metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-Amino-4,6-bis­­(2-pyrid­yl)-1,3,5-tri­azine-κ3N4,N5,N6]di­chloridocadmium(II)

aDepartment of Chemistry, Guangdong University of Education, Guangzhou 510303, People's Republic of China
*Correspondence e-mail: caoml@mail3.sysu.edu.cn

(Received 8 March 2011; accepted 4 April 2011; online 29 April 2011)

In the title compound, [CdCl2(C13H10N6)], the 2-amino-4,6-bis(pyridin-2-yl)-1,3,5-triazine (HABPT) ligand adopts a tridentate tripyridyl coordination mode. The CdII atom is five-coordinated by three N atoms from the HABPT ligand and two chloride ions. In the crystal, mol­ecules are linked via N—H⋯N, N—H⋯Cl and C—H⋯Cl hydrogen bonds into a supra­molecular network.

Related literature

For asymmetric ligands containing a triazine ring, see: Drew et al. (2000[Drew, M. G. B., Hudson, M. J., Iveson, P. B., Madic, C. & Russell, M. L. (2000). J. Chem. Soc. Dalton Trans. pp. 2711-2720.]); Boubals et al. (2002[Boubals, N., Drew, M. G. B., Hill, C., Hudson, M. J., Iveson, P. B., Madic, C., Russell, M. L. & Youngs, T. G. A. (2002). J. Chem. Soc. Dalton Trans. pp. 55-62.]); Medlycott et al. (2007[Medlycott, E. A., Udachin, K. A. & Hanan, G. S. (2007). Dalton Trans. pp. 430-438.]); Chi et al. (2006[Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605-10612.]); Cao et al. (2008[Cao, M.-L., Hao, H.-G., Zhang, W.-X. & Ye, B.-H. (2008). Inorg. Chem. 47, 8126-8133.], 2009[Cao, M.-L., Hao, H.-G. & Ye, B.-H. (2009). Cryst. Growth Des. 9, 546-554.]). For the synthesis of the HABPT ligand, see: Case & Koft (1959[Case, F. H. & Koft, E. (1959). J. Am. Chem. Soc. 81, 905-906.]). For metal complexes of the HABPT ligand, see: Drew et al. (2000[Drew, M. G. B., Hudson, M. J., Iveson, P. B., Madic, C. & Russell, M. L. (2000). J. Chem. Soc. Dalton Trans. pp. 2711-2720.]); Boubals et al. (2002[Boubals, N., Drew, M. G. B., Hill, C., Hudson, M. J., Iveson, P. B., Madic, C., Russell, M. L. & Youngs, T. G. A. (2002). J. Chem. Soc. Dalton Trans. pp. 55-62.]); Cao et al. (2009[Cao, M.-L., Hao, H.-G. & Ye, B.-H. (2009). Cryst. Growth Des. 9, 546-554.]). For the diverse coordination modes of rigid multidentate polypyridyl ligands containing a triazine ring as a bridge, see: Zhou, Li, Wu & Zhang (2006[Zhou, X.-P., Li, D., Wu, T. & Zhang, X. (2006). Dalton Trans. pp. 2435-2443.]); Zhou, Li, Zheng, Zhang & Wu (2006[Zhou, X.-P., Li, D., Zheng, S.-L., Zhang, X. & Wu, T. (2006). Inorg. Chem. 45, 7119-7125.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C13H10N6)]

  • Mr = 433.58

  • Triclinic, [P \overline 1]

  • a = 8.8750 (6) Å

  • b = 9.2010 (7) Å

  • c = 10.2677 (7) Å

  • α = 82.5151 (9)°

  • β = 65.636 (1)°

  • γ = 82.798 (1)°

  • V = 754.89 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 293 K

  • 0.34 × 0.31 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.581, Tmax = 0.636

