organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1157

5-Cyclo­hexyl-2-methyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 11 April 2011; accepted 12 April 2011; online 16 April 2011)

In the title compound, C21H22O2S, the cyclo­hexyl ring adopts a chair conformation. The phenyl ring makes a dihedral angle of 84.80 (4)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 3-aryl­sulfinyl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2551.], 2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o768.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22O2S

  • Mr = 338.45

  • Triclinic, [P \overline 1]

  • a = 8.8532 (2) Å

  • b = 10.2011 (2) Å

  • c = 10.4752 (3) Å

  • α = 90.734 (1)°

  • β = 111.568 (1)°

  • γ = 97.127 (1)°

  • V = 871.25 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.35 × 0.25 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.746

  • 15560 measured reflections

  • 4012 independent reflections

  • 3481 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.07

  • 4012 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O2i 0.98 2.52 3.4516 (19) 159
C21—H21⋯O2ii 0.95 2.47 3.2793 (18) 144
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds having a benzofuran ring system have attracted much attention owing to their diverse pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-arylsulfinyl-2-methyl-1-benzofuran analogues (Choi et al., 2010, 2011), we report here on the crystal structure of the title compound

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The dihedral angle formed by the mean plane of the benzofuran ring and the phenyl ring is 84.80 (4)° . The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between a methyl H atom and the O atom of the sulfinyl group (Table 1; C15—H15B···O2i), and the second one between a phenyl H atom and the O atom of the sulfinyl group (Table 1; C21—H21···O2ii).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 3-arylsulfinyl-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010, 2011).

Experimental top

77% 3-chloroperoxybenzoic acid (269 mg, 1.2 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-2-methyl-3-phenylsulfanyl-1-benzofuran (354 mg, 1.1 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 406–407 K; Rf = 0.68 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y, - z; (ii) - x + 1, - y, -z + 1.]
5-Cyclohexyl-2-methyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C21H22O2SZ = 2
Mr = 338.45F(000) = 360
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8532 (2) ÅCell parameters from 6502 reflections
b = 10.2011 (2) Åθ = 2.6–27.5°
c = 10.4752 (3) ŵ = 0.20 mm1
α = 90.734 (1)°T = 173 K
β = 111.568 (1)°Block, colourless
γ = 97.127 (1)°0.35 × 0.25 × 0.16 mm
V = 871.25 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4012 independent reflections
Radiation source: rotating anode3481 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.650, Tmax = 0.746l = 1313
15560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2372P]
where P = (Fo2 + 2Fc2)/3
4012 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H22O2Sγ = 97.127 (1)°
Mr = 338.45V = 871.25 (4) Å3
Triclinic, P1Z = 2
a = 8.8532 (2) ÅMo Kα radiation
b = 10.2011 (2) ŵ = 0.20 mm1
c = 10.4752 (3) ÅT = 173 K
α = 90.734 (1)°0.35 × 0.25 × 0.16 mm
β = 111.568 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3481 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.746Rint = 0.028
15560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.44 e Å3
4012 reflectionsΔρmin = 0.26 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33404 (4)0.01587 (3)0.18991 (3)0.02947 (11)
O10.52084 (12)0.32470 (10)0.04883 (10)0.0334 (2)
O20.45627 (13)0.04998 (10)0.29798 (11)0.0388 (3)
C10.43524 (16)0.16549 (13)0.16271 (14)0.0279 (3)
C20.55010 (16)0.26393 (13)0.26444 (14)0.0264 (3)
C30.61465 (16)0.28037 (13)0.40727 (14)0.0265 (3)
H30.58370.21600.46110.032*
C40.72549 (16)0.39299 (13)0.46990 (14)0.0273 (3)
C50.76898 (17)0.48649 (14)0.38824 (15)0.0328 (3)
H50.84430.56310.43210.039*
C60.70636 (18)0.47162 (15)0.24594 (16)0.0347 (3)
H60.73660.53560.19140.042*
C70.59801 (17)0.35912 (14)0.18809 (14)0.0291 (3)
C80.42408 (17)0.20589 (14)0.03698 (14)0.0310 (3)
C90.79606 (17)0.41638 (13)0.62465 (14)0.0284 (3)
H90.88210.49580.64850.034*
C100.6659 (2)0.44576 (18)0.68066 (16)0.0416 (4)
H10A0.61770.52450.63810.050*
H10B0.57690.36980.65510.050*
C110.7379 (2)0.47091 (17)0.83653 (16)0.0423 (4)
H11A0.82000.55160.86170.051*
H11B0.64960.48630.86940.051*
C120.81830 (19)0.35505 (15)0.90597 (15)0.0368 (3)
H12A0.73390.27670.88920.044*
H12B0.86970.37631.00650.044*
C130.94782 (19)0.32296 (16)0.85200 (15)0.0364 (3)
H13A0.99250.24290.89410.044*
H13B1.03910.39720.87920.044*
C140.87798 (18)0.29943 (14)0.69594 (14)0.0315 (3)
H14A0.79650.21840.66950.038*
H14B0.96740.28500.66420.038*
C150.3295 (2)0.14926 (17)0.10566 (15)0.0405 (4)
H15A0.27670.05960.10310.061*
H15B0.40390.14590.15520.061*
H15C0.24560.20490.15280.061*
C160.20788 (16)0.08189 (12)0.26836 (14)0.0268 (3)
C170.06675 (19)0.12795 (16)0.18436 (16)0.0387 (3)
H170.04040.12840.08790.046*
C180.0358 (2)0.17341 (18)0.2422 (2)0.0471 (4)
H180.13300.20580.18540.057*
C190.0022 (2)0.17188 (18)0.3815 (2)0.0483 (4)
H190.06850.20350.42090.058*
C200.1428 (2)0.12449 (18)0.46414 (17)0.0462 (4)
H200.16860.12360.56050.055*
C210.24659 (19)0.07815 (15)0.40774 (15)0.0344 (3)
H210.34280.04440.46440.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (2)0.02712 (18)0.02898 (19)0.00368 (13)0.01233 (15)0.00168 (13)
O10.0350 (5)0.0415 (6)0.0285 (5)0.0062 (4)0.0171 (4)0.0062 (4)
O20.0405 (6)0.0351 (5)0.0433 (6)0.0142 (5)0.0154 (5)0.0074 (5)
C10.0279 (7)0.0319 (7)0.0263 (6)0.0064 (5)0.0123 (5)0.0004 (5)
C20.0245 (6)0.0276 (6)0.0300 (7)0.0064 (5)0.0126 (5)0.0031 (5)
C30.0264 (6)0.0267 (6)0.0279 (7)0.0047 (5)0.0114 (5)0.0039 (5)
C40.0238 (6)0.0269 (6)0.0314 (7)0.0062 (5)0.0097 (5)0.0031 (5)
C50.0287 (7)0.0294 (7)0.0402 (8)0.0010 (5)0.0133 (6)0.0041 (6)
C60.0337 (7)0.0353 (7)0.0395 (8)0.0030 (6)0.0189 (6)0.0108 (6)
C70.0276 (7)0.0355 (7)0.0284 (7)0.0076 (5)0.0142 (6)0.0055 (5)
C80.0304 (7)0.0377 (7)0.0295 (7)0.0091 (6)0.0152 (6)0.0016 (6)
C90.0261 (6)0.0260 (6)0.0300 (7)0.0015 (5)0.0076 (5)0.0001 (5)
C100.0355 (8)0.0534 (9)0.0348 (8)0.0191 (7)0.0080 (7)0.0060 (7)
C110.0402 (9)0.0513 (9)0.0352 (8)0.0160 (7)0.0111 (7)0.0082 (7)
C120.0377 (8)0.0427 (8)0.0318 (7)0.0024 (6)0.0162 (6)0.0022 (6)
C130.0371 (8)0.0437 (8)0.0305 (7)0.0133 (7)0.0127 (6)0.0059 (6)
C140.0343 (7)0.0335 (7)0.0301 (7)0.0099 (6)0.0143 (6)0.0040 (5)
C150.0449 (9)0.0518 (9)0.0279 (7)0.0110 (7)0.0159 (7)0.0011 (6)
C160.0288 (7)0.0236 (6)0.0288 (7)0.0018 (5)0.0122 (6)0.0021 (5)
C170.0371 (8)0.0458 (9)0.0342 (8)0.0116 (7)0.0122 (7)0.0108 (6)
C180.0377 (9)0.0493 (9)0.0593 (11)0.0173 (7)0.0199 (8)0.0125 (8)
C190.0471 (10)0.0476 (9)0.0611 (11)0.0077 (8)0.0326 (9)0.0047 (8)
C200.0530 (10)0.0547 (10)0.0352 (8)0.0020 (8)0.0234 (8)0.0054 (7)
C210.0338 (7)0.0393 (8)0.0282 (7)0.0028 (6)0.0099 (6)0.0009 (6)
Geometric parameters (Å, º) top
S1—O21.4843 (11)C11—H11A0.9900
S1—C11.7529 (14)C11—H11B0.9900
S1—C161.7955 (14)C12—C131.519 (2)
O1—C81.3706 (17)C12—H12A0.9900
O1—C71.3829 (17)C12—H12B0.9900
C1—C81.3574 (19)C13—C141.5239 (19)
C1—C21.4494 (18)C13—H13A0.9900
C2—C71.3891 (19)C13—H13B0.9900
C2—C31.3908 (18)C14—H14A0.9900
C3—C41.3931 (18)C14—H14B0.9900
C3—H30.9500C15—H15A0.9800
C4—C51.4006 (19)C15—H15B0.9800
C4—C91.5112 (19)C15—H15C0.9800
C5—C61.385 (2)C16—C211.374 (2)
C5—H50.9500C16—C171.380 (2)
C6—C71.373 (2)C17—C181.382 (2)
C6—H60.9500C17—H170.9500
C8—C151.485 (2)C18—C191.372 (3)
C9—C101.530 (2)C18—H180.9500
C9—C141.5317 (19)C19—C201.379 (3)
C9—H91.0000C19—H190.9500
C10—C111.524 (2)C20—C211.385 (2)
C10—H10A0.9900C20—H200.9500
C10—H10B0.9900C21—H210.9500
C11—C121.511 (2)
O2—S1—C1107.74 (6)C10—C11—H11B109.4
O2—S1—C16106.99 (6)H11A—C11—H11B108.0
C1—S1—C1698.62 (6)C11—C12—C13111.07 (13)
C8—O1—C7106.49 (10)C11—C12—H12A109.4
C8—C1—C2107.37 (12)C13—C12—H12A109.4
C8—C1—S1124.25 (11)C11—C12—H12B109.4
C2—C1—S1128.29 (10)C13—C12—H12B109.4
C7—C2—C3119.49 (12)H12A—C12—H12B108.0
C7—C2—C1104.63 (12)C12—C13—C14111.68 (12)
C3—C2—C1135.87 (12)C12—C13—H13A109.3
C2—C3—C4118.76 (12)C14—C13—H13A109.3
C2—C3—H3120.6C12—C13—H13B109.3
C4—C3—H3120.6C14—C13—H13B109.3
C3—C4—C5119.53 (13)H13A—C13—H13B107.9
C3—C4—C9120.59 (12)C13—C14—C9111.88 (12)
C5—C4—C9119.87 (12)C13—C14—H14A109.2
C6—C5—C4122.53 (13)C9—C14—H14A109.2
C6—C5—H5118.7C13—C14—H14B109.2
C4—C5—H5118.7C9—C14—H14B109.2
C7—C6—C5116.21 (13)H14A—C14—H14B107.9
C7—C6—H6121.9C8—C15—H15A109.5
C5—C6—H6121.9C8—C15—H15B109.5
C6—C7—O1125.85 (12)H15A—C15—H15B109.5
C6—C7—C2123.48 (13)C8—C15—H15C109.5
O1—C7—C2110.67 (12)H15A—C15—H15C109.5
C1—C8—O1110.83 (12)H15B—C15—H15C109.5
C1—C8—C15133.47 (14)C21—C16—C17121.28 (13)
O1—C8—C15115.70 (12)C21—C16—S1120.21 (11)
C4—C9—C10111.77 (11)C17—C16—S1118.37 (11)
C4—C9—C14112.05 (11)C16—C17—C18119.21 (15)
C10—C9—C14109.62 (12)C16—C17—H17120.4
C4—C9—H9107.7C18—C17—H17120.4
C10—C9—H9107.7C19—C18—C17120.21 (16)
C14—C9—H9107.7C19—C18—H18119.9
C11—C10—C9111.62 (13)C17—C18—H18119.9
C11—C10—H10A109.3C18—C19—C20120.03 (15)
C9—C10—H10A109.3C18—C19—H19120.0
C11—C10—H10B109.3C20—C19—H19120.0
C9—C10—H10B109.3C19—C20—C21120.49 (16)
H10A—C10—H10B108.0C19—C20—H20119.8
C12—C11—C10111.23 (13)C21—C20—H20119.8
C12—C11—H11A109.4C16—C21—C20118.77 (15)
C10—C11—H11A109.4C16—C21—H21120.6
C12—C11—H11B109.4C20—C21—H21120.6
O2—S1—C1—C8131.22 (12)C7—O1—C8—C11.01 (15)
C16—S1—C1—C8117.76 (13)C7—O1—C8—C15179.63 (12)
O2—S1—C1—C245.06 (13)C3—C4—C9—C1068.63 (16)
C16—S1—C1—C265.96 (13)C5—C4—C9—C10110.04 (15)
C8—C1—C2—C70.77 (15)C3—C4—C9—C1454.86 (16)
S1—C1—C2—C7177.55 (11)C5—C4—C9—C14126.47 (14)
C8—C1—C2—C3179.30 (15)C4—C9—C10—C11179.32 (13)
S1—C1—C2—C32.5 (2)C14—C9—C10—C1155.83 (17)
C7—C2—C3—C40.36 (19)C9—C10—C11—C1256.99 (19)
C1—C2—C3—C4179.57 (14)C10—C11—C12—C1355.67 (18)
C2—C3—C4—C50.07 (19)C11—C12—C13—C1454.82 (17)
C2—C3—C4—C9178.73 (11)C12—C13—C14—C955.03 (17)
C3—C4—C5—C60.3 (2)C4—C9—C14—C13179.56 (12)
C9—C4—C5—C6178.94 (13)C10—C9—C14—C1354.87 (16)
C4—C5—C6—C70.0 (2)O2—S1—C16—C216.99 (13)
C5—C6—C7—O1179.83 (12)C1—S1—C16—C21104.63 (12)
C5—C6—C7—C20.4 (2)O2—S1—C16—C17168.86 (11)
C8—O1—C7—C6179.94 (14)C1—S1—C16—C1779.52 (12)
C8—O1—C7—C20.49 (15)C21—C16—C17—C181.2 (2)
C3—C2—C7—C60.6 (2)S1—C16—C17—C18177.02 (13)
C1—C2—C7—C6179.30 (13)C16—C17—C18—C190.4 (3)
C3—C2—C7—O1179.89 (11)C17—C18—C19—C200.2 (3)
C1—C2—C7—O10.16 (14)C18—C19—C20—C210.0 (3)
C2—C1—C8—O11.12 (15)C17—C16—C21—C201.4 (2)
S1—C1—C8—O1178.06 (9)S1—C16—C21—C20177.15 (12)
C2—C1—C8—C15179.67 (15)C19—C20—C21—C160.8 (2)
S1—C1—C8—C152.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.982.523.4516 (19)159
C21—H21···O2ii0.952.473.2793 (18)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H22O2S
Mr338.45
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.8532 (2), 10.2011 (2), 10.4752 (3)
α, β, γ (°)90.734 (1), 111.568 (1), 97.127 (1)
V3)871.25 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.35 × 0.25 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.650, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15560, 4012, 3481
Rint0.028
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.07
No. of reflections4012
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.982.523.4516 (19)159
C21—H21···O2ii0.952.473.2793 (18)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2551.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1157
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds