metal-organic compounds
catena-Poly[[octaaquabis(μ4-benzene-1,3,5-tricarboxylato)trizinc] tetrahydrate]
aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: dh@scnu.edu.cn
In the title compound, {[Zn3(C9H3O6)2(H2O)8]·4H2O}n, there are two crystallographically independent ZnII ions. One presents a trigonal-bipyramidal coordination geometry defined by five O atoms [three from two carboxylate groups of two benzene-1,3,5-tricarboxylate (BTC) ligands and the other two deriving from three water molecules], while the other lies on an inversion centre and exists in a slightly distorted octahedral coordination geometry defined by six O atoms (two from two carboxylate groups of two BTC ligands and the others from four water molecules). A three-dimensional framework is further strengthened via O—H⋯O hydrogen-bonding interactons.
Related literature
For background to the applications of metal–organic frameworks, see: Batten & Murray (2003); Zhong et al. (2008); Qiu et al. (2010). For the applications of benzene-1,3,5-tricarboxylate, see: Yaghi et al. (1997); Xu et al. (2008); Xu et al. (2007); Liang et al. (2009); Wang et al. (2009). For compounds exhibiting similar Zn—O distances, see: Hua et al. (2010); Chen et al. (2010); Yang et al. (2008); Xu et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681101436X/zk2004sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681101436X/zk2004Isup2.hkl
A mixture of zinc sulfate heptahydrate (0.287 g; 1 mmol), benzenetricarboxylic acid (0.210 g; 1 mmol) and water (10 ml) was sealed in a 23 ml Teflon-lined stainless steel reactor and heated at 120°C under autogenous pressure for 72 h. Then the mixture was cooled down to room temperature at a rate of 5°C per hour, and colorless block crystals were obtained in a yield of 49% based on Zn
water H atoms were located in a difference Fourier map and were refined isotropically, Other H-atoms on aromatic ring were placed in calculated positions with C—H = 0.93 Å; refined using a riding model with Uiso(H) = 1.2 Ueq(C).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn3(C9H3O6)2(H2O)8]·4H2O | F(000) = 840.0 |
Mr = 826.59 | Dx = 1.810 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2729 reflections |
a = 14.745 (2) Å | θ = 2.0–25.2° |
b = 6.7960 (12) Å | µ = 2.45 mm−1 |
c = 15.183 (3) Å | T = 296 K |
β = 94.543 (2)° | Block, colourless |
V = 1516.7 (4) Å3 | 0.27 × 0.24 × 0.23 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 2729 independent reflections |
Radiation source: fine-focus sealed tube | 1990 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scans | θmax = 25.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −17→17 |
Tmin = 0.521, Tmax = 0.569 | k = −8→8 |
7485 measured reflections | l = −18→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.225 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.124P)2 + 4.534P] where P = (Fo2 + 2Fc2)/3 |
2729 reflections | (Δ/σ)max = 0.002 |
205 parameters | Δρmax = 1.89 e Å−3 |
1 restraint | Δρmin = −0.90 e Å−3 |
[Zn3(C9H3O6)2(H2O)8]·4H2O | V = 1516.7 (4) Å3 |
Mr = 826.59 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 14.745 (2) Å | µ = 2.45 mm−1 |
b = 6.7960 (12) Å | T = 296 K |
c = 15.183 (3) Å | 0.27 × 0.24 × 0.23 mm |
β = 94.543 (2)° |
Bruker SMART APEX CCD diffractometer | 2729 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1990 reflections with I > 2σ(I) |
Tmin = 0.521, Tmax = 0.569 | Rint = 0.047 |
7485 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 1 restraint |
wR(F2) = 0.225 | H-atom parameters constrained |
S = 1.13 | Δρmax = 1.89 e Å−3 |
2729 reflections | Δρmin = −0.90 e Å−3 |
205 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3865 (5) | 0.7336 (11) | 0.2885 (5) | 0.0258 (16) | |
C2 | 0.2896 (5) | 0.7366 (11) | 0.2512 (5) | 0.0247 (16) | |
C3 | 0.2199 (5) | 0.7180 (11) | 0.3061 (5) | 0.0229 (15) | |
H3 | 0.2334 | 0.7052 | 0.3667 | 0.027* | |
C4 | 0.1296 (5) | 0.7180 (11) | 0.2720 (5) | 0.0251 (16) | |
C5 | 0.0531 (5) | 0.6843 (12) | 0.3308 (5) | 0.0292 (17) | |
C6 | 0.1136 (4) | 0.7328 (10) | 0.1806 (5) | 0.0266 (17) | |
H6 | 0.0539 | 0.7242 | 0.1561 | 0.032* | |
C7 | 0.1800 (5) | 0.7589 (11) | 0.1259 (5) | 0.0241 (16) | |
C8 | 0.1573 (5) | 0.7876 (13) | 0.0286 (5) | 0.0334 (19) | |
C9 | 0.2690 (5) | 0.7583 (11) | 0.1620 (5) | 0.0240 (15) | |
H9 | 0.3160 | 0.7728 | 0.1251 | 0.029* | |
O1 | 0.4494 (4) | 0.7356 (9) | 0.2381 (4) | 0.0397 (15) | |
O2 | 0.4054 (4) | 0.7247 (9) | 0.3705 (4) | 0.0353 (13) | |
O3 | 0.0741 (4) | 0.6348 (9) | 0.4086 (3) | 0.0358 (13) | |
O4 | −0.0276 (4) | 0.7041 (10) | 0.2973 (4) | 0.0398 (15) | |
O5 | 0.0728 (4) | 0.7813 (10) | 0.0033 (4) | 0.0407 (15) | |
O6 | 0.2183 (4) | 0.8087 (13) | −0.0218 (4) | 0.064 (2) | |
O1W | 0.5996 (4) | 0.9590 (10) | 0.3383 (4) | 0.0472 (16) | |
H1WA | 0.6200 | 1.0116 | 0.2931 | 0.071* | |
H1WB | 0.5642 | 1.0416 | 0.3600 | 0.071* | |
O2W | 0.6025 (4) | 0.4905 (9) | 0.3245 (4) | 0.0504 (17) | |
H2WA | 0.6226 | 0.4688 | 0.2739 | 0.076* | |
H2WB | 0.5518 | 0.4334 | 0.3252 | 0.076* | |
O3W | 0.0151 (4) | 0.2213 (10) | 0.4358 (4) | 0.0450 (15) | |
H3WA | 0.0380 | 0.2934 | 0.3975 | 0.067* | |
H3WB | 0.0384 | 0.1073 | 0.4327 | 0.067* | |
O4W | −0.1226 (4) | 0.5373 (11) | 0.4216 (4) | 0.0475 (17) | |
H4WA | −0.1203 | 0.6053 | 0.3750 | 0.071* | |
H4WB | −0.1606 | 0.5920 | 0.4533 | 0.071* | |
O5W | 0.6697 (5) | 0.2093 (11) | 0.4653 (5) | 0.062 (2) | |
H5WA | 0.6465 | 0.2278 | 0.5141 | 0.092* | |
H5WB | 0.6894 | 0.3201 | 0.4485 | 0.092* | |
O6W | 0.8488 (7) | 0.0366 (15) | 0.4616 (8) | 0.114 (4) | |
H6WA | 0.8232 | 0.1311 | 0.4498 | 0.172* | |
H6WB | 0.8175 | −0.0498 | 0.4851 | 0.172* | |
Zn1 | 0.54125 (6) | 0.71412 (16) | 0.37644 (6) | 0.0342 (4) | |
Zn2 | 0.0000 | 0.5000 | 0.5000 | 0.0330 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.024 (4) | 0.027 (4) | 0.025 (4) | −0.002 (3) | −0.004 (3) | 0.004 (3) |
C2 | 0.019 (4) | 0.029 (4) | 0.026 (4) | 0.003 (3) | 0.002 (3) | 0.005 (3) |
C3 | 0.024 (4) | 0.030 (4) | 0.015 (3) | 0.000 (3) | 0.003 (3) | 0.002 (3) |
C4 | 0.023 (4) | 0.036 (4) | 0.016 (4) | 0.001 (3) | 0.003 (3) | 0.002 (3) |
C5 | 0.023 (4) | 0.044 (5) | 0.020 (4) | 0.001 (3) | 0.002 (3) | 0.000 (3) |
C6 | 0.019 (4) | 0.036 (4) | 0.024 (4) | −0.004 (3) | −0.005 (3) | 0.001 (3) |
C7 | 0.021 (4) | 0.034 (4) | 0.016 (4) | −0.002 (3) | −0.001 (3) | 0.005 (3) |
C8 | 0.027 (4) | 0.054 (5) | 0.020 (4) | −0.002 (4) | 0.001 (3) | 0.002 (3) |
C9 | 0.018 (3) | 0.036 (4) | 0.018 (4) | −0.003 (3) | 0.003 (3) | 0.000 (3) |
O1 | 0.018 (3) | 0.068 (4) | 0.033 (3) | 0.001 (3) | 0.002 (2) | 0.007 (3) |
O2 | 0.024 (3) | 0.057 (4) | 0.024 (3) | −0.001 (3) | −0.005 (2) | 0.000 (2) |
O3 | 0.027 (3) | 0.062 (4) | 0.018 (3) | −0.003 (3) | 0.002 (2) | 0.009 (3) |
O4 | 0.020 (3) | 0.071 (4) | 0.030 (3) | 0.002 (3) | 0.004 (2) | 0.010 (3) |
O5 | 0.020 (3) | 0.077 (4) | 0.024 (3) | 0.000 (3) | −0.006 (2) | 0.005 (3) |
O6 | 0.030 (3) | 0.139 (7) | 0.022 (3) | −0.021 (4) | 0.000 (3) | 0.012 (4) |
O1W | 0.041 (3) | 0.060 (4) | 0.038 (4) | 0.001 (3) | −0.010 (3) | 0.001 (3) |
O2W | 0.039 (4) | 0.059 (4) | 0.051 (4) | 0.009 (3) | −0.007 (3) | −0.017 (3) |
O3W | 0.045 (4) | 0.056 (4) | 0.035 (3) | 0.003 (3) | 0.013 (3) | 0.001 (3) |
O4W | 0.029 (3) | 0.080 (5) | 0.034 (3) | 0.006 (3) | 0.004 (3) | 0.006 (3) |
O5W | 0.073 (5) | 0.064 (5) | 0.048 (4) | −0.006 (4) | 0.011 (4) | −0.012 (3) |
O6W | 0.105 (8) | 0.080 (7) | 0.166 (11) | −0.032 (6) | 0.057 (8) | −0.003 (7) |
Zn1 | 0.0231 (5) | 0.0556 (7) | 0.0228 (6) | 0.0024 (4) | −0.0043 (4) | −0.0048 (4) |
Zn2 | 0.0246 (7) | 0.0539 (9) | 0.0211 (7) | 0.0012 (6) | 0.0059 (5) | 0.0050 (6) |
C1—O1 | 1.248 (9) | O1W—Zn1 | 1.981 (7) |
C1—O2 | 1.256 (9) | O1W—H1WA | 0.8505 |
C1—C2 | 1.495 (10) | O1W—H1WB | 0.8502 |
C2—C9 | 1.372 (11) | O2W—Zn1 | 1.965 (6) |
C2—C3 | 1.380 (10) | O2W—H2WA | 0.8584 |
C3—C4 | 1.390 (10) | O2W—H2WB | 0.8429 |
C3—H3 | 0.9300 | O3W—Zn2 | 2.150 (6) |
C4—C6 | 1.392 (10) | O3W—H3WA | 0.8498 |
C4—C5 | 1.511 (10) | O3W—H3WB | 0.8494 |
C5—O3 | 1.244 (9) | O4W—Zn2 | 2.099 (6) |
C5—O4 | 1.263 (9) | O4W—H4WA | 0.8483 |
C6—C7 | 1.344 (10) | O4W—H4WB | 0.8518 |
C6—H6 | 0.9300 | O5W—H5WA | 0.8487 |
C7—C9 | 1.382 (10) | O5W—H5WB | 0.8538 |
C7—C8 | 1.501 (10) | O6W—H6WA | 0.7595 |
C8—O6 | 1.235 (10) | O6W—H6WB | 0.8431 |
C8—O5 | 1.275 (10) | Zn1—O5ii | 1.946 (6) |
C9—H9 | 0.9300 | Zn1—H2WB | 2.0711 |
O1—Zn1 | 2.412 (6) | Zn2—O3iii | 2.049 (5) |
O2—Zn1 | 1.999 (5) | Zn2—O4Wiii | 2.099 (6) |
O3—Zn2 | 2.049 (5) | Zn2—O3Wiii | 2.150 (6) |
O5—Zn1i | 1.946 (6) | ||
O1—C1—O2 | 119.4 (7) | Zn2—O3W—H3WB | 152.2 |
O1—C1—C2 | 120.1 (7) | H3WA—O3W—H3WB | 107.8 |
O2—C1—C2 | 120.5 (7) | Zn2—O4W—H4WA | 116.8 |
C9—C2—C3 | 119.3 (7) | Zn2—O4W—H4WB | 108.0 |
C9—C2—C1 | 120.4 (6) | H4WA—O4W—H4WB | 107.7 |
C3—C2—C1 | 120.4 (7) | H5WA—O5W—H5WB | 107.5 |
C2—C3—C4 | 120.8 (7) | H6WA—O6W—H6WB | 114.2 |
C2—C3—H3 | 119.6 | O5ii—Zn1—O2W | 109.2 (3) |
C4—C3—H3 | 119.6 | O5ii—Zn1—O1W | 101.6 (3) |
C3—C4—C6 | 116.9 (6) | O2W—Zn1—O1W | 108.0 (3) |
C3—C4—C5 | 121.2 (6) | O5ii—Zn1—O2 | 101.8 (2) |
C6—C4—C5 | 121.7 (6) | O2W—Zn1—O2 | 120.0 (2) |
O3—C5—O4 | 124.5 (7) | O1W—Zn1—O2 | 114.4 (2) |
O3—C5—C4 | 117.4 (7) | O5ii—Zn1—O1 | 159.2 (2) |
O4—C5—C4 | 118.0 (7) | O2W—Zn1—O1 | 86.6 (2) |
C7—C6—C4 | 123.5 (7) | O1W—Zn1—O1 | 85.5 (2) |
C7—C6—H6 | 118.3 | O2—Zn1—O1 | 57.8 (2) |
C4—C6—H6 | 118.3 | O5ii—Zn1—H2WB | 111.6 |
C6—C7—C9 | 118.0 (7) | O2W—Zn1—H2WB | 23.9 |
C6—C7—C8 | 120.6 (7) | O1W—Zn1—H2WB | 128.1 |
C9—C7—C8 | 121.4 (7) | O2—Zn1—H2WB | 96.9 |
O6—C8—O5 | 124.0 (7) | O1—Zn1—H2WB | 77.4 |
O6—C8—C7 | 120.6 (7) | O3iii—Zn2—O3 | 180.000 (1) |
O5—C8—C7 | 115.4 (7) | O3iii—Zn2—O4W | 87.5 (2) |
C2—C9—C7 | 121.4 (7) | O3—Zn2—O4W | 92.5 (2) |
C2—C9—H9 | 119.3 | O3iii—Zn2—O4Wiii | 92.5 (2) |
C7—C9—H9 | 119.3 | O3—Zn2—O4Wiii | 87.5 (2) |
C1—O1—Zn1 | 81.8 (4) | O4W—Zn2—O4Wiii | 180.000 (1) |
C1—O2—Zn1 | 100.9 (5) | O3iii—Zn2—O3Wiii | 90.4 (2) |
C5—O3—Zn2 | 131.1 (5) | O3—Zn2—O3Wiii | 89.6 (2) |
C8—O5—Zn1i | 116.7 (5) | O4W—Zn2—O3Wiii | 92.0 (3) |
Zn1—O1W—H1WA | 141.2 | O4Wiii—Zn2—O3Wiii | 88.0 (3) |
Zn1—O1W—H1WB | 98.5 | O3iii—Zn2—O3W | 89.6 (2) |
H1WA—O1W—H1WB | 107.6 | O3—Zn2—O3W | 90.4 (2) |
Zn1—O2W—H2WA | 134.0 | O4W—Zn2—O3W | 88.0 (3) |
Zn1—O2W—H2WB | 85.1 | O4Wiii—Zn2—O3W | 92.0 (3) |
H2WA—O2W—H2WB | 107.6 | O3Wiii—Zn2—O3W | 180.000 (1) |
Zn2—O3W—H3WA | 82.1 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4W—H4WB···O6iv | 0.85 | 1.97 | 2.768 (9) | 155 |
O5W—H5WA···O2v | 0.85 | 1.99 | 2.842 (9) | 179 |
O6W—H6WB···O6vi | 0.84 | 2.29 | 3.058 (13) | 153 |
O5W—H5WB···O6ii | 0.85 | 2.59 | 3.356 (12) | 150 |
Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (iv) x−1/2, −y+3/2, z+1/2; (v) −x+1, −y+1, −z+1; (vi) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn3(C9H3O6)2(H2O)8]·4H2O |
Mr | 826.59 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 14.745 (2), 6.7960 (12), 15.183 (3) |
β (°) | 94.543 (2) |
V (Å3) | 1516.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.45 |
Crystal size (mm) | 0.27 × 0.24 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.521, 0.569 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7485, 2729, 1990 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.225, 1.13 |
No. of reflections | 2729 |
No. of parameters | 205 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.89, −0.90 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O4W—H4WB···O6i | 0.85 | 1.97 | 2.768 (9) | 154.6 |
O5W—H5WA···O2ii | 0.85 | 1.99 | 2.842 (9) | 178.7 |
O6W—H6WB···O6iii | 0.84 | 2.29 | 3.058 (13) | 152.5 |
O5W—H5WB···O6iv | 0.85 | 2.59 | 3.356 (12) | 149.5 |
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
The authors acknowledge South China Normal University and the National Natural Science Foundation of China, grant No. 20871048, for supporting this work.
References
Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130. Web of Science CrossRef CAS Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, S. S., Fan, J., Okamura, T. A., Chen, M. S., Su, Z., Sun, W. Y. & Ueyama, N. (2010). Cryst. Growth Des. 10, 812–822. CrossRef CAS Google Scholar
Hua, Q., Zhao, Y., Xu, G. C., Chen, M. S., Su, Z., Cai, K. & Sun, W. Y. (2010). Cryst. Growth Des. 10, 2553–2562. CrossRef CAS Google Scholar
Liang, X. Q., Zhou, X. H., Chen, C., Xiao, H. P., Li, Y. Z. & Zuo, J. L. (2009). Cryst. Growth Des. 9, 1041–1053. CrossRef CAS Google Scholar
Qiu, Y. C., Li, Y. H., Peng, G., Cai, J. B., Jin, L. M., Ma, L., Deng, H., Zeller, M. & Batten, S. R. (2010). Cryst. Growth Des. 10, 1332–13401. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X., Wang, W. Y., Liu, S. M., Hou, H. W. & Fan, Y. T. (2009). J. Mol. Struct. 938, 185–191. CrossRef CAS Google Scholar
Xu, L., Choi, E. Y. & Kwon, Y. U. (2007). Inorg. Chem. 46, 10670–10680. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xu, L., Choi, E. Y. & Kwon, Y. U. (2008). Inorg. Chem. Commun. 11, 1190–1193. CrossRef CAS Google Scholar
Yaghi, O. M., Davis, C. E., Li, G. M. & Li, H. L. (1997). J. Am. Chem. Soc. 119, 2861–2868. CSD CrossRef CAS Web of Science Google Scholar
Yang, E. C., Liu, Z. Y., Wang, X. G., Batten, S. R. & Zhao, X. J. (2008). CrystEngComm, 10, 1140–1143. CrossRef CAS Google Scholar
Zhong, R. Q., Zou, R. Q., Du, M., Takeichi, N. & Xu, Q. (2008). CrystEngComm, 10, 1175–1179. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The exploring of metal-organic frameworks (MOFs) has attracted considerable attention not only owing to their intriguing structral architectures and topologies, but also because of their many potential applications in catalysis, ion exchange, and magnetic, optical, and porous materials (Batten & Murray, 2003; Zhong et al., 2008; Qiu et al.,2010). 1,3,5-benzenetricarboxylate with six O atoms from its three carboxylate groups is a good choice of O-donor ligand. And such ligand has been widely used to synthesize metal compounds (Yaghi et al., 1997; Xu et al., 2008; Xu et al., 2007; Liang et al., 2009; Wang et al., 2009). Thus, we synthesize a new three-dimensional Zn-BTC metal-organic compound, {[Zn3(BTC)2(H2O)8](H2O)4}, with achiral channels along b direction, which was generated by the reaction of zinc sulfate heptahydrate, 1,3,5-benzenetricarboxylic acid and water at 150°C for 3 days.
There are two kinds of zinc atoms in the title compound (I) (Fig. 1). One is surrounded by five O atoms (three from two carboxylate groups of two BTC ligands and the other two deriving from three water molecules), exhibiting a trigonal bipyramidal geometry, the other is coordinated with six O atoms (two from two carboxylate groups of two BTC ligands; the others from four water molecules) and displays a slightly distorted octahedral geometry. All the BTC ligands have the same coordinated modes and each ligand coordinated to three zinc atoms. The bond distances of Zn—Ochelated carboxylate range from 1.999 (5)Å to 2.412 (6) Å. While the bond lengthes of Zn—Omonodentate carboxylate fall between 1.946 (6)Å and 2.049 (5) Å. And the Zn—Ow distances are in the normal range of 1.965 (6)–2.150 (6)Å (Table 1). All the distances of Zn—O in compound (I) are comparable to those found in the literatures (Hua et al., 2010; Chen et al., 2010; Yang et al., 2008; Xu et al., 2007). And there are weak interactions between Zn1 and C1 with the distances of 2.554Å and Zn1 and H2WB with with the distances of 2.0711 Å. A three-dimensional architecture is strengthened by the extended O—H···O hydrogen-bonding interactions (Table 2, Fig. 2)