  • 5102 measured reflections

  • 2588 independent reflections

  • 2499 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.056

  • S = 1.01

  • 2588 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯N3i 0.91 2.31 3.183 (3) 162
N6—H6B⋯Cl2ii 0.91 2.45 3.334 (2) 165
C12—H12A⋯Cl1iii 0.97 2.76 3.671 (2) 158
C2—H2A⋯Cl1iv 0.97 2.75 3.705 (3) 166
C11—H11A⋯Cl2v 0.97 2.82 3.596 (2) 138
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) -x, -y, -z+2; (iv) -x+1, -y+1, -z+2; (v) x-1, y, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rigid multidentate polypyridyl ligands containing a triazine ring as a bridge have attracted greatly our attention due to their coordination diversity (Zhou, Li, Wu & Zhang, 2006); Zhou, Li, Zheng, Zhang & Wu, 2006). Although coordination chemistry of the symmetrical ligands like tri(2-pyridyl)-l,3,5-triazine (TPT) has been well explored, the observations on the asymmetric ligands containing triazine ring are still rare (Drew et al., 2000; Boubals et al., 2002; Medlycott et al., 2007; Chi et al., 2006; Cao et al., 2008, 2009).

The ligand 2-amino-4,6-bis(2-pyridyl)-l,3,5-triazine (HABPT) has five potential coordinate sites, it may offer a tridentate chelating mode or bis-bidentate binding mode with the capability of bridging two metal ions in chelating way (Drew et al. 2000; Boubals et al., 2002; Cao et al., 2009). As a contribution to the synthesis and structural studies of coordination abilities of the ligand (Case et al., 1959; Drew et al., 2000; Boubals et al., 2002 and Cao et al., 2009), we present here the crystal structure of the title compound, a new cadmium(II) complex with the HABPT ligand.

Within the title compound, C13H10CdCl2N6, the CdII center is five-coordinated respectively by three N atoms [Cd—N1 2.387 (2), Cd—N2 2.2679 (18), Cd—N5 2.433 (2) Å] from the HABPT ligand and two Cl atoms [Cd—Cl1 2.4176 (7) and Cd—Cl2 2.4431 (7) Å]. The ligand adopts a tridentate tripyridyl mode to coordinate to the CdII ion. Two chloride ligands are posited up and down the plane of the ligand that further accept hydrogen bonds from other ligands, the deviations values of Cd, Cl1 and Cl2 from the least-squares plane (rms deviation 0.122 Å for all non-H atoms of the planar tridentate ligand) are -0.603 (1), 0.540 (2) and -2.997 (1) Å, respectively. Viewed from the whole crystal structure, molecules are linked by intermolecular N—H···N, N—H···Cl and C—H···Cl hydrogen bonds to form a supramolecular structure. A weak intermolecular ππ interaction between the triazine ring and one pyridyl ring is also observed with a centroid-centroid distance of 3.976 (1) Å.

Related literature top

For asymmetric ligands containing a triazine ring, see: Drew et al. (2000); Boubals et al. (2002); Medlycott et al. (2007); Chi et al. (2006); Cao et al. (2008, 2009). For the synthesis of the HABPT ligand, see: Case & Koft (1959). For metal complexes of the HABPT ligand, see: Drew et al. (2000); Boubals et al. (2002); Cao et al. (2009). For the diverse coordination modes of rigid multidentate polypyridyl ligands containing a triazine ring as a bridge, see: Zhou, Li, Wu & Zhang (2006); Zhou, Li, Zheng, Zhang & Wu (2006).

Experimental top

The ligand HABPT was prepared according to previously reported procedures (F.H. Case et al., 1959). To a suspension of HABPT (0.025 g, 0.1 mmol) in 7 ml of ethanol was added the solution of CdCl2 (0.018 g, 0.1 mmol) in 7 ml distilled water. The resulting mixture was vibrated under ultrasonic condition for 20 min and then filtered. The obtained colorless filtrate was allowed to stay at ambient temperature for one week giving 0.026 g (60% yield, based on the ligand) of colourless crystals suitable for a structural determination.

Anal. Calcd. for C13H10Cl2N6Cd (%): C 36.01, H 2.31, N 19.38; found (%): C 36.12, H 2.40, N 19.31.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96–0.99 Å and N—H = 0.90-0.91 Å with Uiso(H) = 1.2 Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[2-Amino-4,6-bis(2-pyridyl)-1,3,5-triazine- κ3N4,N5,N6]dichloridocadmium(II) top
Crystal data top
[CdCl2(C13H10N6)]Z = 2
Mr = 433.58F(000) = 424
Triclinic, P1Dx = 1.908 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8750 (6) ÅCell parameters from 2588 reflections
b = 9.2010 (7) Åθ = 2.2–25.0°
c = 10.2677 (7) ŵ = 1.80 mm1
α = 82.5151 (9)°T = 293 K
β = 65.636 (1)°Block, colourless
γ = 82.798 (1)°0.34 × 0.31 × 0.28 mm
V = 754.89 (9) Å3
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2588 independent reflections
Radiation source: fine-focus sealed tube2499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.581, Tmax = 0.636k = 1010
5102 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.2818P]
where P = (Fo2 + 2Fc2)/3
2588 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[CdCl2(C13H10N6)]γ = 82.798 (1)°
Mr = 433.58V = 754.89 (9) Å3
Triclinic, P1Z = 2
a = 8.8750 (6) ÅMo Kα radiation
b = 9.2010 (7) ŵ = 1.80 mm1
c = 10.2677 (7) ÅT = 293 K
α = 82.5151 (9)°0.34 × 0.31 × 0.28 mm
β = 65.636 (1)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2588 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2499 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.636Rint = 0.014
5102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
2588 reflectionsΔρmin = 0.30 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.21372 (2)0.386656 (17)0.788019 (17)0.03420 (8)
Cl10.22830 (10)0.26193 (9)1.00530 (7)0.05660 (19)
Cl20.41551 (8)0.26525 (8)0.58040 (7)0.04683 (16)
N10.2999 (2)0.6218 (2)0.7893 (2)0.0354 (4)
N20.0652 (2)0.5692 (2)0.7109 (2)0.0316 (4)
N30.0354 (2)0.8157 (2)0.6236 (2)0.0307 (4)
N40.1444 (2)0.6385 (2)0.6264 (2)0.0332 (4)
N50.0378 (2)0.2992 (2)0.7962 (2)0.0352 (4)
N60.1636 (3)0.8735 (2)0.5305 (2)0.0404 (5)
H6A0.13220.96680.50700.048*
H6B0.24680.84940.50950.048*
C10.4108 (3)0.6446 (3)0.8398 (3)0.0444 (6)
H1A0.45550.55670.88200.053*
C20.4571 (3)0.7822 (3)0.8394 (3)0.0472 (6)
H2A0.53700.78960.88000.057*
C30.3859 (3)0.9019 (3)0.7847 (3)0.0467 (6)
H3A0.41940.99890.78350.056*
C40.2714 (3)0.8806 (3)0.7307 (3)0.0377 (5)
H4A0.22640.96640.68640.045*
C50.2318 (3)0.7398 (3)0.7343 (2)0.0303 (5)
C60.1044 (3)0.7081 (2)0.6848 (2)0.0290 (5)
C70.0883 (3)0.7746 (3)0.5937 (2)0.0321 (5)
C80.0629 (3)0.5416 (2)0.6838 (2)0.0303 (5)
C90.1177 (3)0.3903 (2)0.7273 (2)0.0311 (5)
C100.2455 (3)0.3474 (3)0.7005 (3)0.0381 (5)
H10A0.30330.41360.64980.046*
C110.2923 (3)0.2053 (3)0.7456 (3)0.0481 (6)
H11A0.38140.16960.73090.058*
C120.2127 (3)0.1126 (3)0.8178 (3)0.0478 (6)
H12A0.24150.01320.85510.057*
C130.0864 (3)0.1634 (3)0.8405 (3)0.0427 (6)
H13A0.02700.09980.89140.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.03892 (12)0.02984 (12)0.03786 (12)0.00290 (8)0.02185 (9)0.00009 (8)
Cl10.0672 (4)0.0623 (5)0.0399 (3)0.0064 (4)0.0279 (3)0.0077 (3)
Cl20.0430 (3)0.0568 (4)0.0433 (3)0.0013 (3)0.0188 (3)0.0137 (3)
N10.0387 (10)0.0315 (11)0.0427 (11)0.0007 (8)0.0245 (9)0.0014 (8)
N20.0321 (10)0.0272 (10)0.0403 (10)0.0013 (8)0.0199 (8)0.0015 (8)
N30.0352 (10)0.0268 (10)0.0355 (10)0.0027 (8)0.0204 (8)0.0005 (8)
N40.0390 (10)0.0284 (10)0.0389 (10)0.0042 (8)0.0236 (9)0.0023 (8)
N50.0368 (10)0.0294 (11)0.0401 (11)0.0015 (8)0.0180 (9)0.0021 (8)
N60.0485 (12)0.0314 (11)0.0551 (13)0.0068 (9)0.0372 (11)0.0088 (9)
C10.0432 (14)0.0467 (16)0.0534 (16)0.0046 (12)0.0312 (13)0.0062 (12)
C20.0435 (14)0.0562 (18)0.0551 (16)0.0070 (12)0.0313 (13)0.0081 (13)
C30.0494 (15)0.0447 (16)0.0565 (16)0.0134 (12)0.0295 (13)0.0030 (12)
C40.0429 (13)0.0329 (13)0.0436 (13)0.0066 (10)0.0237 (11)0.0003 (10)
C50.0294 (11)0.0331 (13)0.0303 (11)0.0029 (9)0.0141 (9)0.0025 (9)
C60.0315 (11)0.0275 (12)0.0300 (11)0.0012 (9)0.0147 (9)0.0026 (9)
C70.0358 (12)0.0307 (12)0.0325 (11)0.0027 (9)0.0172 (10)0.0001 (9)
C80.0328 (11)0.0278 (12)0.0317 (11)0.0017 (9)0.0149 (9)0.0017 (9)
C90.0323 (11)0.0279 (12)0.0333 (11)0.0016 (9)0.0136 (9)0.0024 (9)
C100.0375 (12)0.0340 (13)0.0467 (14)0.0033 (10)0.0211 (11)0.0027 (10)
C110.0459 (15)0.0414 (15)0.0608 (17)0.0142 (12)0.0233 (13)0.0007 (13)
C120.0489 (15)0.0310 (14)0.0585 (17)0.0117 (11)0.0168 (13)0.0048 (12)
C130.0440 (14)0.0315 (13)0.0474 (14)0.0008 (11)0.0166 (12)0.0065 (11)
Geometric parameters (Å, º) top
Cd—N22.2679 (18)C1—C21.378 (4)
Cd—N12.387 (2)C1—H1A0.9845
Cd—Cl12.4176 (7)C2—C31.373 (4)
Cd—N52.433 (2)C2—H2A0.9723
Cd—Cl22.4431 (7)C3—C41.386 (3)
N1—C11.336 (3)C3—H3A0.9727
N1—C51.349 (3)C4—C51.376 (3)
N2—C61.331 (3)C4—H4A0.9838
N2—C81.337 (3)C5—C61.489 (3)
N3—C61.324 (3)C8—C91.485 (3)
N3—C71.362 (3)C9—C101.384 (3)
N4—C81.311 (3)C10—C111.385 (4)
N4—C71.356 (3)C10—H10A0.9818
N5—C131.333 (3)C11—C121.375 (4)
N5—C91.348 (3)C11—H11A0.9664
N6—C71.321 (3)C12—C131.381 (4)
N6—H6A0.9078C12—H12A0.9670
N6—H6B0.9080C13—H13A0.9815
N2—Cd—N168.97 (6)C4—C3—H3A122.2
N2—Cd—Cl1141.58 (5)C5—C4—C3118.9 (2)
N1—Cd—Cl1100.97 (5)C5—C4—H4A122.6
N2—Cd—N569.07 (7)C3—C4—H4A118.4
N1—Cd—N5134.84 (7)N1—C5—C4122.3 (2)
Cl1—Cd—N5101.44 (5)N1—C5—C6115.38 (19)
N2—Cd—Cl2108.57 (5)C4—C5—C6122.3 (2)
N1—Cd—Cl2109.67 (5)N3—C6—N2124.7 (2)
Cl1—Cd—Cl2109.69 (3)N3—C6—C5120.0 (2)
N5—Cd—Cl298.80 (5)N2—C6—C5115.24 (19)
C1—N1—C5117.9 (2)N6—C7—N4116.1 (2)
C1—N1—Cd124.73 (17)N6—C7—N3118.9 (2)
C5—N1—Cd117.40 (14)N4—C7—N3124.9 (2)
C6—N2—C8116.34 (19)N4—C8—N2124.9 (2)
C6—N2—Cd122.13 (14)N4—C8—C9118.8 (2)
C8—N2—Cd121.48 (15)N2—C8—C9116.28 (19)
C6—N3—C7114.17 (19)N5—C9—C10122.5 (2)
C8—N4—C7114.62 (19)N5—C9—C8116.0 (2)
C13—N5—C9117.9 (2)C10—C9—C8121.5 (2)
C13—N5—Cd125.93 (16)C9—C10—C11118.7 (2)
C9—N5—Cd115.21 (15)C9—C10—H10A122.5
C7—N6—H6A120.1C11—C10—H10A118.8
C7—N6—H6B120.9C12—C11—C10119.0 (2)
H6A—N6—H6B119.0C12—C11—H11A118.6
N1—C1—C2123.1 (2)C10—C11—H11A122.4
N1—C1—H1A115.9C11—C12—C13118.9 (2)
C2—C1—H1A121.0C11—C12—H12A123.4
C3—C2—C1118.6 (2)C13—C12—H12A117.7
C3—C2—H2A123.3N5—C13—C12123.0 (2)
C1—C2—H2A118.0N5—C13—H13A116.2
C2—C3—C4119.2 (2)C12—C13—H13A120.8
C2—C3—H3A118.6
N2—Cd—N1—C1174.8 (2)C7—N3—C6—N22.9 (3)
Cl1—Cd—N1—C133.5 (2)C7—N3—C6—C5175.0 (2)
N5—Cd—N1—C1152.02 (19)C8—N2—C6—N36.0 (3)
Cl2—Cd—N1—C182.2 (2)Cd—N2—C6—N3171.45 (17)
N2—Cd—N1—C55.55 (16)C8—N2—C6—C5172.00 (19)
Cl1—Cd—N1—C5146.86 (16)Cd—N2—C6—C510.6 (3)
N5—Cd—N1—C528.3 (2)N1—C5—C6—N3177.2 (2)
Cl2—Cd—N1—C597.44 (16)C4—C5—C6—N35.9 (3)
N1—Cd—N2—C68.74 (16)N1—C5—C6—N24.8 (3)
Cl1—Cd—N2—C689.73 (18)C4—C5—C6—N2172.2 (2)
N5—Cd—N2—C6171.65 (19)C8—N4—C7—N6177.5 (2)
Cl2—Cd—N2—C695.81 (17)C8—N4—C7—N33.8 (3)
N1—Cd—N2—C8173.96 (19)C6—N3—C7—N6179.0 (2)
Cl1—Cd—N2—C892.97 (18)C6—N3—C7—N42.3 (3)
N5—Cd—N2—C811.05 (17)C7—N4—C8—N20.3 (3)
Cl2—Cd—N2—C881.49 (17)C7—N4—C8—C9178.3 (2)
N2—Cd—N5—C13179.5 (2)C6—N2—C8—N44.2 (3)
N1—Cd—N5—C13156.69 (19)Cd—N2—C8—N4173.20 (17)
Cl1—Cd—N5—C1338.3 (2)C6—N2—C8—C9173.76 (19)
Cl2—Cd—N5—C1373.9 (2)Cd—N2—C8—C98.8 (3)
N2—Cd—N5—C912.20 (16)C13—N5—C9—C100.6 (4)
N1—Cd—N5—C935.0 (2)Cd—N5—C9—C10168.70 (18)
Cl1—Cd—N5—C9153.32 (16)C13—N5—C9—C8178.2 (2)
Cl2—Cd—N5—C994.40 (16)Cd—N5—C9—C812.4 (3)
C5—N1—C1—C20.6 (4)N4—C8—C9—N5174.8 (2)
Cd—N1—C1—C2179.7 (2)N2—C8—C9—N53.3 (3)
N1—C1—C2—C30.1 (4)N4—C8—C9—C104.0 (3)
C1—C2—C3—C40.6 (4)N2—C8—C9—C10177.8 (2)
C2—C3—C4—C50.4 (4)N5—C9—C10—C110.3 (4)
C1—N1—C5—C40.9 (3)C8—C9—C10—C11179.1 (2)
Cd—N1—C5—C4179.46 (18)C9—C10—C11—C121.2 (4)
C1—N1—C5—C6177.8 (2)C10—C11—C12—C131.2 (4)
Cd—N1—C5—C62.5 (3)C9—N5—C13—C120.6 (4)
C3—C4—C5—N10.3 (4)Cd—N5—C13—C12167.4 (2)
C3—C4—C5—C6177.1 (2)C11—C12—C13—N50.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N3i0.912.313.183 (3)162
N6—H6B···Cl2ii0.912.453.334 (2)165
C12—H12A···Cl1iii0.972.763.671 (2)158
C2—H2A···Cl1iv0.972.753.705 (3)166
C11—H11A···Cl2v0.972.823.596 (2)138
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+2; (iv) x+1, y+1, z+2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[CdCl2(C13H10N6)]
Mr433.58
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8750 (6), 9.2010 (7), 10.2677 (7)
α, β, γ (°)82.5151 (9), 65.636 (1), 82.798 (1)
V3)754.89 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.34 × 0.31 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.581, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
5102, 2588, 2499
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.056, 1.01
No. of reflections2588
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N3i0.912.313.183 (3)162
N6—H6B···Cl2ii0.912.453.334 (2)165
C12—H12A···Cl1iii0.972.763.671 (2)158
C2—H2A···Cl1iv0.972.753.705 (3)166
C11—H11A···Cl2v0.972.823.596 (2)138
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+2; (iv) x+1, y+1, z+2; (v) x1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21001031) and the special research fund for PhDs of Guangdong University of Education (10ARF05).

References

First citationBoubals, N., Drew, M. G. B., Hill, C., Hudson, M. J., Iveson, P. B., Madic, C., Russell, M. L. & Youngs, T. G. A. (2002). J. Chem. Soc. Dalton Trans. pp. 55–62.  CrossRef Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, M.-L., Hao, H.-G. & Ye, B.-H. (2009). Cryst. Growth Des. 9, 546–554.  CrossRef CAS Google Scholar
First citationCao, M.-L., Hao, H.-G., Zhang, W.-X. & Ye, B.-H. (2008). Inorg. Chem. 47, 8126–8133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCase, F. H. & Koft, E. (1959). J. Am. Chem. Soc. 81, 905–906.  CrossRef CAS Web of Science Google Scholar
First citationChi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605–10612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDrew, M. G. B., Hudson, M. J., Iveson, P. B., Madic, C. & Russell, M. L. (2000). J. Chem. Soc. Dalton Trans. pp. 2711–2720.  Web of Science CSD CrossRef Google Scholar
First citationMedlycott, E. A., Udachin, K. A. & Hanan, G. S. (2007). Dalton Trans. pp. 430–438.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X.-P., Li, D., Wu, T. & Zhang, X. (2006). Dalton Trans. pp. 2435–2443.  CrossRef Google Scholar
First citationZhou, X.-P., Li, D., Zheng, S.-L., Zhang, X. & Wu, T. (2006). Inorg. Chem. 45, 7119–7125.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds