metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m630-m631

catena-Poly[[octa­aqua­bis­­(μ4-benzene-1,3,5-tri­carboxyl­ato)trizinc] tetra­hydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: dh@scnu.edu.cn

(Received 10 March 2011; accepted 16 April 2011; online 22 April 2011)

In the title compound, {[Zn3(C9H3O6)2(H2O)8]·4H2O}n, there are two crystallographically independent ZnII ions. One presents a trigonal-bipyramidal coordination geometry defined by five O atoms [three from two carboxyl­ate groups of two benzene-1,3,5-tricarboxyl­ate (BTC) ligands and the other two deriving from three water mol­ecules], while the other lies on an inversion centre and exists in a slightly distorted octa­hedral coordination geometry defined by six O atoms (two from two carboxyl­ate groups of two BTC ligands and the others from four water mol­ecules). A three-dimensional framework is further strengthened via O—H⋯O hydrogen-bonding inter­actons.

Related literature

For background to the applications of metal–organic frameworks, see: Batten & Murray (2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]); Zhong et al. (2008[Zhong, R. Q., Zou, R. Q., Du, M., Takeichi, N. & Xu, Q. (2008). CrystEngComm, 10, 1175-1179.]); Qiu et al. (2010[Qiu, Y. C., Li, Y. H., Peng, G., Cai, J. B., Jin, L. M., Ma, L., Deng, H., Zeller, M. & Batten, S. R. (2010). Cryst. Growth Des. 10, 1332-13401.]). For the applications of benzene-1,3,5-tricarboxyl­ate, see: Yaghi et al. (1997[Yaghi, O. M., Davis, C. E., Li, G. M. & Li, H. L. (1997). J. Am. Chem. Soc. 119, 2861-2868.]); Xu et al. (2008[Xu, L., Choi, E. Y. & Kwon, Y. U. (2008). Inorg. Chem. Commun. 11, 1190-1193.]); Xu et al. (2007[Xu, L., Choi, E. Y. & Kwon, Y. U. (2007). Inorg. Chem. 46, 10670-10680.]); Liang et al. (2009[Liang, X. Q., Zhou, X. H., Chen, C., Xiao, H. P., Li, Y. Z. & Zuo, J. L. (2009). Cryst. Growth Des. 9, 1041-1053.]); Wang et al. (2009[Wang, X., Wang, W. Y., Liu, S. M., Hou, H. W. & Fan, Y. T. (2009). J. Mol. Struct. 938, 185-191.]). For compounds exhibiting similar Zn—O distances, see: Hua et al. (2010[Hua, Q., Zhao, Y., Xu, G. C., Chen, M. S., Su, Z., Cai, K. & Sun, W. Y. (2010). Cryst. Growth Des. 10, 2553-2562.]); Chen et al. (2010[Chen, S. S., Fan, J., Okamura, T. A., Chen, M. S., Su, Z., Sun, W. Y. & Ueyama, N. (2010). Cryst. Growth Des. 10, 812-822.]); Yang et al. (2008[Yang, E. C., Liu, Z. Y., Wang, X. G., Batten, S. R. & Zhao, X. J. (2008). CrystEngComm, 10, 1140-1143.]); Xu et al. (2007[Xu, L., Choi, E. Y. & Kwon, Y. U. (2007). Inorg. Chem. 46, 10670-10680.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn3(C9H3O6)2(H2O)8]·4H2O

  • Mr = 826.59

  • Monoclinic, P 21 /n

  • a = 14.745 (2) Å

  • b = 6.7960 (12) Å

  • c = 15.183 (3) Å

  • β = 94.543 (2)°

  • V = 1516.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 296 K

  • 0.27 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.521, Tmax = 0.569

  • 7485 measured reflections

  • 2729 independent reflections

  • 1990 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.225

  • S = 1.13

  • 2729 reflections

  • 205 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.89 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4W—H4WB⋯O6i 0.85 1.97 2.768 (9) 155
O5W—H5WA⋯O2ii 0.85 1.99 2.842 (9) 179
O6W—H6WB⋯O6iii 0.84 2.29 3.058 (13) 153
O5W—H5WB⋯O6iv 0.85 2.59 3.356 (12) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The exploring of metal-organic frameworks (MOFs) has attracted considerable attention not only owing to their intriguing structral architectures and topologies, but also because of their many potential applications in catalysis, ion exchange, and magnetic, optical, and porous materials (Batten & Murray, 2003; Zhong et al., 2008; Qiu et al.,2010). 1,3,5-benzenetricarboxylate with six O atoms from its three carboxylate groups is a good choice of O-donor ligand. And such ligand has been widely used to synthesize metal compounds (Yaghi et al., 1997; Xu et al., 2008; Xu et al., 2007; Liang et al., 2009; Wang et al., 2009). Thus, we synthesize a new three-dimensional Zn-BTC metal-organic compound, {[Zn3(BTC)2(H2O)8](H2O)4}, with achiral channels along b direction, which was generated by the reaction of zinc sulfate heptahydrate, 1,3,5-benzenetricarboxylic acid and water at 150°C for 3 days.

There are two kinds of zinc atoms in the title compound (I) (Fig. 1). One is surrounded by five O atoms (three from two carboxylate groups of two BTC ligands and the other two deriving from three water molecules), exhibiting a trigonal bipyramidal geometry, the other is coordinated with six O atoms (two from two carboxylate groups of two BTC ligands; the others from four water molecules) and displays a slightly distorted octahedral geometry. All the BTC ligands have the same coordinated modes and each ligand coordinated to three zinc atoms. The bond distances of Zn—Ochelated carboxylate range from 1.999 (5)Å to 2.412 (6) Å. While the bond lengthes of Zn—Omonodentate carboxylate fall between 1.946 (6)Å and 2.049 (5) Å. And the Zn—Ow distances are in the normal range of 1.965 (6)–2.150 (6)Å (Table 1). All the distances of Zn—O in compound (I) are comparable to those found in the literatures (Hua et al., 2010; Chen et al., 2010; Yang et al., 2008; Xu et al., 2007). And there are weak interactions between Zn1 and C1 with the distances of 2.554Å and Zn1 and H2WB with with the distances of 2.0711 Å. A three-dimensional architecture is strengthened by the extended O—H···O hydrogen-bonding interactions (Table 2, Fig. 2)

Related literature top

For background to the applications of metal–organic frameworks, see: Batten & Murray (2003); Zhong et al. (2008); Qiu et al. (2010). For the applications of benzene-1,3,5-tricarboxylate, see: Yaghi et al. (1997); Xu et al. (2008); Xu et al. (2007); Liang et al. (2009); Wang et al. (2009). For compounds exhibiting similar Zn—O distances, see: Hua et al. (2010); Chen et al. (2010); Yang et al. (2008); Xu et al. (2007).

Experimental top

A mixture of zinc sulfate heptahydrate (0.287 g; 1 mmol), benzenetricarboxylic acid (0.210 g; 1 mmol) and water (10 ml) was sealed in a 23 ml Teflon-lined stainless steel reactor and heated at 120°C under autogenous pressure for 72 h. Then the mixture was cooled down to room temperature at a rate of 5°C per hour, and colorless block crystals were obtained in a yield of 49% based on Zn

Refinement top

water H atoms were located in a difference Fourier map and were refined isotropically, Other H-atoms on aromatic ring were placed in calculated positions with C—H = 0.93 Å; refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of (I) along the b axis, showing the O—H···O hydrogen bonds.
catena-Poly[[octaaquabis(µ4-benzene-1,3,5-tricarboxylato)trizinc] tetrahydrate] top
Crystal data top
[Zn3(C9H3O6)2(H2O)8]·4H2OF(000) = 840.0
Mr = 826.59Dx = 1.810 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2729 reflections
a = 14.745 (2) Åθ = 2.0–25.2°
b = 6.7960 (12) ŵ = 2.45 mm1
c = 15.183 (3) ÅT = 296 K
β = 94.543 (2)°Block, colourless
V = 1516.7 (4) Å30.27 × 0.24 × 0.23 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2729 independent reflections
Radiation source: fine-focus sealed tube1990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.521, Tmax = 0.569k = 88
7485 measured reflectionsl = 1811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.124P)2 + 4.534P]
where P = (Fo2 + 2Fc2)/3
2729 reflections(Δ/σ)max = 0.002
205 parametersΔρmax = 1.89 e Å3
1 restraintΔρmin = 0.90 e Å3
Crystal data top
[Zn3(C9H3O6)2(H2O)8]·4H2OV = 1516.7 (4) Å3
Mr = 826.59Z = 2
Monoclinic, P21/nMo Kα radiation
a = 14.745 (2) ŵ = 2.45 mm1
b = 6.7960 (12) ÅT = 296 K
c = 15.183 (3) Å0.27 × 0.24 × 0.23 mm
β = 94.543 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2729 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1990 reflections with I > 2σ(I)
Tmin = 0.521, Tmax = 0.569Rint = 0.047
7485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.225H-atom parameters constrained
S = 1.13Δρmax = 1.89 e Å3
2729 reflectionsΔρmin = 0.90 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3865 (5)0.7336 (11)0.2885 (5)0.0258 (16)
C20.2896 (5)0.7366 (11)0.2512 (5)0.0247 (16)
C30.2199 (5)0.7180 (11)0.3061 (5)0.0229 (15)
H30.23340.70520.36670.027*
C40.1296 (5)0.7180 (11)0.2720 (5)0.0251 (16)
C50.0531 (5)0.6843 (12)0.3308 (5)0.0292 (17)
C60.1136 (4)0.7328 (10)0.1806 (5)0.0266 (17)
H60.05390.72420.15610.032*
C70.1800 (5)0.7589 (11)0.1259 (5)0.0241 (16)
C80.1573 (5)0.7876 (13)0.0286 (5)0.0334 (19)
C90.2690 (5)0.7583 (11)0.1620 (5)0.0240 (15)
H90.31600.77280.12510.029*
O10.4494 (4)0.7356 (9)0.2381 (4)0.0397 (15)
O20.4054 (4)0.7247 (9)0.3705 (4)0.0353 (13)
O30.0741 (4)0.6348 (9)0.4086 (3)0.0358 (13)
O40.0276 (4)0.7041 (10)0.2973 (4)0.0398 (15)
O50.0728 (4)0.7813 (10)0.0033 (4)0.0407 (15)
O60.2183 (4)0.8087 (13)0.0218 (4)0.064 (2)
O1W0.5996 (4)0.9590 (10)0.3383 (4)0.0472 (16)
H1WA0.62001.01160.29310.071*
H1WB0.56421.04160.36000.071*
O2W0.6025 (4)0.4905 (9)0.3245 (4)0.0504 (17)
H2WA0.62260.46880.27390.076*
H2WB0.55180.43340.32520.076*
O3W0.0151 (4)0.2213 (10)0.4358 (4)0.0450 (15)
H3WA0.03800.29340.39750.067*
H3WB0.03840.10730.43270.067*
O4W0.1226 (4)0.5373 (11)0.4216 (4)0.0475 (17)
H4WA0.12030.60530.37500.071*
H4WB0.16060.59200.45330.071*
O5W0.6697 (5)0.2093 (11)0.4653 (5)0.062 (2)
H5WA0.64650.22780.51410.092*
H5WB0.68940.32010.44850.092*
O6W0.8488 (7)0.0366 (15)0.4616 (8)0.114 (4)
H6WA0.82320.13110.44980.172*
H6WB0.81750.04980.48510.172*
Zn10.54125 (6)0.71412 (16)0.37644 (6)0.0342 (4)
Zn20.00000.50000.50000.0330 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.024 (4)0.027 (4)0.025 (4)0.002 (3)0.004 (3)0.004 (3)
C20.019 (4)0.029 (4)0.026 (4)0.003 (3)0.002 (3)0.005 (3)
C30.024 (4)0.030 (4)0.015 (3)0.000 (3)0.003 (3)0.002 (3)
C40.023 (4)0.036 (4)0.016 (4)0.001 (3)0.003 (3)0.002 (3)
C50.023 (4)0.044 (5)0.020 (4)0.001 (3)0.002 (3)0.000 (3)
C60.019 (4)0.036 (4)0.024 (4)0.004 (3)0.005 (3)0.001 (3)
C70.021 (4)0.034 (4)0.016 (4)0.002 (3)0.001 (3)0.005 (3)
C80.027 (4)0.054 (5)0.020 (4)0.002 (4)0.001 (3)0.002 (3)
C90.018 (3)0.036 (4)0.018 (4)0.003 (3)0.003 (3)0.000 (3)
O10.018 (3)0.068 (4)0.033 (3)0.001 (3)0.002 (2)0.007 (3)
O20.024 (3)0.057 (4)0.024 (3)0.001 (3)0.005 (2)0.000 (2)
O30.027 (3)0.062 (4)0.018 (3)0.003 (3)0.002 (2)0.009 (3)
O40.020 (3)0.071 (4)0.030 (3)0.002 (3)0.004 (2)0.010 (3)
O50.020 (3)0.077 (4)0.024 (3)0.000 (3)0.006 (2)0.005 (3)
O60.030 (3)0.139 (7)0.022 (3)0.021 (4)0.000 (3)0.012 (4)
O1W0.041 (3)0.060 (4)0.038 (4)0.001 (3)0.010 (3)0.001 (3)
O2W0.039 (4)0.059 (4)0.051 (4)0.009 (3)0.007 (3)0.017 (3)
O3W0.045 (4)0.056 (4)0.035 (3)0.003 (3)0.013 (3)0.001 (3)
O4W0.029 (3)0.080 (5)0.034 (3)0.006 (3)0.004 (3)0.006 (3)
O5W0.073 (5)0.064 (5)0.048 (4)0.006 (4)0.011 (4)0.012 (3)
O6W0.105 (8)0.080 (7)0.166 (11)0.032 (6)0.057 (8)0.003 (7)
Zn10.0231 (5)0.0556 (7)0.0228 (6)0.0024 (4)0.0043 (4)0.0048 (4)
Zn20.0246 (7)0.0539 (9)0.0211 (7)0.0012 (6)0.0059 (5)0.0050 (6)
Geometric parameters (Å, º) top
C1—O11.248 (9)O1W—Zn11.981 (7)
C1—O21.256 (9)O1W—H1WA0.8505
C1—C21.495 (10)O1W—H1WB0.8502
C2—C91.372 (11)O2W—Zn11.965 (6)
C2—C31.380 (10)O2W—H2WA0.8584
C3—C41.390 (10)O2W—H2WB0.8429
C3—H30.9300O3W—Zn22.150 (6)
C4—C61.392 (10)O3W—H3WA0.8498
C4—C51.511 (10)O3W—H3WB0.8494
C5—O31.244 (9)O4W—Zn22.099 (6)
C5—O41.263 (9)O4W—H4WA0.8483
C6—C71.344 (10)O4W—H4WB0.8518
C6—H60.9300O5W—H5WA0.8487
C7—C91.382 (10)O5W—H5WB0.8538
C7—C81.501 (10)O6W—H6WA0.7595
C8—O61.235 (10)O6W—H6WB0.8431
C8—O51.275 (10)Zn1—O5ii1.946 (6)
C9—H90.9300Zn1—H2WB2.0711
O1—Zn12.412 (6)Zn2—O3iii2.049 (5)
O2—Zn11.999 (5)Zn2—O4Wiii2.099 (6)
O3—Zn22.049 (5)Zn2—O3Wiii2.150 (6)
O5—Zn1i1.946 (6)
O1—C1—O2119.4 (7)Zn2—O3W—H3WB152.2
O1—C1—C2120.1 (7)H3WA—O3W—H3WB107.8
O2—C1—C2120.5 (7)Zn2—O4W—H4WA116.8
C9—C2—C3119.3 (7)Zn2—O4W—H4WB108.0
C9—C2—C1120.4 (6)H4WA—O4W—H4WB107.7
C3—C2—C1120.4 (7)H5WA—O5W—H5WB107.5
C2—C3—C4120.8 (7)H6WA—O6W—H6WB114.2
C2—C3—H3119.6O5ii—Zn1—O2W109.2 (3)
C4—C3—H3119.6O5ii—Zn1—O1W101.6 (3)
C3—C4—C6116.9 (6)O2W—Zn1—O1W108.0 (3)
C3—C4—C5121.2 (6)O5ii—Zn1—O2101.8 (2)
C6—C4—C5121.7 (6)O2W—Zn1—O2120.0 (2)
O3—C5—O4124.5 (7)O1W—Zn1—O2114.4 (2)
O3—C5—C4117.4 (7)O5ii—Zn1—O1159.2 (2)
O4—C5—C4118.0 (7)O2W—Zn1—O186.6 (2)
C7—C6—C4123.5 (7)O1W—Zn1—O185.5 (2)
C7—C6—H6118.3O2—Zn1—O157.8 (2)
C4—C6—H6118.3O5ii—Zn1—H2WB111.6
C6—C7—C9118.0 (7)O2W—Zn1—H2WB23.9
C6—C7—C8120.6 (7)O1W—Zn1—H2WB128.1
C9—C7—C8121.4 (7)O2—Zn1—H2WB96.9
O6—C8—O5124.0 (7)O1—Zn1—H2WB77.4
O6—C8—C7120.6 (7)O3iii—Zn2—O3180.000 (1)
O5—C8—C7115.4 (7)O3iii—Zn2—O4W87.5 (2)
C2—C9—C7121.4 (7)O3—Zn2—O4W92.5 (2)
C2—C9—H9119.3O3iii—Zn2—O4Wiii92.5 (2)
C7—C9—H9119.3O3—Zn2—O4Wiii87.5 (2)
C1—O1—Zn181.8 (4)O4W—Zn2—O4Wiii180.000 (1)
C1—O2—Zn1100.9 (5)O3iii—Zn2—O3Wiii90.4 (2)
C5—O3—Zn2131.1 (5)O3—Zn2—O3Wiii89.6 (2)
C8—O5—Zn1i116.7 (5)O4W—Zn2—O3Wiii92.0 (3)
Zn1—O1W—H1WA141.2O4Wiii—Zn2—O3Wiii88.0 (3)
Zn1—O1W—H1WB98.5O3iii—Zn2—O3W89.6 (2)
H1WA—O1W—H1WB107.6O3—Zn2—O3W90.4 (2)
Zn1—O2W—H2WA134.0O4W—Zn2—O3W88.0 (3)
Zn1—O2W—H2WB85.1O4Wiii—Zn2—O3W92.0 (3)
H2WA—O2W—H2WB107.6O3Wiii—Zn2—O3W180.000 (1)
Zn2—O3W—H3WA82.1
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WB···O6iv0.851.972.768 (9)155
O5W—H5WA···O2v0.851.992.842 (9)179
O6W—H6WB···O6vi0.842.293.058 (13)153
O5W—H5WB···O6ii0.852.593.356 (12)150
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iv) x1/2, y+3/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn3(C9H3O6)2(H2O)8]·4H2O
Mr826.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.745 (2), 6.7960 (12), 15.183 (3)
β (°) 94.543 (2)
V3)1516.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.27 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.521, 0.569
No. of measured, independent and
observed [I > 2σ(I)] reflections
7485, 2729, 1990
Rint0.047
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.225, 1.13
No. of reflections2729
No. of parameters205
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.89, 0.90

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WB···O6i0.851.972.768 (9)154.6
O5W—H5WA···O2ii0.851.992.842 (9)178.7
O6W—H6WB···O6iii0.842.293.058 (13)152.5
O5W—H5WB···O6iv0.852.593.356 (12)149.5
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge South China Normal University and the National Natural Science Foundation of China, grant No. 20871048, for supporting this work.

References

First citationBatten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S. S., Fan, J., Okamura, T. A., Chen, M. S., Su, Z., Sun, W. Y. & Ueyama, N. (2010). Cryst. Growth Des. 10, 812–822.  CrossRef CAS Google Scholar
First citationHua, Q., Zhao, Y., Xu, G. C., Chen, M. S., Su, Z., Cai, K. & Sun, W. Y. (2010). Cryst. Growth Des. 10, 2553–2562.  CrossRef CAS Google Scholar
First citationLiang, X. Q., Zhou, X. H., Chen, C., Xiao, H. P., Li, Y. Z. & Zuo, J. L. (2009). Cryst. Growth Des. 9, 1041–1053.  CrossRef CAS Google Scholar
First citationQiu, Y. C., Li, Y. H., Peng, G., Cai, J. B., Jin, L. M., Ma, L., Deng, H., Zeller, M. & Batten, S. R. (2010). Cryst. Growth Des. 10, 1332–13401.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Wang, W. Y., Liu, S. M., Hou, H. W. & Fan, Y. T. (2009). J. Mol. Struct. 938, 185–191.  CrossRef CAS Google Scholar
First citationXu, L., Choi, E. Y. & Kwon, Y. U. (2007). Inorg. Chem. 46, 10670–10680.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, L., Choi, E. Y. & Kwon, Y. U. (2008). Inorg. Chem. Commun. 11, 1190–1193.  CrossRef CAS Google Scholar
First citationYaghi, O. M., Davis, C. E., Li, G. M. & Li, H. L. (1997). J. Am. Chem. Soc. 119, 2861–2868.  CSD CrossRef CAS Web of Science Google Scholar
First citationYang, E. C., Liu, Z. Y., Wang, X. G., Batten, S. R. & Zhao, X. J. (2008). CrystEngComm, 10, 1140–1143.  CrossRef CAS Google Scholar
First citationZhong, R. Q., Zou, R. Q., Du, M., Takeichi, N. & Xu, Q. (2008). CrystEngComm, 10, 1175–1179.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m630-m631
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds