metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m622-m623

Bis[(2-pyrid­yl)(2-pyridyl­amino)­methano­lato]manganese(III) nitrate

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China, and bYanzhou Coal Mining Logistics Company Ltd, People's Republic of China
*Correspondence e-mail: cezlliu@imu.edu.cn

(Received 15 March 2011; accepted 16 April 2011; online 22 April 2011)

The MnIII atom in the title complex, [Mn(C11H10N3O)2]NO3, is coordinated by the two tridentate (2-pyrid­yl)(2-pyridyl­amino)­methano­late ligands, forming a six-coordinate environment. The four pyridyl N atoms constitute the equatorial plane on which the manganese(III) ion lies; the coordination plane suffers a slight distortion as indicated by the average plane deviation of 0.058 Å. The methano­late O atoms occupy the axial positions. The coordination geometry is thus octa­hedral. In the title compound, the cations are linked by nitrate anions via N—H⋯O hydrogen bonds to form one-dimensional chains. Moreover, the one-dimensional structure is stabilized by inter­molecular edge-to-face aromatic ππ inter­actions with a center-of-inversion at a distance of ca 4.634 Å.

Related literature

For related structures, see: Adams et al. (2005[Adams, H., Shongwe, M. S., Al-Bahri, I., Al-Busaidi, E. & Morris, M. J. (2005). Acta Cryst. C61, m497-m500.]); Liu et al. (2008[Liu, Z.-L., Liang, S.-L., Di, X.-W. & Zhang, J. (2008). Inorg. Chem. Commun. 11, 783-786.]); Arulsamy & Hongson (1994[Arulsamy, N. & Hongson, D. J. (1994). Inorg. Chem. 33, 4531-4536.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H10N3O)2]NO3

  • Mr = 517.39

  • Monoclinic, P 21 /c

  • a = 12.889 (3) Å

  • b = 10.931 (2) Å

  • c = 19.309 (6) Å

  • β = 123.34 (2)°

  • V = 2272.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 153 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.963, Tmax = 0.969

  • 16544 measured reflections

  • 5743 independent reflections

  • 4648 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.166

  • S = 1.07

  • 5743 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2 1.8428 (17)
Mn1—O1 1.8488 (17)
Mn1—N6 2.111 (2)
Mn1—N4 2.139 (2)
Mn1—N3 2.179 (2)
Mn1—N5 2.202 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.08 2.931 (4) 171
N2—H2⋯O4ii 0.86 2.07 2.902 (4) 164
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Selected bond distances and angles are given in Table 1. (2-pyridyl)(2-pyridylamino)-methanolato is a transmutative ligand. There is only four complexes with this ligand reported, such as those of MnIII (Liu et al. 2008), CoIII (Adams et al. 2005) and MnIII, FeIII (Arulsamy & Hongson 1994). We report herein the synthesis and structure of the title compound. The crystal structure of the complex cation shows two tridentate (2-pyridyl)bis(2-pyridylamino)-methanolate ligands coordinated facially to the MnIII ion to form a distorted octahedral geometry. The MnIII resides on a pseudo-twofold axis of symmetry and on an equatorial plane formed by the pyridyl N atoms of the two ligands (Fig. 2, Table 2).

Related literature top

For related structures, see: Adams et al. (2005); Liu et al. (2008); Arulsamy & Hongson (1994).

Experimental top

L1 was synthesized following literature procedures (Arulsamy & Hongson 1994). 50% Mn(NO3)2 (0.356 g, 1 mmol) was added to a solution of L1 (0.277 g, 1 mmol) in ehanol (20 ml); a brown solution formed over time with continuous stirring at room temperature. This solution was left to evaporate slowly at room temperature. After one week, brown block crystals of the title compound were isolated (yield: 0.1662 g, 60%). Microanalysis found: C 50.91, H 3.89, N 18.90%; calculated for C22H20MnN7O5 (Mr = 517.39): C 51.02, H 3.86, N 18.94%.

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.95 Å and O—H = 0.82–0.84 Å), with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006) and XP (Siemens, 1994); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing hydrogen bond as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
Bis[(2-pyridyl)(2-pyridylamino)methanolato]manganese(III) nitrate top
Crystal data top
[Mn(C11H10N3O)2]NO3F(000) = 1064
Mr = 517.39Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.889 (3) ÅCell parameters from 3732 reflections
b = 10.931 (2) Åθ = 1.9–27.9°
c = 19.309 (6) ŵ = 0.63 mm1
β = 123.34 (2)°T = 153 K
V = 2272.7 (10) Å3Block, brown
Z = 40.1 × 0.05 × 0.05 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5743 independent reflections
Radiation source: fine-focus sealed tube4648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 7.31 pixels mm-1θmax = 28.5°, θmin = 1.9°
ω and ϕ scansh = 1317
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1314
Tmin = 0.963, Tmax = 0.969l = 2525
16544 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.091P)2 + 1.2493P]
where P = (Fo2 + 2Fc2)/3
5743 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Mn(C11H10N3O)2]NO3V = 2272.7 (10) Å3
Mr = 517.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.889 (3) ŵ = 0.63 mm1
b = 10.931 (2) ÅT = 153 K
c = 19.309 (6) Å0.1 × 0.05 × 0.05 mm
β = 123.34 (2)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5743 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
4648 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.969Rint = 0.021
16544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.07Δρmax = 1.12 e Å3
5743 reflectionsΔρmin = 0.47 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.91585 (3)0.67947 (3)0.65817 (2)0.04290 (14)
O11.01651 (17)0.54585 (15)0.67793 (11)0.0507 (4)
O20.81804 (17)0.81050 (16)0.64742 (13)0.0530 (4)
N11.2075 (2)0.6381 (2)0.72255 (14)0.0541 (5)
H11.27800.60980.73510.065*
N20.6572 (2)0.7950 (2)0.50627 (16)0.0608 (6)
H20.59510.84100.47320.073*
N30.7563 (2)0.5819 (2)0.64167 (13)0.0501 (5)
N40.8165 (2)0.66973 (18)0.52595 (14)0.0485 (5)
N51.0588 (2)0.79115 (19)0.65910 (12)0.0459 (4)
N61.0294 (2)0.68841 (18)0.78880 (13)0.0461 (4)
C11.0262 (3)0.9030 (2)0.62310 (17)0.0554 (6)
H1A0.94860.93390.60650.066*
C21.1011 (3)0.9718 (3)0.6102 (2)0.0674 (8)
H2A1.07601.04860.58570.081*
C31.2157 (3)0.9253 (3)0.6342 (2)0.0710 (8)
H31.26870.97090.62570.085*
C41.2511 (3)0.8141 (3)0.6699 (2)0.0597 (7)
H41.32760.78160.68520.072*
C51.1708 (2)0.7481 (2)0.68361 (15)0.0474 (5)
C61.1368 (2)0.5659 (2)0.74488 (15)0.0479 (5)
H61.17770.48640.76480.058*
C71.1348 (2)0.6272 (2)0.81495 (15)0.0453 (5)
C81.2290 (3)0.6237 (3)0.89677 (17)0.0557 (6)
H81.30170.58100.91380.067*
C91.2149 (3)0.6842 (3)0.95381 (19)0.0637 (7)
H91.27750.68201.00990.076*
C101.1077 (3)0.7475 (3)0.92669 (19)0.0670 (8)
H101.09660.78940.96410.080*
C111.0163 (3)0.7485 (3)0.84341 (18)0.0571 (6)
H110.94370.79230.82490.068*
C120.8687 (3)0.6069 (3)0.49241 (18)0.0605 (7)
H120.93780.55860.52730.073*
C130.8261 (3)0.6101 (3)0.4106 (2)0.0727 (9)
H130.86430.56500.38980.087*
C140.7234 (4)0.6832 (3)0.3591 (2)0.0752 (9)
H140.69220.68840.30280.090*
C150.6696 (3)0.7461 (3)0.39065 (18)0.0637 (7)
H150.60190.79630.35650.076*
C160.7153 (2)0.7364 (2)0.47519 (16)0.0507 (6)
C170.6923 (2)0.7859 (3)0.59136 (18)0.0541 (6)
H170.64420.84640.59990.065*
C180.6618 (3)0.6604 (3)0.60818 (18)0.0539 (6)
C190.5459 (3)0.6273 (4)0.5890 (2)0.0768 (9)
H190.48100.68340.56650.092*
C200.5287 (4)0.5062 (4)0.6047 (3)0.0914 (12)
H200.45210.48100.59350.110*
C210.6239 (4)0.4266 (4)0.6359 (2)0.0792 (10)
H210.61290.34540.64490.095*
C220.7368 (3)0.4663 (3)0.65425 (18)0.0625 (7)
H220.80230.41100.67630.075*
O30.4514 (3)0.5305 (4)0.7831 (3)0.1256 (13)
O40.4849 (5)0.5147 (5)0.9012 (3)0.193 (3)
O50.5144 (4)0.3663 (4)0.8475 (3)0.1308 (13)
N70.4830 (2)0.4735 (3)0.84692 (19)0.0689 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0444 (2)0.0363 (2)0.0444 (2)0.00432 (13)0.02212 (17)0.00227 (13)
O10.0534 (9)0.0371 (8)0.0504 (9)0.0062 (7)0.0214 (8)0.0026 (7)
O20.0506 (9)0.0411 (9)0.0653 (11)0.0031 (7)0.0306 (9)0.0091 (8)
N10.0540 (12)0.0532 (12)0.0613 (13)0.0145 (10)0.0357 (11)0.0103 (10)
N20.0547 (12)0.0543 (13)0.0662 (14)0.0160 (10)0.0287 (11)0.0123 (11)
N30.0530 (11)0.0481 (11)0.0484 (11)0.0031 (9)0.0274 (9)0.0006 (9)
N40.0534 (11)0.0406 (10)0.0499 (11)0.0042 (8)0.0275 (10)0.0014 (8)
N50.0535 (11)0.0407 (10)0.0449 (10)0.0065 (8)0.0278 (9)0.0018 (8)
N60.0521 (11)0.0401 (10)0.0481 (10)0.0009 (8)0.0288 (9)0.0025 (8)
C10.0655 (16)0.0454 (13)0.0576 (14)0.0096 (12)0.0353 (13)0.0061 (11)
C20.089 (2)0.0502 (15)0.0748 (19)0.0079 (15)0.0525 (18)0.0130 (14)
C30.089 (2)0.0633 (18)0.084 (2)0.0020 (16)0.062 (2)0.0081 (16)
C40.0639 (16)0.0626 (17)0.0637 (17)0.0020 (13)0.0420 (14)0.0004 (13)
C50.0548 (13)0.0470 (13)0.0433 (12)0.0044 (10)0.0288 (10)0.0025 (9)
C60.0503 (12)0.0384 (11)0.0491 (12)0.0090 (10)0.0234 (10)0.0040 (9)
C70.0508 (12)0.0366 (11)0.0483 (12)0.0019 (9)0.0271 (10)0.0040 (9)
C80.0529 (14)0.0542 (15)0.0511 (14)0.0022 (12)0.0229 (11)0.0059 (11)
C90.0701 (18)0.0674 (18)0.0454 (14)0.0106 (14)0.0266 (13)0.0023 (12)
C100.087 (2)0.0666 (19)0.0558 (16)0.0055 (16)0.0444 (16)0.0067 (14)
C110.0685 (16)0.0524 (15)0.0614 (16)0.0036 (12)0.0427 (14)0.0024 (12)
C120.0697 (17)0.0561 (16)0.0582 (15)0.0077 (13)0.0368 (14)0.0045 (12)
C130.086 (2)0.075 (2)0.0596 (17)0.0011 (17)0.0414 (17)0.0122 (15)
C140.090 (2)0.076 (2)0.0496 (16)0.0095 (18)0.0321 (16)0.0040 (14)
C150.0597 (16)0.0601 (17)0.0523 (15)0.0043 (13)0.0187 (13)0.0059 (12)
C160.0476 (12)0.0407 (12)0.0546 (14)0.0023 (10)0.0222 (11)0.0037 (10)
C170.0489 (13)0.0466 (13)0.0672 (16)0.0091 (11)0.0322 (12)0.0013 (12)
C180.0505 (13)0.0545 (14)0.0566 (14)0.0037 (11)0.0293 (12)0.0015 (11)
C190.0529 (16)0.081 (2)0.092 (2)0.0022 (16)0.0371 (17)0.0055 (19)
C200.072 (2)0.091 (3)0.112 (3)0.022 (2)0.050 (2)0.004 (2)
C210.086 (2)0.067 (2)0.074 (2)0.0146 (18)0.0376 (18)0.0082 (16)
C220.0710 (18)0.0527 (15)0.0560 (15)0.0021 (13)0.0300 (14)0.0075 (12)
O30.088 (2)0.123 (3)0.140 (3)0.014 (2)0.046 (2)0.044 (2)
O40.228 (5)0.236 (5)0.214 (5)0.173 (4)0.183 (4)0.163 (4)
O50.141 (3)0.109 (3)0.160 (4)0.031 (2)0.094 (3)0.033 (3)
N70.0434 (12)0.0718 (18)0.0776 (18)0.0087 (12)0.0245 (12)0.0023 (14)
Geometric parameters (Å, º) top
Mn1—O21.8428 (17)C6—H60.9800
Mn1—O11.8488 (17)C7—C81.365 (4)
Mn1—N62.111 (2)C8—C91.380 (4)
Mn1—N42.139 (2)C8—H80.9300
Mn1—N32.179 (2)C9—C101.366 (5)
Mn1—N52.202 (2)C9—H90.9300
O1—C61.385 (3)C10—C111.375 (4)
O2—C171.393 (3)C10—H100.9300
N1—C51.358 (3)C11—H110.9300
N1—C61.439 (3)C12—C131.358 (4)
N1—H10.8600C12—H120.9300
N2—C161.352 (4)C13—C141.390 (5)
N2—C171.448 (4)C13—H130.9300
N2—H20.8601C14—C151.338 (5)
N3—C181.332 (3)C14—H140.9300
N3—C221.336 (4)C15—C161.402 (4)
N4—C161.337 (3)C15—H150.9300
N4—C121.351 (3)C17—C181.511 (4)
N5—C51.333 (3)C17—H170.9800
N5—C11.354 (3)C18—C191.376 (4)
N6—C111.329 (3)C19—C201.401 (6)
N6—C71.339 (3)C19—H190.9300
C1—C21.350 (4)C20—C211.346 (6)
C1—H1A0.9300C20—H200.9300
C2—C31.380 (5)C21—C221.365 (5)
C2—H2A0.9300C21—H210.9300
C3—C41.348 (4)C22—H220.9300
C3—H30.9300O3—N71.233 (4)
C4—C51.401 (4)O4—N71.129 (4)
C4—H40.9300O5—N71.237 (5)
C6—C71.523 (3)
O2—Mn1—O1175.06 (9)C7—C6—H6108.1
O2—Mn1—N694.63 (8)N6—C7—C8121.6 (2)
O1—Mn1—N680.96 (8)N6—C7—C6113.2 (2)
O2—Mn1—N488.88 (9)C8—C7—C6125.2 (2)
O1—Mn1—N495.67 (8)C7—C8—C9119.1 (3)
N6—Mn1—N4174.62 (8)C7—C8—H8120.5
O2—Mn1—N380.32 (8)C9—C8—H8120.5
O1—Mn1—N398.18 (8)C10—C9—C8119.1 (3)
N6—Mn1—N3100.15 (8)C10—C9—H9120.5
N4—Mn1—N384.45 (9)C8—C9—H9120.5
O2—Mn1—N595.03 (8)C9—C10—C11119.2 (3)
O1—Mn1—N586.97 (8)C9—C10—H10120.4
N6—Mn1—N586.39 (8)C11—C10—H10120.4
N4—Mn1—N589.24 (8)N6—C11—C10121.5 (3)
N3—Mn1—N5172.21 (8)N6—C11—H11119.2
C6—O1—Mn1111.44 (14)C10—C11—H11119.2
C17—O2—Mn1111.68 (15)N4—C12—C13123.7 (3)
C5—N1—C6124.5 (2)N4—C12—H12118.2
C5—N1—H1117.9C13—C12—H12118.2
C6—N1—H1117.6C12—C13—C14117.7 (3)
C16—N2—C17124.6 (2)C12—C13—H13121.1
C16—N2—H2117.6C14—C13—H13121.1
C17—N2—H2117.8C15—C14—C13119.8 (3)
C18—N3—C22119.0 (3)C15—C14—H14120.1
C18—N3—Mn1107.03 (18)C13—C14—H14120.1
C22—N3—Mn1133.9 (2)C14—C15—C16120.0 (3)
C16—N4—C12117.9 (2)C14—C15—H15120.0
C16—N4—Mn1123.43 (18)C16—C15—H15120.0
C12—N4—Mn1117.92 (19)N4—C16—N2119.2 (2)
C5—N5—C1118.1 (2)N4—C16—C15120.8 (3)
C5—N5—Mn1123.03 (17)N2—C16—C15120.0 (3)
C1—N5—Mn1118.31 (18)O2—C17—N2111.9 (2)
C11—N6—C7119.5 (2)O2—C17—C18109.7 (2)
C11—N6—Mn1131.58 (19)N2—C17—C18110.5 (2)
C7—N6—Mn1108.72 (16)O2—C17—H17108.2
C2—C1—N5123.1 (3)N2—C17—H17108.2
C2—C1—H1A118.5C18—C17—H17108.2
N5—C1—H1A118.5N3—C18—C19121.9 (3)
C1—C2—C3118.4 (3)N3—C18—C17114.4 (2)
C1—C2—H2A120.8C19—C18—C17123.6 (3)
C3—C2—H2A120.8C18—C19—C20117.9 (3)
C4—C3—C2120.2 (3)C18—C19—H19121.1
C4—C3—H3119.9C20—C19—H19121.1
C2—C3—H3119.9C21—C20—C19119.6 (3)
C3—C4—C5118.9 (3)C21—C20—H20120.2
C3—C4—H4120.6C19—C20—H20120.2
C5—C4—H4120.6C20—C21—C22119.3 (3)
N5—C5—N1119.2 (2)C20—C21—H21120.3
N5—C5—C4121.3 (2)C22—C21—H21120.3
N1—C5—C4119.4 (2)N3—C22—C21122.2 (3)
O1—C6—N1112.0 (2)N3—C22—H22118.9
O1—C6—C7110.0 (2)C21—C22—H22118.9
N1—C6—C7110.3 (2)O4—N7—O3123.5 (5)
O1—C6—H6108.1O4—N7—O5122.0 (5)
N1—C6—H6108.1O3—N7—O5114.5 (4)
O2—Mn1—O1—C662.4 (10)C1—N5—C5—C42.4 (4)
N6—Mn1—O1—C635.28 (17)Mn1—N5—C5—C4168.7 (2)
N4—Mn1—O1—C6140.48 (17)C6—N1—C5—N54.3 (4)
N3—Mn1—O1—C6134.33 (17)C6—N1—C5—C4175.8 (2)
N5—Mn1—O1—C651.54 (17)C3—C4—C5—N52.7 (4)
O1—Mn1—O2—C17108.0 (10)C3—C4—C5—N1177.4 (3)
N6—Mn1—O2—C17134.89 (19)Mn1—O1—C6—N180.4 (2)
N4—Mn1—O2—C1749.19 (19)Mn1—O1—C6—C742.7 (2)
N3—Mn1—O2—C1735.37 (19)C5—N1—C6—O153.1 (3)
N5—Mn1—O2—C17138.33 (19)C5—N1—C6—C769.9 (3)
O2—Mn1—N3—C1818.63 (18)C11—N6—C7—C80.9 (4)
O1—Mn1—N3—C18166.13 (18)Mn1—N6—C7—C8176.2 (2)
N6—Mn1—N3—C18111.65 (18)C11—N6—C7—C6178.6 (2)
N4—Mn1—N3—C1871.18 (18)Mn1—N6—C7—C63.2 (2)
N5—Mn1—N3—C1835.1 (6)O1—C6—C7—N623.8 (3)
O2—Mn1—N3—C22165.0 (3)N1—C6—C7—N6100.3 (2)
O1—Mn1—N3—C2210.2 (3)O1—C6—C7—C8156.8 (2)
N6—Mn1—N3—C2272.0 (3)N1—C6—C7—C879.1 (3)
N4—Mn1—N3—C22105.2 (3)N6—C7—C8—C90.3 (4)
N5—Mn1—N3—C22141.3 (5)C6—C7—C8—C9179.6 (3)
O2—Mn1—N4—C167.8 (2)C7—C8—C9—C100.9 (4)
O1—Mn1—N4—C16170.3 (2)C8—C9—C10—C110.5 (5)
N6—Mn1—N4—C16138.6 (8)C7—N6—C11—C101.3 (4)
N3—Mn1—N4—C1672.6 (2)Mn1—N6—C11—C10175.4 (2)
N5—Mn1—N4—C16102.8 (2)C9—C10—C11—N60.6 (5)
O2—Mn1—N4—C12162.2 (2)C16—N4—C12—C131.7 (5)
O1—Mn1—N4—C1219.7 (2)Mn1—N4—C12—C13168.8 (3)
N6—Mn1—N4—C1231.3 (9)N4—C12—C13—C140.5 (5)
N3—Mn1—N4—C12117.4 (2)C12—C13—C14—C150.7 (5)
N5—Mn1—N4—C1267.1 (2)C13—C14—C15—C161.2 (5)
O2—Mn1—N5—C5164.94 (19)C12—N4—C16—N2176.5 (3)
O1—Mn1—N5—C510.53 (19)Mn1—N4—C16—N213.5 (3)
N6—Mn1—N5—C570.60 (19)C12—N4—C16—C153.6 (4)
N4—Mn1—N5—C5106.25 (19)Mn1—N4—C16—C15166.3 (2)
N3—Mn1—N5—C5142.1 (5)C17—N2—C16—N43.6 (4)
O2—Mn1—N5—C124.0 (2)C17—N2—C16—C15176.5 (3)
O1—Mn1—N5—C1160.53 (19)C14—C15—C16—N43.5 (4)
N6—Mn1—N5—C1118.35 (19)C14—C15—C16—N2176.6 (3)
N4—Mn1—N5—C164.80 (19)Mn1—O2—C17—N277.3 (2)
N3—Mn1—N5—C128.9 (7)Mn1—O2—C17—C1845.6 (3)
O2—Mn1—N6—C1113.3 (2)C16—N2—C17—O252.2 (4)
O1—Mn1—N6—C11164.4 (2)C16—N2—C17—C1870.3 (3)
N4—Mn1—N6—C11143.9 (8)C22—N3—C18—C192.5 (4)
N3—Mn1—N6—C1167.7 (2)Mn1—N3—C18—C19179.5 (3)
N5—Mn1—N6—C11108.1 (2)C22—N3—C18—C17176.0 (2)
O2—Mn1—N6—C7161.26 (16)Mn1—N3—C18—C171.0 (3)
O1—Mn1—N6—C720.99 (16)O2—C17—C18—N328.3 (3)
N4—Mn1—N6—C730.6 (9)N2—C17—C18—N395.6 (3)
N3—Mn1—N6—C7117.77 (16)O2—C17—C18—C19153.3 (3)
N5—Mn1—N6—C766.51 (16)N2—C17—C18—C1982.9 (4)
C5—N5—C1—C20.8 (4)N3—C18—C19—C201.0 (5)
Mn1—N5—C1—C2170.7 (2)C17—C18—C19—C20177.3 (3)
N5—C1—C2—C30.6 (5)C18—C19—C20—C211.3 (6)
C1—C2—C3—C40.2 (5)C19—C20—C21—C222.0 (6)
C2—C3—C4—C51.3 (5)C18—N3—C22—C211.7 (4)
C1—N5—C5—N1177.7 (2)Mn1—N3—C22—C21177.7 (2)
Mn1—N5—C5—N111.3 (3)C20—C21—C22—N30.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.082.931 (4)171
N2—H2···O4ii0.862.072.902 (4)164
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C11H10N3O)2]NO3
Mr517.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)12.889 (3), 10.931 (2), 19.309 (6)
β (°) 123.34 (2)
V3)2272.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.1 × 0.05 × 0.05
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.963, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
16544, 5743, 4648
Rint0.021
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.166, 1.07
No. of reflections5743
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.47

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006) and XP (Siemens, 1994), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Mn1—O21.8428 (17)Mn1—N42.139 (2)
Mn1—O11.8488 (17)Mn1—N32.179 (2)
Mn1—N62.111 (2)Mn1—N52.202 (2)
O2—Mn1—O1175.06 (9)N6—Mn1—N3100.15 (8)
O2—Mn1—N694.63 (8)N4—Mn1—N384.45 (9)
O1—Mn1—N680.96 (8)O2—Mn1—N595.03 (8)
O2—Mn1—N488.88 (9)O1—Mn1—N586.97 (8)
O1—Mn1—N495.67 (8)N6—Mn1—N586.39 (8)
N6—Mn1—N4174.62 (8)N4—Mn1—N589.24 (8)
O2—Mn1—N380.32 (8)N3—Mn1—N5172.21 (8)
O1—Mn1—N398.18 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.082.931 (4)170.5
N2—H2···O4ii0.862.072.902 (4)164.0
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

Financial support by the NSFC (grant Nos. 20761004 and 21061009) and the Inner Mongolia Autonomous Region Fund for Natural Science (grant No. 2010MS0201) is gratefully acknowledged. This work was supported by the `211 project' postgraduate student programme of Inner Mongolia University.

References

First citationAdams, H., Shongwe, M. S., Al-Bahri, I., Al-Busaidi, E. & Morris, M. J. (2005). Acta Cryst. C61, m497–m500.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArulsamy, N. & Hongson, D. J. (1994). Inorg. Chem. 33, 4531–4536.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLiu, Z.-L., Liang, S.-L., Di, X.-W. & Zhang, J. (2008). Inorg. Chem. Commun. 11, 783–786.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m622-m623
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds