organic compounds
Benzyl N-(3-chloro-4-fluorophenyl)carbamate
aDepartment of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 225 001, India, and bChemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India
*Correspondence e-mail: dralka@bhu.ac.in, awasthisatish@yahoo.com
The title compound, C14H11ClFNO2, the phenyl ring (A), the chlorofluorophenyl ring (B) and the central ketone O/C/O group (C) are not coplanar, with dihedral angles B/C = 31.6 (2), A/B = 21.3 (2) and A/C = 50.1 (2)°. The crystal packing is stabilized by N—H⋯O and C—H⋯O interactions.
Related literature
For the bioactivity of nitrogen-containing et al. (2001). For applications of anilines, see: Bickoff et al.(1952); Riegel & Kent (2007); Kahl et al. (2007). For our ongoing research on the antimicrobial activity of heterocyclic molecules, see: Awasthi, Mishra, Dixit et al. (2009); Awasthi, Mishra, Kumar et al. (2009); Mishra et al. (2008). For the synthesis, see: Brickner et al. (1996).
see: XuanExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811012608/zj2005sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811012608/zj2005Isup2.hkl
The synthesis of title compound was achieved by published procedure (Brickner, et al., 1996). Briefly, to a solution of 3-chloro-4-fluroaniline (1.0 g, 6.87 mmol) in acetone (25 ml) and water (12.5 ml) at 0¯C were added (1.18 g, 8.55 mmol) of sodium bicarbonate and then (1.01 ml, 7.08 mmol) of benzyl chloroformate over 6 min via syringe. The reaction mixture was stirred over night and then poured on ice water and filtered the solid and washed thoroughly with water. The product was recrystallized from dichloromethane. After several days leaving at room temperature, transparent white crystals were obtained by slow evaporation from dichloromethane at 6¯C. Yield = 1.64 g (85%), MS (Macromass G) m/z = 279.5 (M+), Rf 0.57 (98:2, CH2Cl2: MeOH) m.p. 60¯C, Elemental analysis (Perkin–Elmer 240 C elemental analyzer) Calculated for: C14H11O2NClF (%) C– 60.1, H– 3.9, O-11.5, N-5.0, Cl-12.7, F-6.8 found C-60.0, H-4.0, O– 11.0, N-4.8, Cl-12.6, F-7.1 1H-NMR (CDCl3)- 7.56–7.55 (m, 1 H, H2), 7.02- 6.97 (m, 5H, ArH), 7.20–7.15 (m,1H, H6), 7.08–7.02(m, 1H, H5), 6.66 (s,1H, NH), 5.19 (s, 2H, CH2); 13 C-NMR (CDCl3): 155.97, 153.19, 135.66, 134.37, 128.65–128.35,121.33, 120.85,118.28,116.78,67.32
All H atoms were located from difference Fourier map (range of C—H = 0.93 - 1.08 Å,and N–H = 0.83 Å) allowed to refine freely
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C14H11ClFNO2 | F(000) = 1152 |
Mr = 279.69 | Dx = 1.385 Mg m−3 |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1370 reflections |
a = 10.4695 (16) Å | θ = 3.1–74.8° |
b = 9.0346 (11) Å | µ = 2.62 mm−1 |
c = 28.361 (3) Å | T = 293 K |
V = 2682.6 (6) Å3 | Block, white |
Z = 8 | 0.40 × 0.39 × 0.38 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2674 independent reflections |
Radiation source: fine-focus sealed tube | 1547 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
ω scans | θmax = 74.9°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −12→11 |
Tmin = 0.668, Tmax = 1.000 | k = −11→11 |
11782 measured reflections | l = −24→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.234 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.1301P)2] where P = (Fo2 + 2Fc2)/3 |
2674 reflections | (Δ/σ)max = 0.050 |
184 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
C14H11ClFNO2 | V = 2682.6 (6) Å3 |
Mr = 279.69 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 10.4695 (16) Å | µ = 2.62 mm−1 |
b = 9.0346 (11) Å | T = 293 K |
c = 28.361 (3) Å | 0.40 × 0.39 × 0.38 mm |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2674 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1547 reflections with I > 2σ(I) |
Tmin = 0.668, Tmax = 1.000 | Rint = 0.063 |
11782 measured reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.234 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.26 e Å−3 |
2674 reflections | Δρmin = −0.48 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F | 0.4879 (3) | −0.1647 (3) | 0.39260 (9) | 0.1137 (11) | |
H1 | 0.292 (4) | −0.103 (5) | 0.5867 (14) | 0.078 (13)* | |
H8B | 0.179 (4) | −0.457 (5) | 0.6637 (16) | 0.095 (14)* | |
H8A | 0.322 (5) | −0.426 (5) | 0.6868 (15) | 0.090 (15)* | |
Cl1 | 0.30242 (15) | 0.06343 (15) | 0.41668 (4) | 0.1034 (5) | |
O1 | 0.3368 (3) | −0.4275 (2) | 0.59477 (8) | 0.0683 (7) | |
N1 | 0.3282 (3) | −0.1806 (3) | 0.57783 (10) | 0.0619 (8) | |
O2 | 0.2655 (3) | −0.2593 (2) | 0.64774 (8) | 0.0616 (7) | |
C1 | 0.3700 (3) | −0.1824 (3) | 0.53060 (11) | 0.0542 (8) | |
C2 | 0.3225 (4) | −0.0749 (4) | 0.50081 (12) | 0.0619 (9) | |
H2 | 0.2637 | −0.0063 | 0.5120 | 0.074* | |
C7 | 0.3126 (3) | −0.3012 (3) | 0.60581 (12) | 0.0544 (8) | |
C9 | 0.1806 (4) | −0.3126 (4) | 0.72378 (12) | 0.0612 (9) | |
C3 | 0.3623 (4) | −0.0687 (4) | 0.45406 (12) | 0.0669 (10) | |
C4 | 0.4493 (4) | −0.1710 (5) | 0.43833 (14) | 0.0741 (11) | |
C14 | 0.2263 (5) | −0.3472 (5) | 0.76831 (13) | 0.0799 (12) | |
H14 | 0.2967 | −0.4092 | 0.7715 | 0.096* | |
C6 | 0.4595 (4) | −0.2837 (4) | 0.51389 (14) | 0.0691 (10) | |
H6 | 0.4934 | −0.3551 | 0.5339 | 0.083* | |
C5 | 0.4974 (4) | −0.2771 (5) | 0.46710 (16) | 0.0777 (12) | |
H5 | 0.5559 | −0.3454 | 0.4554 | 0.093* | |
C8 | 0.2409 (6) | −0.3783 (4) | 0.68092 (14) | 0.0727 (12) | |
C12 | 0.0646 (5) | −0.1989 (6) | 0.80410 (16) | 0.0924 (15) | |
H12 | 0.0258 | −0.1606 | 0.8310 | 0.111* | |
C10 | 0.0767 (4) | −0.2206 (4) | 0.72049 (15) | 0.0736 (11) | |
H10 | 0.0448 | −0.1956 | 0.6909 | 0.088* | |
C11 | 0.0188 (5) | −0.1646 (5) | 0.76045 (16) | 0.0879 (13) | |
H11 | −0.0519 | −0.1031 | 0.7576 | 0.106* | |
C13 | 0.1679 (6) | −0.2899 (6) | 0.80796 (16) | 0.1000 (16) | |
H13 | 0.1995 | −0.3137 | 0.8377 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F | 0.134 (3) | 0.132 (2) | 0.0748 (16) | 0.013 (2) | 0.0481 (16) | −0.0009 (15) |
Cl1 | 0.1209 (11) | 0.1169 (11) | 0.0724 (7) | 0.0226 (8) | 0.0116 (6) | 0.0251 (6) |
O1 | 0.092 (2) | 0.0425 (13) | 0.0708 (15) | −0.0037 (12) | 0.0111 (13) | −0.0078 (10) |
N1 | 0.084 (2) | 0.0432 (15) | 0.0582 (16) | 0.0042 (14) | 0.0088 (15) | −0.0015 (12) |
O2 | 0.0882 (18) | 0.0455 (12) | 0.0511 (12) | 0.0016 (11) | 0.0080 (12) | −0.0006 (9) |
C1 | 0.060 (2) | 0.0470 (17) | 0.0557 (17) | −0.0024 (14) | 0.0038 (15) | −0.0008 (13) |
C2 | 0.064 (2) | 0.058 (2) | 0.0635 (19) | 0.0014 (16) | 0.0106 (16) | −0.0055 (16) |
C7 | 0.062 (2) | 0.0425 (16) | 0.0589 (17) | −0.0012 (14) | −0.0042 (15) | −0.0039 (14) |
C9 | 0.071 (2) | 0.0527 (19) | 0.0600 (18) | −0.0037 (16) | 0.0015 (17) | −0.0011 (15) |
C3 | 0.071 (2) | 0.071 (2) | 0.0585 (19) | −0.0025 (18) | 0.0092 (17) | 0.0025 (17) |
C4 | 0.077 (3) | 0.083 (3) | 0.063 (2) | −0.001 (2) | 0.0237 (19) | −0.006 (2) |
C14 | 0.086 (3) | 0.094 (3) | 0.060 (2) | 0.009 (2) | −0.001 (2) | 0.009 (2) |
C6 | 0.066 (2) | 0.060 (2) | 0.081 (2) | 0.0054 (17) | 0.0158 (19) | −0.0007 (18) |
C5 | 0.076 (3) | 0.072 (2) | 0.085 (3) | 0.005 (2) | 0.029 (2) | −0.009 (2) |
C8 | 0.107 (4) | 0.050 (2) | 0.061 (2) | 0.003 (2) | 0.012 (2) | 0.0048 (16) |
C12 | 0.085 (3) | 0.115 (4) | 0.077 (3) | −0.010 (3) | 0.025 (2) | −0.021 (3) |
C10 | 0.079 (3) | 0.071 (3) | 0.071 (2) | −0.001 (2) | −0.006 (2) | −0.0047 (18) |
C11 | 0.074 (3) | 0.095 (3) | 0.094 (3) | 0.008 (2) | 0.008 (2) | −0.020 (3) |
C13 | 0.115 (4) | 0.125 (4) | 0.060 (2) | −0.006 (3) | 0.003 (3) | −0.007 (2) |
F—C4 | 1.360 (4) | C4—C5 | 1.356 (6) |
Cl1—C3 | 1.715 (4) | C14—C13 | 1.381 (6) |
O1—C7 | 1.210 (4) | C14—H14 | 0.9300 |
N1—C7 | 1.358 (4) | C6—C5 | 1.387 (6) |
N1—C1 | 1.409 (4) | C6—H6 | 0.9300 |
N1—H1 | 0.83 (4) | C5—H5 | 0.9300 |
O2—C7 | 1.342 (4) | C8—H8B | 1.08 (5) |
O2—C8 | 1.452 (4) | C8—H8A | 0.97 (5) |
C1—C6 | 1.393 (5) | C12—C13 | 1.363 (7) |
C1—C2 | 1.380 (5) | C12—C11 | 1.363 (6) |
C2—C3 | 1.391 (4) | C12—H12 | 0.9300 |
C2—H2 | 0.9300 | C10—C11 | 1.381 (6) |
C9—C10 | 1.372 (6) | C10—H10 | 0.9300 |
C9—C14 | 1.386 (5) | C11—H11 | 0.9300 |
C9—C8 | 1.492 (5) | C13—H13 | 0.9300 |
C3—C4 | 1.372 (5) | ||
C7—N1—C1 | 125.7 (3) | C5—C6—C1 | 119.3 (4) |
C7—N1—H1 | 116 (3) | C5—C6—H6 | 120.3 |
C1—N1—H1 | 116 (3) | C1—C6—H6 | 120.3 |
C7—O2—C8 | 115.5 (3) | C4—C5—C6 | 120.0 (4) |
C6—C1—C2 | 119.7 (3) | C4—C5—H5 | 120.0 |
C6—C1—N1 | 122.7 (3) | C6—C5—H5 | 120.0 |
C2—C1—N1 | 117.5 (3) | O2—C8—C9 | 108.0 (3) |
C3—C2—C1 | 120.3 (3) | O2—C8—H8B | 108 (2) |
C3—C2—H2 | 119.8 | C9—C8—H8B | 112 (2) |
C1—C2—H2 | 119.8 | O2—C8—H8A | 107 (3) |
O1—C7—O2 | 124.9 (3) | C9—C8—H8A | 114 (3) |
O1—C7—N1 | 125.5 (3) | H8B—C8—H8A | 108 (4) |
O2—C7—N1 | 109.6 (3) | C13—C12—C11 | 119.3 (4) |
C10—C9—C14 | 118.2 (4) | C13—C12—H12 | 120.4 |
C10—C9—C8 | 121.4 (4) | C11—C12—H12 | 120.4 |
C14—C9—C8 | 120.4 (4) | C11—C10—C9 | 120.9 (4) |
C4—C3—C2 | 118.8 (4) | C11—C10—H10 | 119.5 |
C4—C3—Cl1 | 120.7 (3) | C9—C10—H10 | 119.5 |
C2—C3—Cl1 | 120.5 (3) | C12—C11—C10 | 120.5 (5) |
C5—C4—F | 119.5 (4) | C12—C11—H11 | 119.7 |
C5—C4—C3 | 121.8 (4) | C10—C11—H11 | 119.7 |
F—C4—C3 | 118.7 (4) | C12—C13—C14 | 120.8 (5) |
C9—C14—C13 | 120.3 (5) | C12—C13—H13 | 119.6 |
C9—C14—H14 | 119.9 | C14—C13—H13 | 119.6 |
C13—C14—H14 | 119.9 | ||
C7—N1—C1—C6 | −34.6 (6) | C8—C9—C14—C13 | −178.0 (5) |
C7—N1—C1—C2 | 147.9 (4) | C2—C1—C6—C5 | −1.5 (6) |
C6—C1—C2—C3 | 0.9 (6) | N1—C1—C6—C5 | −179.0 (4) |
N1—C1—C2—C3 | 178.5 (3) | F—C4—C5—C6 | 179.5 (4) |
C8—O2—C7—O1 | −1.2 (6) | C3—C4—C5—C6 | −0.4 (7) |
C8—O2—C7—N1 | 178.5 (4) | C1—C6—C5—C4 | 1.2 (7) |
C1—N1—C7—O1 | 2.8 (6) | C7—O2—C8—C9 | −176.0 (3) |
C1—N1—C7—O2 | −176.9 (3) | C10—C9—C8—O2 | 50.9 (6) |
C1—C2—C3—C4 | −0.1 (6) | C14—C9—C8—O2 | −131.2 (4) |
C1—C2—C3—Cl1 | 179.3 (3) | C14—C9—C10—C11 | −0.3 (6) |
C2—C3—C4—C5 | −0.2 (6) | C8—C9—C10—C11 | 177.7 (4) |
Cl1—C3—C4—C5 | −179.6 (4) | C13—C12—C11—C10 | −0.4 (8) |
C2—C3—C4—F | 179.9 (4) | C9—C10—C11—C12 | 0.5 (7) |
Cl1—C3—C4—F | 0.5 (6) | C11—C12—C13—C14 | 0.1 (8) |
C10—C9—C14—C13 | 0.0 (7) | C9—C14—C13—C12 | 0.1 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.83 (4) | 2.09 (4) | 2.906 (4) | 164 (4) |
C2—H2···O1i | 0.93 | 2.67 | 3.414 (4) | 138 |
Symmetry code: (i) −x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C14H11ClFNO2 |
Mr | 279.69 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 10.4695 (16), 9.0346 (11), 28.361 (3) |
V (Å3) | 2682.6 (6) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 2.62 |
Crystal size (mm) | 0.40 × 0.39 × 0.38 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.668, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11782, 2674, 1547 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.234, 1.01 |
No. of reflections | 2674 |
No. of parameters | 184 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.48 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.83 (4) | 2.09 (4) | 2.906 (4) | 164 (4) |
C2—H2···O1i | 0.930 | 2.67 | 3.414 (4) | 138 |
Symmetry code: (i) −x+1/2, y+1/2, z. |
Acknowledgements
AA, MKS and SKA are thankful to the University Grant Commission (scheme No. 34–311/2008), New Delhi, the Banaras Hindu University, Varanasi, and the University of Delhi, respectively, for financial assistance. The authors also thank the USIC University of Delhi for the data collection.
References
Awasthi, S. K., Mishra, N., Dixit, S. K., Singh, A., Yadav, M., Yadav, S. S. & Rathaur, S. (2009). Am. J. Trop. Med. Hyg. 80, 764–768. Web of Science PubMed CAS Google Scholar
Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407–420. Web of Science CrossRef CAS Google Scholar
Bickoff, E. M., Livingston, A. L., Guggolz, J. & Thompson, C. R. (1952). J. Am. Oil Chem. Soc. 29, 445–446. CrossRef CAS Google Scholar
Brickner, S. J., Hutchinson, D. K., Barbachyn, M. R., Manninen, P. R., Ulanowicz, D. A., Garmon, S. A., Grega, K. C., Hendges, S. K., Toops, D. S., Ford, C. W. & Zurenko, G. E. (1996). J. Med. Chem. 39, 673–679. CrossRef CAS PubMed Web of Science Google Scholar
Kahl, T., Schröder, K. W., Lawrence, F. R., Marshall, W. J., Höke, H. & Jäckh, R. (2007). Aniline, in Ullmann's Encyclopedia of Industrial Chemistry. New York: John Wiley & Sons. doi:10.1002/14356007.a02_303. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530–1535. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Riegel, E. R. & Kent, J. A. (2007). Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology, Vol. 1, pp. 396–397. New York: Springer. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xuan, X., Zhiguang, X., Yifang, L. & Weihua, L. (2001). Chin. J. Med. Chem. 11, 317–321. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic compounds containing nitrogen, oxygen, sulfur, etc. are well known for their antiviral, antimicrobial activities. Nitrogen containing heterocyclic compounds are unique due to the oxidation of nitrogen which is key factor for bioactivity of their scaffolds (Xuan et al., 2001). Moreover, substituted anilines are widely used as intermediate in many organic synthesis as well as in many modern drugs. In aniline, the nitrogen atom is bonded to sp2 hybridized carbon atom. Further, the unshared electron pair on nitrogen atom of aniline can interact with the delocalized pi orbital of the nucleus and the aniline molecule is thus stabilized with respect to the anilinium cation. Here, the acceptance of a proton by aniline is energetically unfavorable. Therefore, it functions as a base with the utmost reluctance (pKa = 4.62, compared with cyclohexylamine, pKa = 10.68). The base weakening effect is naturally more pronounced when further phenyl groups are introduced on the nitrogen atom, thus diphenylamine, is an extremely weak base (pKa = 0.8), while triphenylamine is not basic for all practical purpose. Further, aniline is widely used for synthesis of methylene diphenyl diisocynate (MDI). They are also used as rubber processing chemicals, herbicides, dyes and pigments (Riegel & Kent, 2007). Aniline derivatives such as phenylenediamine and diphenylamine are used as antioxidants (Bickoff et al., 1952). Aniline is also used in the dye industry as a precursor to indigo, the blue of blue jeans (Kahl et al., 2007). As part of our ongoing research on antimicrobial activities of some heterocyclic molecules (Awasthi, Mishra, Dixit et al., 2009; Awasthi, Mishra, Kumar et al., 2009; Mishra et al., 2008), we report here the crystal structure of (3-chloro-4-fluro-phenyl)-carbamic acid benzyl ester (Figure 1). The crystal structure of molecule is stabilized by intermolecular hydrogen bonding and intermolecular interactions between N—H···O and C—H···O respectively as seen in Table 1, Figure 3. Considering C1—C6 of phenyl ring as plane 1 (PL1), central ketonic function O1C7O2 as plane 2 (PL2), and benzyl ring C8—C14 as plane 3 (PL3), the dihedral angels between planes PL 1 and PL2, PL1 and PL3, PL2 and PL3 are 31.65, 21.34, 50.13 respectively, suggests that the molecule is non-planar. The arrangement of molecules and its hydrogen bonding in the crystal can be seen in packing diagram (Figure 3).