organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1137

Benzyl N-(3-chloro-4-fluoro­phen­yl)carbamate

aDepartment of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 225 001, India, and bChemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
*Correspondence e-mail: dralka@bhu.ac.in, awasthisatish@yahoo.com

(Received 5 March 2011; accepted 5 April 2011; online 16 April 2011)

The title compound, C14H11ClFNO2, the phenyl ring (A), the chloro­fluoro­phenyl ring (B) and the central ketone O/C/O group (C) are not coplanar, with dihedral angles B/C = 31.6 (2), A/B = 21.3 (2) and A/C = 50.1 (2)°. The crystal packing is stabilized by N—H⋯O and C—H⋯O inter­actions.

Related literature

For the bioactivity of nitro­gen-containing heterocyclic compounds, see: Xuan et al. (2001[Xuan, X., Zhiguang, X., Yifang, L. & Weihua, L. (2001). Chin. J. Med. Chem. 11, 317-321.]). For applications of anilines, see: Bickoff et al.(1952[Bickoff, E. M., Livingston, A. L., Guggolz, J. & Thompson, C. R. (1952). J. Am. Oil Chem. Soc. 29, 445-446.]); Riegel & Kent (2007[Riegel, E. R. & Kent, J. A. (2007). Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology, Vol. 1, pp. 396-397. New York: Springer.]); Kahl et al. (2007[Kahl, T., Schröder, K. W., Lawrence, F. R., Marshall, W. J., Höke, H. & Jäckh, R. (2007). Aniline, in Ullmann's Encyclopedia of Industrial Chemistry. New York: John Wiley & Sons. doi:10.1002/14356007.a02_303.]). For our ongoing research on the anti­microbial activity of heterocyclic mol­ecules, see: Awasthi, Mishra, Dixit et al. (2009[Awasthi, S. K., Mishra, N., Dixit, S. K., Singh, A., Yadav, M., Yadav, S. S. & Rathaur, S. (2009). Am. J. Trop. Med. Hyg. 80, 764-768.]); Awasthi, Mishra, Kumar et al. (2009[Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407-420.]); Mishra et al. (2008[Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530-1535.]). For the synthesis, see: Brickner et al. (1996[Brickner, S. J., Hutchinson, D. K., Barbachyn, M. R., Manninen, P. R., Ulanowicz, D. A., Garmon, S. A., Grega, K. C., Hendges, S. K., Toops, D. S., Ford, C. W. & Zurenko, G. E. (1996). J. Med. Chem. 39, 673-679.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClFNO2

  • Mr = 279.69

  • Orthorhombic, P b c a

  • a = 10.4695 (16) Å

  • b = 9.0346 (11) Å

  • c = 28.361 (3) Å

  • V = 2682.6 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.62 mm−1

  • T = 293 K

  • 0.40 × 0.39 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.668, Tmax = 1.000

  • 11782 measured reflections

  • 2674 independent reflections

  • 1547 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.234

  • S = 1.01

  • 2674 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.83 (4) 2.09 (4) 2.906 (4) 164 (4)
C2—H2⋯O1i 0.93 2.67 3.414 (4) 138
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Heterocyclic compounds containing nitrogen, oxygen, sulfur, etc. are well known for their antiviral, antimicrobial activities. Nitrogen containing heterocyclic compounds are unique due to the oxidation of nitrogen which is key factor for bioactivity of their scaffolds (Xuan et al., 2001). Moreover, substituted anilines are widely used as intermediate in many organic synthesis as well as in many modern drugs. In aniline, the nitrogen atom is bonded to sp2 hybridized carbon atom. Further, the unshared electron pair on nitrogen atom of aniline can interact with the delocalized pi orbital of the nucleus and the aniline molecule is thus stabilized with respect to the anilinium cation. Here, the acceptance of a proton by aniline is energetically unfavorable. Therefore, it functions as a base with the utmost reluctance (pKa = 4.62, compared with cyclohexylamine, pKa = 10.68). The base weakening effect is naturally more pronounced when further phenyl groups are introduced on the nitrogen atom, thus diphenylamine, is an extremely weak base (pKa = 0.8), while triphenylamine is not basic for all practical purpose. Further, aniline is widely used for synthesis of methylene diphenyl diisocynate (MDI). They are also used as rubber processing chemicals, herbicides, dyes and pigments (Riegel & Kent, 2007). Aniline derivatives such as phenylenediamine and diphenylamine are used as antioxidants (Bickoff et al., 1952). Aniline is also used in the dye industry as a precursor to indigo, the blue of blue jeans (Kahl et al., 2007). As part of our ongoing research on antimicrobial activities of some heterocyclic molecules (Awasthi, Mishra, Dixit et al., 2009; Awasthi, Mishra, Kumar et al., 2009; Mishra et al., 2008), we report here the crystal structure of (3-chloro-4-fluro-phenyl)-carbamic acid benzyl ester (Figure 1). The crystal structure of molecule is stabilized by intermolecular hydrogen bonding and intermolecular interactions between N—H···O and C—H···O respectively as seen in Table 1, Figure 3. Considering C1—C6 of phenyl ring as plane 1 (PL1), central ketonic function O1C7O2 as plane 2 (PL2), and benzyl ring C8—C14 as plane 3 (PL3), the dihedral angels between planes PL 1 and PL2, PL1 and PL3, PL2 and PL3 are 31.65, 21.34, 50.13 respectively, suggests that the molecule is non-planar. The arrangement of molecules and its hydrogen bonding in the crystal can be seen in packing diagram (Figure 3).

Related literature top

For the bioactivity of nitrogen-containing heterocyclic compounds, see: Xuan et al. (2001). For applications of anilines, see: Bickoff et al.(1952); Riegel & Kent (2007); Kahl et al. (2007). For our ongoing research on the antimicrobial activity of heterocyclic molecules, see: Awasthi, Mishra, Dixit et al. (2009); Awasthi, Mishra, Kumar et al. (2009); Mishra et al. (2008). For the synthesis, see: Brickner et al. (1996).

Experimental top

The synthesis of title compound was achieved by published procedure (Brickner, et al., 1996). Briefly, to a solution of 3-chloro-4-fluroaniline (1.0 g, 6.87 mmol) in acetone (25 ml) and water (12.5 ml) at 0¯C were added (1.18 g, 8.55 mmol) of sodium bicarbonate and then (1.01 ml, 7.08 mmol) of benzyl chloroformate over 6 min via syringe. The reaction mixture was stirred over night and then poured on ice water and filtered the solid and washed thoroughly with water. The product was recrystallized from dichloromethane. After several days leaving at room temperature, transparent white crystals were obtained by slow evaporation from dichloromethane at 6¯C. Yield = 1.64 g (85%), MS (Macromass G) m/z = 279.5 (M+), Rf 0.57 (98:2, CH2Cl2: MeOH) m.p. 60¯C, Elemental analysis (Perkin–Elmer 240 C elemental analyzer) Calculated for: C14H11O2NClF (%) C– 60.1, H– 3.9, O-11.5, N-5.0, Cl-12.7, F-6.8 found C-60.0, H-4.0, O– 11.0, N-4.8, Cl-12.6, F-7.1 1H-NMR (CDCl3)- 7.56–7.55 (m, 1 H, H2), 7.02- 6.97 (m, 5H, ArH), 7.20–7.15 (m,1H, H6), 7.08–7.02(m, 1H, H5), 6.66 (s,1H, NH), 5.19 (s, 2H, CH2); 13 C-NMR (CDCl3): 155.97, 153.19, 135.66, 134.37, 128.65–128.35,121.33, 120.85,118.28,116.78,67.32

Refinement top

All H atoms were located from difference Fourier map (range of C—H = 0.93 - 1.08 Å,and N–H = 0.83 Å) allowed to refine freely

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; red: O; blue: N; white: H; Green: Cl; Green: F.
[Figure 2] Fig. 2. Packing diagram of molecule viewed through a plane showing Intermolecular hydrogen bonding in the molecule.
[Figure 3] Fig. 3. The formation of the title compound.
Benzyl N-(3-chloro-4-fluorophenyl)carbamate top
Crystal data top
C14H11ClFNO2F(000) = 1152
Mr = 279.69Dx = 1.385 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 1370 reflections
a = 10.4695 (16) Åθ = 3.1–74.8°
b = 9.0346 (11) ŵ = 2.62 mm1
c = 28.361 (3) ÅT = 293 K
V = 2682.6 (6) Å3Block, white
Z = 80.40 × 0.39 × 0.38 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2674 independent reflections
Radiation source: fine-focus sealed tube1547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 74.9°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1211
Tmin = 0.668, Tmax = 1.000k = 1111
11782 measured reflectionsl = 2435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1301P)2]
where P = (Fo2 + 2Fc2)/3
2674 reflections(Δ/σ)max = 0.050
184 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C14H11ClFNO2V = 2682.6 (6) Å3
Mr = 279.69Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.4695 (16) ŵ = 2.62 mm1
b = 9.0346 (11) ÅT = 293 K
c = 28.361 (3) Å0.40 × 0.39 × 0.38 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2674 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1547 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 1.000Rint = 0.063
11782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.234H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.26 e Å3
2674 reflectionsΔρmin = 0.48 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.4879 (3)0.1647 (3)0.39260 (9)0.1137 (11)
H10.292 (4)0.103 (5)0.5867 (14)0.078 (13)*
H8B0.179 (4)0.457 (5)0.6637 (16)0.095 (14)*
H8A0.322 (5)0.426 (5)0.6868 (15)0.090 (15)*
Cl10.30242 (15)0.06343 (15)0.41668 (4)0.1034 (5)
O10.3368 (3)0.4275 (2)0.59477 (8)0.0683 (7)
N10.3282 (3)0.1806 (3)0.57783 (10)0.0619 (8)
O20.2655 (3)0.2593 (2)0.64774 (8)0.0616 (7)
C10.3700 (3)0.1824 (3)0.53060 (11)0.0542 (8)
C20.3225 (4)0.0749 (4)0.50081 (12)0.0619 (9)
H20.26370.00630.51200.074*
C70.3126 (3)0.3012 (3)0.60581 (12)0.0544 (8)
C90.1806 (4)0.3126 (4)0.72378 (12)0.0612 (9)
C30.3623 (4)0.0687 (4)0.45406 (12)0.0669 (10)
C40.4493 (4)0.1710 (5)0.43833 (14)0.0741 (11)
C140.2263 (5)0.3472 (5)0.76831 (13)0.0799 (12)
H140.29670.40920.77150.096*
C60.4595 (4)0.2837 (4)0.51389 (14)0.0691 (10)
H60.49340.35510.53390.083*
C50.4974 (4)0.2771 (5)0.46710 (16)0.0777 (12)
H50.55590.34540.45540.093*
C80.2409 (6)0.3783 (4)0.68092 (14)0.0727 (12)
C120.0646 (5)0.1989 (6)0.80410 (16)0.0924 (15)
H120.02580.16060.83100.111*
C100.0767 (4)0.2206 (4)0.72049 (15)0.0736 (11)
H100.04480.19560.69090.088*
C110.0188 (5)0.1646 (5)0.76045 (16)0.0879 (13)
H110.05190.10310.75760.106*
C130.1679 (6)0.2899 (6)0.80796 (16)0.1000 (16)
H130.19950.31370.83770.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.134 (3)0.132 (2)0.0748 (16)0.013 (2)0.0481 (16)0.0009 (15)
Cl10.1209 (11)0.1169 (11)0.0724 (7)0.0226 (8)0.0116 (6)0.0251 (6)
O10.092 (2)0.0425 (13)0.0708 (15)0.0037 (12)0.0111 (13)0.0078 (10)
N10.084 (2)0.0432 (15)0.0582 (16)0.0042 (14)0.0088 (15)0.0015 (12)
O20.0882 (18)0.0455 (12)0.0511 (12)0.0016 (11)0.0080 (12)0.0006 (9)
C10.060 (2)0.0470 (17)0.0557 (17)0.0024 (14)0.0038 (15)0.0008 (13)
C20.064 (2)0.058 (2)0.0635 (19)0.0014 (16)0.0106 (16)0.0055 (16)
C70.062 (2)0.0425 (16)0.0589 (17)0.0012 (14)0.0042 (15)0.0039 (14)
C90.071 (2)0.0527 (19)0.0600 (18)0.0037 (16)0.0015 (17)0.0011 (15)
C30.071 (2)0.071 (2)0.0585 (19)0.0025 (18)0.0092 (17)0.0025 (17)
C40.077 (3)0.083 (3)0.063 (2)0.001 (2)0.0237 (19)0.006 (2)
C140.086 (3)0.094 (3)0.060 (2)0.009 (2)0.001 (2)0.009 (2)
C60.066 (2)0.060 (2)0.081 (2)0.0054 (17)0.0158 (19)0.0007 (18)
C50.076 (3)0.072 (2)0.085 (3)0.005 (2)0.029 (2)0.009 (2)
C80.107 (4)0.050 (2)0.061 (2)0.003 (2)0.012 (2)0.0048 (16)
C120.085 (3)0.115 (4)0.077 (3)0.010 (3)0.025 (2)0.021 (3)
C100.079 (3)0.071 (3)0.071 (2)0.001 (2)0.006 (2)0.0047 (18)
C110.074 (3)0.095 (3)0.094 (3)0.008 (2)0.008 (2)0.020 (3)
C130.115 (4)0.125 (4)0.060 (2)0.006 (3)0.003 (3)0.007 (2)
Geometric parameters (Å, º) top
F—C41.360 (4)C4—C51.356 (6)
Cl1—C31.715 (4)C14—C131.381 (6)
O1—C71.210 (4)C14—H140.9300
N1—C71.358 (4)C6—C51.387 (6)
N1—C11.409 (4)C6—H60.9300
N1—H10.83 (4)C5—H50.9300
O2—C71.342 (4)C8—H8B1.08 (5)
O2—C81.452 (4)C8—H8A0.97 (5)
C1—C61.393 (5)C12—C131.363 (7)
C1—C21.380 (5)C12—C111.363 (6)
C2—C31.391 (4)C12—H120.9300
C2—H20.9300C10—C111.381 (6)
C9—C101.372 (6)C10—H100.9300
C9—C141.386 (5)C11—H110.9300
C9—C81.492 (5)C13—H130.9300
C3—C41.372 (5)
C7—N1—C1125.7 (3)C5—C6—C1119.3 (4)
C7—N1—H1116 (3)C5—C6—H6120.3
C1—N1—H1116 (3)C1—C6—H6120.3
C7—O2—C8115.5 (3)C4—C5—C6120.0 (4)
C6—C1—C2119.7 (3)C4—C5—H5120.0
C6—C1—N1122.7 (3)C6—C5—H5120.0
C2—C1—N1117.5 (3)O2—C8—C9108.0 (3)
C3—C2—C1120.3 (3)O2—C8—H8B108 (2)
C3—C2—H2119.8C9—C8—H8B112 (2)
C1—C2—H2119.8O2—C8—H8A107 (3)
O1—C7—O2124.9 (3)C9—C8—H8A114 (3)
O1—C7—N1125.5 (3)H8B—C8—H8A108 (4)
O2—C7—N1109.6 (3)C13—C12—C11119.3 (4)
C10—C9—C14118.2 (4)C13—C12—H12120.4
C10—C9—C8121.4 (4)C11—C12—H12120.4
C14—C9—C8120.4 (4)C11—C10—C9120.9 (4)
C4—C3—C2118.8 (4)C11—C10—H10119.5
C4—C3—Cl1120.7 (3)C9—C10—H10119.5
C2—C3—Cl1120.5 (3)C12—C11—C10120.5 (5)
C5—C4—F119.5 (4)C12—C11—H11119.7
C5—C4—C3121.8 (4)C10—C11—H11119.7
F—C4—C3118.7 (4)C12—C13—C14120.8 (5)
C9—C14—C13120.3 (5)C12—C13—H13119.6
C9—C14—H14119.9C14—C13—H13119.6
C13—C14—H14119.9
C7—N1—C1—C634.6 (6)C8—C9—C14—C13178.0 (5)
C7—N1—C1—C2147.9 (4)C2—C1—C6—C51.5 (6)
C6—C1—C2—C30.9 (6)N1—C1—C6—C5179.0 (4)
N1—C1—C2—C3178.5 (3)F—C4—C5—C6179.5 (4)
C8—O2—C7—O11.2 (6)C3—C4—C5—C60.4 (7)
C8—O2—C7—N1178.5 (4)C1—C6—C5—C41.2 (7)
C1—N1—C7—O12.8 (6)C7—O2—C8—C9176.0 (3)
C1—N1—C7—O2176.9 (3)C10—C9—C8—O250.9 (6)
C1—C2—C3—C40.1 (6)C14—C9—C8—O2131.2 (4)
C1—C2—C3—Cl1179.3 (3)C14—C9—C10—C110.3 (6)
C2—C3—C4—C50.2 (6)C8—C9—C10—C11177.7 (4)
Cl1—C3—C4—C5179.6 (4)C13—C12—C11—C100.4 (8)
C2—C3—C4—F179.9 (4)C9—C10—C11—C120.5 (7)
Cl1—C3—C4—F0.5 (6)C11—C12—C13—C140.1 (8)
C10—C9—C14—C130.0 (7)C9—C14—C13—C120.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (4)2.09 (4)2.906 (4)164 (4)
C2—H2···O1i0.932.673.414 (4)138
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H11ClFNO2
Mr279.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.4695 (16), 9.0346 (11), 28.361 (3)
V3)2682.6 (6)
Z8
Radiation typeCu Kα
µ (mm1)2.62
Crystal size (mm)0.40 × 0.39 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.668, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11782, 2674, 1547
Rint0.063
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.234, 1.01
No. of reflections2674
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.48

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.83 (4)2.09 (4)2.906 (4)164 (4)
C2—H2···O1i0.9302.673.414 (4)138
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

AA, MKS and SKA are thankful to the University Grant Commission (scheme No. 34–311/2008), New Delhi, the Banaras Hindu University, Varanasi, and the University of Delhi, respectively, for financial assistance. The authors also thank the USIC University of Delhi for the data collection.

References

First citationAwasthi, S. K., Mishra, N., Dixit, S. K., Singh, A., Yadav, M., Yadav, S. S. & Rathaur, S. (2009). Am. J. Trop. Med. Hyg. 80, 764–768.  Web of Science PubMed CAS Google Scholar
First citationAwasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407–420.  Web of Science CrossRef CAS Google Scholar
First citationBickoff, E. M., Livingston, A. L., Guggolz, J. & Thompson, C. R. (1952). J. Am. Oil Chem. Soc. 29, 445–446.  CrossRef CAS Google Scholar
First citationBrickner, S. J., Hutchinson, D. K., Barbachyn, M. R., Manninen, P. R., Ulanowicz, D. A., Garmon, S. A., Grega, K. C., Hendges, S. K., Toops, D. S., Ford, C. W. & Zurenko, G. E. (1996). J. Med. Chem. 39, 673–679.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKahl, T., Schröder, K. W., Lawrence, F. R., Marshall, W. J., Höke, H. & Jäckh, R. (2007). Aniline, in Ullmann's Encyclopedia of Industrial Chemistry. New York: John Wiley & Sons. doi:10.1002/14356007.a02_303.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRiegel, E. R. & Kent, J. A. (2007). Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology, Vol. 1, pp. 396–397. New York: Springer.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, X., Zhiguang, X., Yifang, L. & Weihua, L. (2001). Chin. J. Med. Chem. 11, 317–321.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1137
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds