.0378 (9)0.0600 (12)0.0056 (9)0.0009 (10)0.0138 (9)
C150.0590 (13)0.0342 (9)0.0684 (13)0.0105 (9)0.0095 (10)0.0101 (9)
C160.0420 (9)0.0341 (8)0.0525 (10)0.0031 (7)0.0078 (8)0.0058 (7)
C210.0504 (10)0.0418 (9)0.0465 (9)0.0155 (8)0.0003 (8)0.0070 (8)
C220.0468 (10)0.0405 (8)0.0327 (7)0.0060 (7)0.0035 (7)0.0051 (6)
C230.0652 (14)0.0509 (11)0.0523 (11)0.0075 (10)0.0080 (10)0.0044 (9)
C240.111 (2)0.0522 (13)0.0638 (14)0.0030 (16)0.0222 (15)0.0105 (12)
C250.109 (2)0.0749 (18)0.0464 (12)0.0311 (18)0.0081 (14)0.0147 (12)
C260.0729 (15)0.103 (2)0.0404 (10)0.0214 (15)0.0098 (11)0.0021 (12)
C270.0559 (12)0.0641 (13)0.0405 (10)0.0047 (10)0.0024 (9)0.0037 (9)
O10.0649 (10)0.0328 (6)0.0461 (7)0.0112 (6)0.0006 (6)0.0035 (5)
O20.0413 (6)0.0326 (5)0.0592 (8)0.0041 (5)0.0011 (6)0.0015 (6)
P10.0409 (2)0.02614 (17)0.03746 (19)0.00195 (14)0.00110 (17)0.00116 (16)
Geometric parameters (Å, º) top
C11—C161.390 (2)C21—H21B0.9700
C11—C121.391 (3)C22—C231.379 (3)
C11—P11.7893 (16)C22—C271.386 (3)
C12—C131.393 (3)C23—C241.395 (4)
C12—H120.9300C23—H230.9300
C13—C141.375 (3)C24—C251.359 (5)
C13—H130.9300C24—H240.9300
C14—C151.384 (3)C25—C261.365 (5)
C14—H140.9300C25—H250.9300
C15—C161.387 (3)C26—C271.379 (4)
C15—H150.9300C26—H260.9300
C16—H160.9300C27—H270.9300
C21—C221.511 (3)O1—P11.5420 (14)
C21—P11.7962 (19)O1—H10.93 (3)
C21—H21A0.9700O2—P11.5104 (13)
C16—C11—C12119.46 (16)C23—C22—C21120.2 (2)
C16—C11—P1120.38 (13)C27—C22—C21121.29 (19)
C12—C11—P1120.15 (13)C22—C23—C24120.3 (3)
C11—C12—C13119.89 (18)C22—C23—H23119.9
C11—C12—H12120.1C24—C23—H23119.9
C13—C12—H12120.1C25—C24—C23120.0 (3)
C14—C13—C12120.20 (19)C25—C24—H24120.0
C14—C13—H13119.9C23—C24—H24120.0
C12—C13—H13119.9C24—C25—C26120.3 (2)
C13—C14—C15120.26 (18)C24—C25—H25119.8
C13—C14—H14119.9C26—C25—H25119.8
C15—C14—H14119.9C25—C26—C27120.2 (3)
C14—C15—C16119.90 (19)C25—C26—H26119.9
C14—C15—H15120.0C27—C26—H26119.9
C16—C15—H15120.0C26—C27—C22120.6 (2)
C15—C16—C11120.27 (18)C26—C27—H27119.7
C15—C16—H16119.9C22—C27—H27119.7
C11—C16—H16119.9P1—O1—H1120 (2)
C22—C21—P1114.11 (12)O2—P1—O1114.73 (8)
C22—C21—H21A108.7O2—P1—C11109.11 (8)
P1—C21—H21A108.7O1—P1—C11106.16 (8)
C22—C21—H21B108.7O2—P1—C21109.93 (9)
P1—C21—H21B108.7O1—P1—C21107.28 (8)
H21A—C21—H21B107.6C11—P1—C21109.49 (9)
C23—C22—C27118.5 (2)
C16—C11—C12—C131.6 (3)C24—C25—C26—C271.1 (4)
P1—C11—C12—C13177.83 (16)C25—C26—C27—C221.1 (4)
C11—C12—C13—C141.6 (3)C23—C22—C27—C260.7 (3)
C12—C13—C14—C150.7 (4)C21—C22—C27—C26179.8 (2)
C13—C14—C15—C160.1 (4)C16—C11—P1—O222.31 (17)
C14—C15—C16—C110.1 (3)C12—C11—P1—O2157.10 (14)
C12—C11—C16—C150.7 (3)C16—C11—P1—O1146.45 (15)
P1—C11—C16—C15178.69 (17)C12—C11—P1—O132.96 (17)
P1—C21—C22—C23102.5 (2)C16—C11—P1—C2198.04 (16)
P1—C21—C22—C2777.0 (2)C12—C11—P1—C2182.55 (16)
C27—C22—C23—C240.2 (3)C22—C21—P1—O254.98 (17)
C21—C22—C23—C24179.8 (2)C22—C21—P1—O1179.66 (14)
C22—C23—C24—C250.2 (4)C22—C21—P1—C1164.87 (17)
C23—C24—C25—C260.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.93 (3)1.58 (3)2.4838 (18)163 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H13O2P
Mr232.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)5.7326 (2), 12.3430 (3), 16.7794 (4)
V3)1187.27 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.65 × 0.34 × 0.22
Data collection
DiffractometerBruker X8 Kappa APEXII
diffractometer
Absorption correctionGaussian
(SADABS; Bruker, 2009)
Tmin, Tmax0.880, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
14337, 3451, 3119
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections3451
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.23
Absolute structureFlack & Bernardinelli (2000), 1447 Friedel pairs
Absolute structure parameter0.00 (11)

Computer programs: APEX2, BIS and COSMO (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.93 (3)1.58 (3)2.4838 (18)163 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

Financial support from the Conselho Nacional de Desenvolvimento Científico (CNPq, Brazil; grants 485245/2007–8 and 479747/2009–1) and the Fundação de Amparo à Pesquisa (FAPERGS, Rio Grande do Sul) is gratefully acknowledged, as are fellowships from CNPq (RAB) and the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES, Brazil; RMSS). The diffractometer was funded by a CT-INFRA grant from the Financiadora de Estrutos e Projetos (FINEP, Brazil).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeckmann, J., Duthie, A., Rüttinger, R. & Schwich, T. (2009). Z. Anorg. Allg. Chem. 635, 1412–1419.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357–e358.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, C.-T. & Suslick, K. S. (1993). Coord. Chem. Rev. 128, 293–322.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 536–540.  Web of Science CSD CrossRef Google Scholar
First citationVioux, A., Le Bideau, J., Hubert Mutin, P. & Leclerq, D. (2004). Top. Curr. Chem. 232, 145–174.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1045
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds