metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m593-m594

Tri­ethyl­ammonium bis­­{2-[(2-oxido-5-nitro­benzyl­idene)amino]­benzoato}ferrate(III) monohydrate

aDepartment of Inorganic Chemistry, National Taras Shevchenko University, 64 Volodymyr'ska St, 01601 Kyiv, Ukraine, and bDepartment of Chemistry of Complex Compounds, V.I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, 32/34 Palladin Ave, Kyiv 03680, Ukraine
*Correspondence e-mail: edik_chem@mail.ru

(Received 22 January 2011; accepted 25 March 2011; online 13 April 2011)

In the title compound, [NH(C2H5)3][Fe(C14H8N2O5)2]·H2O, the iron(III) ion is hexa­coordinated by four O atoms in the basal plane [Fe—O distances in the range 1.904 (4)–1.909 (4) Å] and two N atoms in the axial plane [Fe—N = 1.981 (4) and 1.985 (4) Å] of two tridentate fully deprotonated 2-{[(2-oxido-5-nitro­phen­yl)methyl­ene]amino}­benzoato (H2L) ligands, forming a tetra­gonally elongated octa­hedral geometry. The triethyl­ammonium cations and complex anions are linked by N—H⋯O hydrogen bonds into chains parallel to [100]. Disordered water mol­ecules (occupancy ratio 0.6:0.4) occupy the voids in the crystal structure.

Related literature

For the stuctures of related compexes, including those with phenyl-salicyliden-imine (PSI) ligands similar to H2L, see: Rotondo et al. (2009[Rotondo, A., Bruno, G., Brancatelli, G., Nicolo, F. & Armentano, D. (2009). Inorg. Chim. Acta, 326, 247-252.]); Patel (2009[Patel, R. N. (2009). Indian J. Chem. A48, 1370-1377.]); Patel et al. (2008[Patel, R. N., Gundla, V. L. N. & Patel, D. K. (2008). Polyhedron, 27, 1054-1060.]); Laye & Sanudo (2009[Laye, R. & Sanudo, E. C. (2009). Inorg. Chim. Acta, 362, 2205-2212.]); Lu et al. (2006[Lu, L.-P., Yao, S.-Q. & Zhu, M.-L. (2006). Acta Cryst. C62, m220-m222.]); Rosair et al. (2002[Rosair, G. M., Dey, D. K., Samanta, B. & Mitra, S. (2002). Acta Cryst. C58, m266-m267.]). For bond-valence sums, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)[Fe(C14H8N2O5)2]·H2O

  • Mr = 742.50

  • Monoclinic, P 21 /c

  • a = 10.2688 (3) Å

  • b = 14.7128 (4) Å

  • c = 25.0800 (7) Å

  • β = 97.230 (2)°

  • V = 3759.03 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.35 × 0.05 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.982

  • 20469 measured reflections

  • 6432 independent reflections

  • 5305 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.242

  • S = 1.13

  • 6432 reflections

  • 466 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O7 0.91 2.00 2.865 (13) 159

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There is growing interest in transition metal complexes with phenyl-salicyliden-imines (PSI) ligands due to their important applications and pharmacological activities (Rotondo et al., 2009, Patel, 2009, Patel et al., 2008, Laye & Sanudo, 2009). Here we represent a new complex with nitro-substituted PSI ligand, 2-(((2-hydroxy-5-nitrophenyl)methylene)amino)benzoic acid (H2L), wich was obtained as by-product during the invistigation of the system Co – FeCl2.4H2O – MnCl2.4H2O – H2L – Et3N – DMF.

The synthesis of {NH(C2H5)3}[Fe(C14H8NO5)2].H2O, I, is carried out in air that leads to stabilization of iron(III) ion. The formation of the complex can be understood if one considers the following reaction scheme: FeCl2.4H2O + 2H2L + 3Et3N + 0.25O2 (NHEt3)[FeIIIL2] + 2Et3N.HCl + 9H2O

The crystal structure of I consists of triethylammonium cations and complex anions (Fig. 1) linked together by "strong" N—H···O hydrogen bonds (Fig. 2). The Fe centre is hexacoordinated in an axially elongated octahedral fashion (FeO4N2-chromophore) with oxidation state Fe(III), as it can be seen from close examination of the structured parameters and bond-valence sum calculations (Brown & Altermatt, 1985). Angular deviations from octahedral geometry are not significant, less than 5° for cis- and trans-angles.

In the crystal packing of I there are channels along the a axis (Fig. 3), accounting in total 610.7 Å3 per unit cell, i.e. some 16.2% of the total volume. The voids were examined using PLATON (Spek, 2009). The channels are occupied by disordered water molecules.

Related literature top

For the stuctures of related compexes, including those with phenyl-salicyliden-imine (PSI) ligands similar to H2L, see: Rotondo et al. (2009); Patel (2009); Patel et al. (2008); Laye & Sanudo (2009); Lu et al. (2006); Rosair et al. (2002). For bond-valence sums, see: Brown & Altermatt (1985)

Experimental top

2-aminobenzoic acid (0.51 g, 3.75 mmol), 5-Nitrosalicylaldehyde (0.63 g, 3.75 mmol), and triethylamine (0.53 ml, 3.75 mmol) were dissolved in DMF (25 ml) in this order, forming a yellow solution and magnetically stirred at 50 – 60°C (10 min). Then, cobalt powder (0.08 g, 1.25 mmol), FeCl2.4H2O (0.25 g, 1.25 mmol) and MnCl2.4H2O (0.26 g, 1.25 mmol) were successfully added to the hot yellow solution with stirring about 2 h. Red crystals suitable for X-ray analysis were isolated by adding of iPrOH from the dark red solution after 1 day. Yield: 0.34 g, 0.32% (per Fe). Elemental analysis for C34H34Fe1N5O11 (Mr=744.52). Calcd: C, 54.85; N, 9.41; H, 4.6; Fe, 7.5. Found: C, 54.5; N, 9.6; H, 4.6; Fe, 7.2. The compound is sparingly soluble in DMSO and DMF, and it is stable in air. The infrared spectrum of solid recorded using KBr disk shows an adsorption at 3440 cm-1, which attributed to ν(OH) of H2O solvation molecules. The presence in IR spectrum of a band at 1680 cm-1 attributable to the ν(C=N)imine stretching frequency together with the absence of the band due to the ν(C=O) of the carbonyl indicates the formation of the Schiff base (Fig. 4).

Refinement top

Structure solution by direct methods in the space group P21/c, followed by refinement, based on F2, of atomic coordinates and anisotropic displacement parameters, was performed using the programs SHELX97 (Sheldrick, 2008) successively. H atoms bonded to C atoms were found in successive difference Fourier maps and refined using a riding model, with C–H = 0.93 Å and with Uiso(H)=1.2Ueq(C). O11 appeared to be highly disordered and was split in two positions with 0.4 and 0.6 occurrence. The H-atoms bonded to disordered oxygen O11 cannot be located from difference map. On this ground, both positions of O11 are refined without H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of [Fe(C14H8NO5)2]- with atom labels and 50% probability displacement elipsoides. The H atoms have been omitted.
[Figure 2] Fig. 2. The packing of complex I, viewed down the b axis, showing N–H···O hydrogen bonds linking in pairs of the complex cations and anions. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. The packing of complex I, viewed down the a axis, demonstrating the voids occupied by water molecules.
[Figure 4] Fig. 4. The IR spectrum of complex I (cm-1): 3440, 3065, 2989, 2928, 2861, 2793, 1678, 1592, 1550, 1508, 1457, 1371,1321, 1184, 1107, 955, 895, 862, 836, 801, 750, 715.
Triethylammonium bis{2-[(2-oxido-5-nitrobenzylidene)amino]benzoato}ferrate(III) monohydrate top
Crystal data top
(C6H16N)[Fe(C14H8N2O5)2]·H2OF(000) = 1540
Mr = 742.50Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5575 reflections
a = 10.2688 (3) Åθ = 5.8–25.0°
b = 14.7128 (4) ŵ = 0.46 mm1
c = 25.0800 (7) ÅT = 296 K
β = 97.230 (2)°Prism, red
V = 3759.03 (18) Å30.35 × 0.05 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6432 independent reflections
Radiation source: fine-focus sealed tube5305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.1°, θmin = 5.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.855, Tmax = 0.982k = 1717
20469 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.242H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1031P)2 + 8.9019P]
where P = (Fo2 + 2Fc2)/3
6432 reflections(Δ/σ)max < 0.001
466 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
(C6H16N)[Fe(C14H8N2O5)2]·H2OV = 3759.03 (18) Å3
Mr = 742.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2688 (3) ŵ = 0.46 mm1
b = 14.7128 (4) ÅT = 296 K
c = 25.0800 (7) Å0.35 × 0.05 × 0.04 mm
β = 97.230 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5305 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.982Rint = 0.035
20469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.242H-atom parameters constrained
S = 1.13Δρmax = 0.89 e Å3
6432 reflectionsΔρmin = 0.61 e Å3
466 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.76042 (6)0.43361 (4)0.27782 (3)0.0393 (3)
N10.6821 (4)0.5564 (3)0.28195 (17)0.0488 (10)
N20.6448 (5)0.5933 (6)0.5208 (2)0.0771 (16)
N30.8339 (4)0.3095 (3)0.27462 (17)0.0495 (10)
N41.0827 (7)0.2486 (7)0.5039 (3)0.103 (2)
N50.2528 (12)0.4148 (8)0.1890 (4)0.139 (3)
H5A0.33550.39180.19050.167*
O10.8649 (4)0.4740 (3)0.22465 (16)0.0605 (10)
O20.9514 (5)0.5716 (3)0.1731 (2)0.0854 (14)
O30.6678 (3)0.3946 (2)0.33491 (14)0.0506 (8)
O40.6579 (5)0.5525 (5)0.5635 (2)0.0986 (18)
O50.6314 (6)0.6749 (5)0.5180 (2)0.1001 (18)
O60.6131 (4)0.4005 (3)0.22741 (16)0.0605 (10)
O70.4835 (4)0.3151 (4)0.1717 (2)0.0804 (13)
O80.9015 (4)0.4666 (3)0.33112 (15)0.0556 (9)
O91.0951 (9)0.1671 (6)0.4971 (3)0.137 (3)
O101.1067 (8)0.2867 (5)0.5476 (2)0.132 (3)
O11A0.741 (3)0.1967 (14)0.4845 (9)0.160 (4)0.40
O11B0.6751 (18)0.1050 (10)0.5340 (6)0.160 (4)0.60
C10.8614 (6)0.5491 (4)0.1981 (2)0.0588 (14)
C20.7424 (6)0.6079 (4)0.1954 (2)0.0593 (14)
C30.6571 (6)0.6104 (4)0.2343 (2)0.0556 (13)
C40.6518 (5)0.5896 (4)0.3267 (2)0.0509 (12)
H4A0.62650.65030.32690.061*
C50.6544 (5)0.5397 (4)0.3761 (2)0.0487 (11)
C60.6607 (5)0.4436 (4)0.3777 (2)0.0482 (11)
C70.6597 (5)0.3994 (5)0.4274 (2)0.0597 (14)
H7A0.66070.33620.42890.072*
C80.6571 (6)0.4482 (5)0.4737 (2)0.0673 (16)
H8A0.66070.41850.50660.081*
C90.6491 (5)0.5417 (5)0.4714 (2)0.0625 (15)
C100.6460 (5)0.5879 (4)0.4237 (2)0.0581 (14)
H10A0.63840.65090.42300.070*
C110.5449 (8)0.6639 (4)0.2276 (3)0.0780 (19)
H11A0.48670.66360.25320.094*
C120.5208 (10)0.7188 (5)0.1812 (3)0.096 (3)
H12A0.44600.75510.17630.115*
C130.6048 (10)0.7192 (5)0.1442 (4)0.099 (3)
H13A0.58850.75630.11400.118*
C140.7160 (8)0.6643 (5)0.1507 (3)0.0787 (19)
H14A0.77350.66520.12490.094*
C150.5931 (5)0.3311 (4)0.1968 (2)0.0573 (13)
C160.7025 (6)0.2670 (4)0.1898 (2)0.0597 (14)
C170.8148 (6)0.2571 (4)0.2260 (2)0.0554 (13)
C180.8964 (5)0.2712 (4)0.3170 (2)0.0531 (12)
H18A0.91370.20930.31520.064*
C190.9408 (5)0.3170 (4)0.3664 (2)0.0533 (13)
C200.9450 (5)0.4139 (4)0.3703 (2)0.0510 (12)
C210.9988 (6)0.4511 (5)0.4194 (2)0.0635 (15)
H21A1.00560.51400.42260.076*
C221.0412 (6)0.3991 (5)0.4623 (3)0.0700 (17)
H22A1.07440.42590.49480.084*
C231.0348 (6)0.3054 (6)0.4577 (2)0.0738 (18)
C240.9887 (6)0.2630 (5)0.4103 (2)0.0641 (15)
H24A0.98920.20000.40750.077*
C250.9163 (7)0.1966 (5)0.2154 (3)0.0730 (18)
H25A0.99410.19260.23860.088*
C260.8961 (10)0.1443 (6)0.1697 (3)0.104 (3)
H26A0.95950.10220.16280.125*
C270.7844 (10)0.1530 (6)0.1342 (3)0.107 (3)
H27A0.77370.11790.10310.129*
C280.6886 (8)0.2124 (5)0.1438 (3)0.086 (2)
H28A0.61280.21680.11940.104*
C290.2660 (14)0.5053 (12)0.1683 (9)0.165 (6)
H29A0.18130.53510.16670.198*
H29B0.32660.53860.19390.198*
C300.309 (3)0.5136 (18)0.1172 (11)0.274 (13)
H30A0.24530.54640.09350.411*
H30B0.32110.45420.10270.411*
H30C0.39140.54580.12070.411*
C310.1695 (12)0.3468 (13)0.1528 (6)0.172 (7)
H31A0.21540.33320.12220.206*
H31B0.16420.29070.17280.206*
C320.0405 (15)0.3743 (10)0.1332 (6)0.161 (5)
H32A0.00690.33630.10350.241*
H32B0.04150.43640.12160.241*
H32C0.01450.36880.16130.241*
C330.2234 (16)0.4065 (15)0.2459 (7)0.192 (7)
H33A0.14000.43590.24880.230*
H33B0.21360.34260.25410.230*
C340.323 (2)0.4457 (12)0.2862 (7)0.204 (8)
H34A0.31140.42240.32110.306*
H34B0.31360.51070.28620.306*
H34C0.40860.42990.27780.306*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0418 (4)0.0346 (4)0.0414 (4)0.0049 (3)0.0053 (3)0.0007 (3)
N10.058 (2)0.044 (2)0.045 (2)0.0014 (19)0.0095 (19)0.0020 (18)
N20.061 (3)0.117 (5)0.053 (3)0.003 (3)0.008 (2)0.019 (3)
N30.053 (2)0.051 (2)0.043 (2)0.0046 (19)0.0002 (18)0.0003 (18)
N40.104 (5)0.128 (6)0.070 (5)0.019 (5)0.013 (4)0.038 (4)
N50.156 (9)0.152 (9)0.113 (7)0.003 (7)0.033 (6)0.005 (6)
O10.056 (2)0.073 (3)0.054 (2)0.0044 (19)0.0148 (17)0.001 (2)
O20.084 (3)0.093 (3)0.086 (3)0.025 (3)0.038 (3)0.003 (3)
O30.054 (2)0.0494 (19)0.049 (2)0.0039 (16)0.0104 (15)0.0029 (16)
O40.084 (3)0.165 (6)0.047 (3)0.004 (3)0.009 (2)0.011 (3)
O50.124 (5)0.112 (5)0.068 (3)0.006 (4)0.026 (3)0.032 (3)
O60.055 (2)0.067 (2)0.058 (2)0.0076 (18)0.0025 (17)0.0048 (19)
O70.059 (2)0.099 (3)0.077 (3)0.004 (2)0.014 (2)0.010 (3)
O80.057 (2)0.055 (2)0.053 (2)0.0113 (17)0.0005 (17)0.0015 (17)
O90.182 (7)0.120 (6)0.098 (5)0.012 (5)0.034 (5)0.046 (4)
O100.166 (6)0.170 (6)0.049 (3)0.052 (5)0.028 (3)0.030 (3)
O11A0.213 (13)0.127 (8)0.131 (9)0.005 (8)0.009 (8)0.001 (7)
O11B0.213 (13)0.127 (8)0.131 (9)0.005 (8)0.009 (8)0.001 (7)
C10.064 (3)0.065 (3)0.050 (3)0.015 (3)0.014 (3)0.010 (3)
C20.075 (4)0.052 (3)0.051 (3)0.007 (3)0.010 (3)0.001 (2)
C30.074 (4)0.043 (3)0.051 (3)0.004 (3)0.009 (3)0.000 (2)
C40.058 (3)0.044 (3)0.052 (3)0.003 (2)0.011 (2)0.005 (2)
C50.046 (3)0.056 (3)0.046 (3)0.001 (2)0.012 (2)0.006 (2)
C60.041 (2)0.058 (3)0.047 (3)0.002 (2)0.008 (2)0.001 (2)
C70.056 (3)0.070 (3)0.055 (3)0.002 (3)0.015 (2)0.010 (3)
C80.059 (3)0.093 (5)0.050 (3)0.004 (3)0.010 (3)0.010 (3)
C90.050 (3)0.096 (5)0.043 (3)0.000 (3)0.009 (2)0.010 (3)
C100.048 (3)0.069 (3)0.058 (3)0.003 (3)0.010 (2)0.011 (3)
C110.106 (5)0.064 (4)0.064 (4)0.027 (4)0.014 (4)0.007 (3)
C120.135 (7)0.074 (5)0.081 (5)0.042 (5)0.020 (5)0.021 (4)
C130.146 (8)0.071 (5)0.079 (5)0.023 (5)0.018 (5)0.024 (4)
C140.109 (5)0.069 (4)0.061 (4)0.002 (4)0.023 (4)0.008 (3)
C150.054 (3)0.069 (4)0.048 (3)0.001 (3)0.003 (2)0.007 (3)
C160.071 (3)0.061 (3)0.045 (3)0.001 (3)0.004 (3)0.001 (2)
C170.066 (3)0.052 (3)0.048 (3)0.008 (3)0.007 (2)0.002 (2)
C180.058 (3)0.049 (3)0.051 (3)0.008 (2)0.001 (2)0.001 (2)
C190.044 (3)0.068 (3)0.046 (3)0.003 (2)0.002 (2)0.002 (2)
C200.043 (3)0.061 (3)0.048 (3)0.007 (2)0.001 (2)0.002 (2)
C210.056 (3)0.080 (4)0.054 (3)0.011 (3)0.003 (3)0.004 (3)
C220.065 (4)0.092 (5)0.052 (3)0.014 (3)0.000 (3)0.004 (3)
C230.062 (4)0.107 (5)0.048 (3)0.008 (4)0.009 (3)0.018 (3)
C240.057 (3)0.076 (4)0.058 (4)0.006 (3)0.001 (3)0.015 (3)
C250.082 (4)0.075 (4)0.061 (4)0.030 (3)0.006 (3)0.007 (3)
C260.141 (7)0.093 (5)0.073 (5)0.051 (5)0.009 (5)0.026 (4)
C270.138 (7)0.108 (6)0.071 (5)0.030 (6)0.007 (5)0.039 (5)
C280.097 (5)0.091 (5)0.065 (4)0.013 (4)0.015 (4)0.019 (4)
C290.124 (9)0.159 (13)0.211 (19)0.009 (9)0.013 (10)0.006 (12)
C300.38 (4)0.26 (3)0.19 (2)0.02 (2)0.07 (2)0.070 (18)
C310.092 (7)0.285 (19)0.132 (10)0.001 (10)0.013 (7)0.075 (11)
C320.165 (13)0.163 (12)0.159 (12)0.012 (10)0.041 (10)0.060 (10)
C330.151 (12)0.29 (2)0.133 (12)0.040 (13)0.010 (9)0.069 (13)
C340.26 (2)0.205 (16)0.126 (11)0.014 (14)0.043 (13)0.039 (11)
Geometric parameters (Å, º) top
Fe1—O31.904 (4)C12—H12A0.9300
Fe1—O81.906 (4)C13—C141.391 (11)
Fe1—O11.908 (4)C13—H13A0.9300
Fe1—O61.909 (4)C14—H14A0.9300
Fe1—N31.981 (4)C15—C161.493 (8)
Fe1—N11.985 (4)C16—C171.382 (8)
N1—C41.299 (7)C16—C281.399 (9)
N1—C31.431 (7)C17—C251.420 (8)
N2—O51.209 (8)C18—C191.432 (8)
N2—O41.219 (8)C18—H18A0.9300
N2—C91.460 (8)C19—C241.396 (8)
N3—C181.300 (7)C19—C201.429 (8)
N3—C171.436 (7)C20—C211.397 (8)
N4—O91.220 (10)C21—C221.348 (9)
N4—O101.230 (10)C21—H21A0.9300
N4—C231.462 (9)C22—C231.385 (10)
N5—C291.443 (18)C22—H22A0.9300
N5—C331.50 (2)C23—C241.373 (9)
N5—C311.537 (16)C24—H24A0.9300
N5—H5A0.9100C25—C261.375 (10)
O1—C11.289 (7)C25—H25A0.9300
O2—C11.225 (7)C26—C271.367 (12)
O3—C61.301 (6)C26—H26A0.9300
O6—C151.280 (7)C27—C281.359 (11)
O7—C151.241 (7)C27—H27A0.9300
O8—C201.288 (6)C28—H28A0.9300
C1—C21.492 (9)C29—C301.41 (3)
C2—C31.392 (8)C29—H29A0.9700
C2—C141.394 (9)C29—H29B0.9700
C3—C111.387 (9)C30—H30A0.9600
C4—C51.436 (8)C30—H30B0.9600
C4—H4A0.9300C30—H30C0.9600
C5—C101.400 (8)C31—C321.413 (17)
C5—C61.417 (7)C31—H31A0.9700
C6—C71.409 (8)C31—H31B0.9700
C7—C81.368 (9)C32—H32A0.9600
C7—H7A0.9300C32—H32B0.9600
C8—C91.379 (10)C32—H32C0.9600
C8—H8A0.9300C33—C341.46 (2)
C9—C101.373 (9)C33—H33A0.9700
C10—H10A0.9300C33—H33B0.9700
C11—C121.412 (10)C34—H34A0.9600
C11—H11A0.9300C34—H34B0.9600
C12—C131.346 (12)C34—H34C0.9600
O3—Fe1—O887.53 (16)O7—C15—O6121.5 (6)
O3—Fe1—O1175.55 (16)O7—C15—C16118.0 (6)
O8—Fe1—O188.07 (17)O6—C15—C16120.6 (5)
O3—Fe1—O689.54 (16)C17—C16—C28118.1 (6)
O8—Fe1—O6176.91 (17)C17—C16—C15124.6 (5)
O1—Fe1—O694.87 (18)C28—C16—C15117.3 (5)
O3—Fe1—N388.95 (17)C16—C17—C25121.0 (5)
O8—Fe1—N390.20 (17)C16—C17—N3120.9 (5)
O1—Fe1—N390.46 (18)C25—C17—N3118.1 (5)
O6—Fe1—N390.70 (17)N3—C18—C19125.1 (5)
O3—Fe1—N189.48 (17)N3—C18—H18A117.5
O8—Fe1—N190.51 (17)C19—C18—H18A117.5
O1—Fe1—N191.17 (18)C24—C19—C20120.6 (5)
O6—Fe1—N188.50 (18)C24—C19—C18117.1 (5)
N3—Fe1—N1178.24 (18)C20—C19—C18122.1 (5)
C4—N1—C3118.4 (4)O8—C20—C21119.8 (5)
C4—N1—Fe1122.0 (4)O8—C20—C19123.0 (5)
C3—N1—Fe1119.6 (3)C21—C20—C19117.2 (5)
O5—N2—O4122.6 (6)C22—C21—C20122.2 (6)
O5—N2—C9118.8 (6)C22—C21—H21A118.9
O4—N2—C9118.5 (7)C20—C21—H21A118.9
C18—N3—C17117.6 (4)C21—C22—C23119.4 (6)
C18—N3—Fe1121.1 (4)C21—C22—H22A120.3
C17—N3—Fe1121.2 (3)C23—C22—H22A120.3
O9—N4—O10124.1 (7)C24—C23—C22122.2 (6)
O9—N4—C23118.8 (8)C24—C23—N4118.1 (7)
O10—N4—C23117.1 (9)C22—C23—N4119.6 (7)
C29—N5—C33117.3 (14)C23—C24—C19118.2 (6)
C29—N5—C31117.2 (13)C23—C24—H24A120.9
C33—N5—C31110.2 (12)C19—C24—H24A120.9
C29—N5—H5A103.2C26—C25—C17118.0 (6)
C33—N5—H5A103.2C26—C25—H25A121.0
C31—N5—H5A103.2C17—C25—H25A121.0
C1—O1—Fe1130.3 (4)C27—C26—C25121.1 (7)
C6—O3—Fe1122.5 (3)C27—C26—H26A119.4
C15—O6—Fe1130.9 (4)C25—C26—H26A119.4
C20—O8—Fe1122.8 (3)C28—C27—C26120.8 (7)
O2—C1—O1121.5 (6)C28—C27—H27A119.6
O2—C1—C2119.1 (6)C26—C27—H27A119.6
O1—C1—C2119.3 (5)C27—C28—C16120.9 (7)
C3—C2—C14118.2 (6)C27—C28—H28A119.5
C3—C2—C1124.7 (5)C16—C28—H28A119.5
C14—C2—C1117.2 (6)C30—C29—N5117.5 (17)
C11—C3—C2121.0 (5)C30—C29—H29A107.9
C11—C3—N1118.4 (5)N5—C29—H29A107.9
C2—C3—N1120.5 (5)C30—C29—H29B107.9
N1—C4—C5124.9 (5)N5—C29—H29B107.9
N1—C4—H4A117.5H29A—C29—H29B107.2
C5—C4—H4A117.5C29—C30—H30A109.5
C10—C5—C6119.3 (5)C29—C30—H30B109.5
C10—C5—C4118.6 (5)H30A—C30—H30B109.5
C6—C5—C4122.0 (5)C29—C30—H30C109.5
O3—C6—C7118.8 (5)H30A—C30—H30C109.5
O3—C6—C5122.5 (5)H30B—C30—H30C109.5
C7—C6—C5118.7 (5)C32—C31—N5116.5 (13)
C8—C7—C6120.8 (6)C32—C31—H31A108.2
C8—C7—H7A119.6N5—C31—H31A108.2
C6—C7—H7A119.6C32—C31—H31B108.2
C7—C8—C9119.6 (6)N5—C31—H31B108.2
C7—C8—H8A120.2H31A—C31—H31B107.3
C9—C8—H8A120.2C31—C32—H32A109.5
C10—C9—C8121.8 (6)C31—C32—H32B109.5
C10—C9—N2118.9 (6)H32A—C32—H32B109.5
C8—C9—N2119.3 (6)C31—C32—H32C109.5
C9—C10—C5119.6 (6)H32A—C32—H32C109.5
C9—C10—H10A120.2H32B—C32—H32C109.5
C5—C10—H10A120.2C34—C33—N5114.7 (16)
C3—C11—C12118.8 (7)C34—C33—H33A108.6
C3—C11—H11A120.6N5—C33—H33A108.6
C12—C11—H11A120.6C34—C33—H33B108.6
C13—C12—C11120.6 (7)N5—C33—H33B108.6
C13—C12—H12A119.7H33A—C33—H33B107.6
C11—C12—H12A119.7C33—C34—H34A109.5
C12—C13—C14120.3 (7)C33—C34—H34B109.5
C12—C13—H13A119.9H34A—C34—H34B109.5
C14—C13—H13A119.9C33—C34—H34C109.5
C13—C14—C2121.0 (7)H34A—C34—H34C109.5
C13—C14—H14A119.5H34B—C34—H34C109.5
C2—C14—H14A119.5
O3—Fe1—N1—C430.7 (4)C7—C8—C9—C101.2 (9)
O8—Fe1—N1—C456.8 (4)C7—C8—C9—N2179.2 (5)
O1—Fe1—N1—C4144.9 (4)O5—N2—C9—C104.0 (9)
O6—Fe1—N1—C4120.2 (4)O4—N2—C9—C10174.4 (6)
N3—Fe1—N1—C457 (6)O5—N2—C9—C8176.5 (6)
O3—Fe1—N1—C3149.0 (4)O4—N2—C9—C85.2 (8)
O8—Fe1—N1—C3123.5 (4)C8—C9—C10—C51.6 (8)
O1—Fe1—N1—C335.4 (4)N2—C9—C10—C5177.9 (5)
O6—Fe1—N1—C359.4 (4)C6—C5—C10—C92.5 (8)
N3—Fe1—N1—C3123 (6)C4—C5—C10—C9179.6 (5)
O3—Fe1—N3—C1854.7 (4)C2—C3—C11—C122.4 (10)
O8—Fe1—N3—C1832.8 (4)N1—C3—C11—C12178.8 (6)
O1—Fe1—N3—C18120.9 (4)C3—C11—C12—C130.2 (13)
O6—Fe1—N3—C18144.2 (4)C11—C12—C13—C140.9 (14)
N1—Fe1—N3—C1881 (6)C12—C13—C14—C20.2 (13)
O3—Fe1—N3—C17122.5 (4)C3—C2—C14—C132.3 (10)
O8—Fe1—N3—C17150.0 (4)C1—C2—C14—C13178.0 (7)
O1—Fe1—N3—C1761.9 (4)Fe1—O6—C15—O7170.2 (4)
O6—Fe1—N3—C1732.9 (4)Fe1—O6—C15—C1610.4 (8)
N1—Fe1—N3—C1796 (6)O7—C15—C16—C17158.3 (6)
O3—Fe1—O1—C1108 (2)O6—C15—C16—C1722.3 (9)
O8—Fe1—O1—C1100.2 (5)O7—C15—C16—C2820.7 (9)
O6—Fe1—O1—C178.8 (5)O6—C15—C16—C28158.7 (6)
N3—Fe1—O1—C1169.6 (5)C28—C16—C17—C253.2 (10)
N1—Fe1—O1—C19.8 (5)C15—C16—C17—C25177.9 (6)
O8—Fe1—O3—C646.6 (4)C28—C16—C17—N3178.6 (6)
O1—Fe1—O3—C654 (2)C15—C16—C17—N30.4 (9)
O6—Fe1—O3—C6132.5 (4)C18—N3—C17—C16146.0 (6)
N3—Fe1—O3—C6136.8 (4)Fe1—N3—C17—C1631.3 (7)
N1—Fe1—O3—C644.0 (4)C18—N3—C17—C2535.7 (8)
O3—Fe1—O6—C15102.1 (5)Fe1—N3—C17—C25147.0 (5)
O8—Fe1—O6—C15120 (3)C17—N3—C18—C19170.4 (5)
O1—Fe1—O6—C1577.3 (5)Fe1—N3—C18—C1912.3 (8)
N3—Fe1—O6—C1513.2 (5)N3—C18—C19—C24170.6 (6)
N1—Fe1—O6—C15168.4 (5)N3—C18—C19—C2013.5 (9)
O3—Fe1—O8—C2046.8 (4)Fe1—O8—C20—C21149.8 (4)
O1—Fe1—O8—C20132.6 (4)Fe1—O8—C20—C1930.0 (7)
O6—Fe1—O8—C2065 (3)C24—C19—C20—O8179.6 (5)
N3—Fe1—O8—C2042.1 (4)C18—C19—C20—O84.6 (8)
N1—Fe1—O8—C20136.3 (4)C24—C19—C20—C210.2 (8)
Fe1—O1—C1—O2165.6 (4)C18—C19—C20—C21175.5 (5)
Fe1—O1—C1—C217.5 (8)O8—C20—C21—C22177.5 (6)
O2—C1—C2—C3155.9 (6)C19—C20—C21—C222.4 (9)
O1—C1—C2—C327.0 (8)C20—C21—C22—C231.7 (10)
O2—C1—C2—C1423.7 (8)C21—C22—C23—C241.1 (11)
O1—C1—C2—C14153.3 (6)C21—C22—C23—N4179.0 (6)
C14—C2—C3—C113.4 (9)O9—N4—C23—C249.0 (12)
C1—C2—C3—C11176.9 (6)O10—N4—C23—C24170.3 (7)
C14—C2—C3—N1177.8 (5)O9—N4—C23—C22169.0 (8)
C1—C2—C3—N11.9 (8)O10—N4—C23—C2211.7 (11)
C4—N1—C3—C1136.8 (8)C22—C23—C24—C193.2 (10)
Fe1—N1—C3—C11142.9 (5)N4—C23—C24—C19178.9 (6)
C4—N1—C3—C2144.4 (5)C20—C19—C24—C232.5 (9)
Fe1—N1—C3—C235.9 (7)C18—C19—C24—C23178.4 (6)
C3—N1—C4—C5171.3 (5)C16—C17—C25—C263.8 (11)
Fe1—N1—C4—C58.4 (7)N3—C17—C25—C26177.9 (7)
N1—C4—C5—C10166.9 (5)C17—C25—C26—C273.0 (14)
N1—C4—C5—C615.2 (8)C25—C26—C27—C281.5 (17)
Fe1—O3—C6—C7145.1 (4)C26—C27—C28—C160.8 (15)
Fe1—O3—C6—C534.6 (6)C17—C16—C28—C271.6 (12)
C10—C5—C6—O3179.6 (5)C15—C16—C28—C27179.3 (8)
C4—C5—C6—O31.8 (8)C33—N5—C29—C30172.4 (18)
C10—C5—C6—C70.6 (7)C31—N5—C29—C3053 (2)
C4—C5—C6—C7178.5 (5)C29—N5—C31—C3253.9 (18)
O3—C6—C7—C8177.6 (5)C33—N5—C31—C3283.7 (17)
C5—C6—C7—C82.2 (8)C29—N5—C33—C3460.7 (19)
C6—C7—C8—C93.1 (9)C31—N5—C33—C34161.8 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O70.912.002.865 (13)159

Experimental details

Crystal data
Chemical formula(C6H16N)[Fe(C14H8N2O5)2]·H2O
Mr742.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.2688 (3), 14.7128 (4), 25.0800 (7)
β (°) 97.230 (2)
V3)3759.03 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.35 × 0.05 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.855, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
20469, 6432, 5305
Rint0.035
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.242, 1.13
No. of reflections6432
No. of parameters466
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.61

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O70.912.002.865 (13)159
 

References

First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLaye, R. & Sanudo, E. C. (2009). Inorg. Chim. Acta, 362, 2205–2212.  CrossRef CAS Google Scholar
First citationLu, L.-P., Yao, S.-Q. & Zhu, M.-L. (2006). Acta Cryst. C62, m220–m222.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatel, R. N. (2009). Indian J. Chem. A48, 1370–1377.  Google Scholar
First citationPatel, R. N., Gundla, V. L. N. & Patel, D. K. (2008). Polyhedron, 27, 1054–1060.  CrossRef CAS Google Scholar
First citationRosair, G. M., Dey, D. K., Samanta, B. & Mitra, S. (2002). Acta Cryst. C58, m266–m267.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRotondo, A., Bruno, G., Brancatelli, G., Nicolo, F. & Armentano, D. (2009). Inorg. Chim. Acta, 326, 247–252.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m593-m594
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds