organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1236-o1237

Hydrazine-1,2-diium bis­­(3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate) tetra­hydrate

aDepartment of Chemistry, Government College of Technology, Coimbatore 641 013, India
*Correspondence e-mail: vamshen@yahoo.com

(Received 22 March 2011; accepted 15 April 2011; online 29 April 2011)

Reaction of 5-sulfosalicylic acid with hydrazine hydrate at pH = 1 results in the formation of the title hydrated salt, 0.5N2H62+·C7H5O6S·2H2O. The hydrazinium dications lie on centres of inversion. They are located between 3-carb­oxy-4-hy­droxy­benzene­sulfonate anions, forming inter­molecular N—H⋯O hydrogen bonds with sulfonate ions and water mol­ecules of crystallisation. Further intra- and inter­molecular O—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For general background on hydrogen bonding in proton-transfer compounds of 3-carb­oxy-4-hy­droxy­benzene­sulfonate anions with Lewis bases, see: Smith et al. (2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.], 2005[Smith, G., Wermuth, U. D. & Healy, P. C. (2005). Acta Cryst. C61, o555-o558.]). For recent related structures containing the 3-carb­oxy-4-hy­droxy­benzene­sulfonate anion, see: Wang, Yang et al. (2008[Wang, J.-R., Yang, Z.-H., Liu, C.-H. & Li, L.-L. (2008). Acta Cryst. E64, o1289.]); Wang, Yao et al. (2008[Wang, Z., Yao, K., Liu, Z. & Xu, H. (2008). Acta Cryst. E64, o1192.]); Smith & Wermuth (2009[Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, o3209.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2323-o2324.]); Yin et al. (2010[Yin, W., Huang, X., Xu, X. & Meng, X. (2010). Acta Cryst. C66, o508-o512.]). For related structures containing the N2H62+ hydrazinium dication, see: Starosta & Leciejewicz (2008[Starosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461.]); Klapotke et al. (1996[Klapotke, T. M., White, P. S. & Tornieporth-Oetting, I. C. (1996). Polyhedron, 15, 2579-2582.]).

[Scheme 1]

Experimental

Crystal data
  • 0.5N2H62+·C7H5O6S·2H2O

  • Mr = 270.25

  • Triclinic, [P \overline 1]

  • a = 7.0620 (5) Å

  • b = 7.2069 (4) Å

  • c = 11.5995 (8) Å

  • α = 78.460 (3)°

  • β = 75.806 (3)°

  • γ = 77.379 (3)°

  • V = 551.77 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.823, Tmax = 0.882

  • 9320 measured reflections

  • 2711 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.12

  • 2711 reflections

  • 187 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O5 0.82 1.88 2.6074 (18) 146
O7—H7A⋯O2i 0.83 (2) 1.98 (2) 2.8036 (15) 177 (2)
O7—H7B⋯O8 0.85 (2) 1.84 (2) 2.6754 (17) 171 (2)
O4—H4⋯O7ii 0.79 (3) 1.89 (3) 2.6758 (16) 174 (3)
O8—H8B⋯O2iii 0.86 (2) 2.00 (2) 2.8384 (16) 165 (2)
O8—H8A⋯O3iv 0.87 (2) 1.95 (2) 2.8213 (17) 177 (3)
N1—H1A⋯O3v 0.82 (2) 1.93 (2) 2.7493 (17) 175.2 (19)
N1—H1B⋯O7 0.94 (2) 1.84 (2) 2.7798 (16) 174.5 (19)
N1—H1C⋯O1vi 0.91 (2) 1.84 (2) 2.6813 (16) 154 (2)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y+1, z; (iii) -x+1, -y+2, -z+1; (iv) x, y-1, z+1; (v) -x, -y+1, -z+1; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

5-Sulfosalicylic acid, a strong organic acid with pKa = 2.85, donates its sulfonic protons to N-containing Lewis bases (Smith et al., 2004, 2005) forming organic salts (Wang, Yang et al., 2008; Wang, Yao et al., 2008; Smith & Wermuth, 2009; Hemamalini & Fun, 2010; Yin et al., 2010). Hydrazine as a diacidic base captures the H atoms of sulfonic groups from two acid molecules to form a dicationic hydrazinium salt. The molecular structure of the salt, C7H5O6S.0.5(H6N2).2(H2O), formed by the reaction of 5-sulfosalicylic acid with hydrazine hydrate at pH = 1 is shown in Fig.1 and the various types of hydrogen bonds involved in the crystal structure are reported in Table 1.

The unit cell of the crystal structure of the title compound contains eight (N2H6)2+ units located at the unit cell corners (centres of inversion) which contribute to 1/8 of the charge of each cell, two compensating 3-carboxy-4-hydroxybenzenesulfonate anions, and four isolated water molecules. The anions are held by intermolecular N—H···O hydrogen bonds in all directions with the hydrazinium ions. These N···O interactions fall in the range of 2.6813 (16)–2.7798 (16) Å. In addition, the intramolecular O6—H6···O5 hydrogen bond [D···A = 2.6074 (18) Å] and intermolecular O—H···O hydrogen bonds, O7—H7······O2 [D···A = 2.8036 (15) Å] between sulfonyl O atoms and water molecules, O4—H4···O7 [D···A = 2.6758 (16) Å] between carboxyl H atoms and isolated water molecules, and O7—H7B···O8 [D···A = 2.6754 (17) Å] between lattice water molecules, stabilize the molecular conformation and the crystal structure.

The N1—N1i distance of 1.433 (2) Å (symmetry code: (i) -x, -y, -z + 2) is in a good agreement with the values reported by Starosta & Leciejewicz (2008) and Klapotke et al. (1996). The hydrazinium ion has a staggered conformation due to the symmetry imposed by the centre of inversion located in the middle of the N—N bond.

Related literature top

For general background on hydrogen bonding in proton-transfer compounds of 3-carboxy-4-hydroxybenzenesulfonate anion with Lewis bases, see: Smith et al. (2004, 2005). For recent related structures containing the 3-carboxy-4-hydroxybenzenesulfonate anion, see: Wang, Yang et al. (2008); Wang, Yao et al. (2008); Smith & Wermuth (2009); Hemamalini & Fun (2010); Yin et al. (2010). For related structures containing the N2H62+ hydrazinium dication, see: Starosta & Leciejewicz (2008); Klapotke et al. (1996).

Experimental top

The title compound was synthesized by dissolving 5-sulfosalicylicacid dihydrate (2 mmol, 0.508 g) and hydrazine hydrate (99.98% pure; 1 mmol, 0.05 ml) in 30 ml of distilled water at pH = 1. The mixture was stirred for 4 h at ambient temperature and then filtered. The resulting clear solution was kept for three weeks in a wooden enclosure. Colourless prismatic crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solvent.

Refinement top

All non-H atoms were refined anisotropically. H atoms bonded to C atoms were positioned geometrically with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) while H atoms bonded to N and O atoms were found in difference Fourier maps and their coordinates and thermal parameters freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), showing displacement ellipsoids at the 50% probability level. Symmetry code: 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. The packing diagram of title compound (I).
Hydrazine-1,2-diium bis(3-carboxy-4-hydroxybenzenesulfonate) tetrahydrate top
Crystal data top
0.5N2H62+·C7H5O6S·2H2OZ = 2
Mr = 270.25F(000) = 282
Triclinic, P1Dx = 1.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0620 (5) ÅCell parameters from 6221 reflections
b = 7.2069 (4) Åθ = 2.5–26.2°
c = 11.5995 (8) ŵ = 0.33 mm1
α = 78.460 (3)°T = 296 K
β = 75.806 (3)°Block, colourless
γ = 77.379 (3)°0.50 × 0.40 × 0.30 mm
V = 551.77 (6) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2711 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and ϕ scansθmax = 28.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 99
Tmin = 0.823, Tmax = 0.882k = 99
9320 measured reflectionsl = 1315
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1344P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2711 reflectionsΔρmax = 0.41 e Å3
187 parametersΔρmin = 0.52 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 1.12 (4)
Crystal data top
0.5N2H62+·C7H5O6S·2H2Oγ = 77.379 (3)°
Mr = 270.25V = 551.77 (6) Å3
Triclinic, P1Z = 2
a = 7.0620 (5) ÅMo Kα radiation
b = 7.2069 (4) ŵ = 0.33 mm1
c = 11.5995 (8) ÅT = 296 K
α = 78.460 (3)°0.50 × 0.40 × 0.30 mm
β = 75.806 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2711 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2582 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.882Rint = 0.057
9320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.41 e Å3
2711 reflectionsΔρmin = 0.52 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28715 (19)1.12543 (18)0.37831 (12)0.0277 (3)
H70.25761.25770.37830.033*
C20.36576 (19)1.05458 (18)0.27144 (12)0.0268 (3)
C30.4096 (2)0.8553 (2)0.27042 (15)0.0373 (3)
H10.46180.80790.19810.045*
C40.3755 (3)0.7304 (2)0.37640 (16)0.0434 (4)
H30.40490.59830.37560.052*
C50.2966 (2)0.8008 (2)0.48587 (14)0.0364 (3)
C60.2515 (2)1.00021 (19)0.48664 (13)0.0290 (3)
C70.1686 (2)1.0757 (2)0.60113 (13)0.0323 (3)
N10.01665 (18)0.00608 (18)0.93729 (10)0.0272 (3)
O10.59710 (15)1.13796 (16)0.06468 (10)0.0369 (3)
O70.03247 (17)0.36335 (14)0.80737 (10)0.0340 (3)
O20.40796 (15)1.40062 (14)0.17028 (9)0.0333 (3)
O80.19337 (19)0.5388 (2)0.88950 (13)0.0505 (3)
O30.24335 (15)1.22941 (15)0.07799 (10)0.0356 (3)
O40.1284 (2)1.26416 (17)0.58929 (11)0.0445 (3)
O50.1392 (2)0.97087 (18)0.69881 (10)0.0454 (3)
O60.2667 (2)0.67267 (18)0.58729 (12)0.0568 (4)
H60.21870.73010.64500.085*
S10.40819 (4)1.21604 (4)0.13623 (3)0.02543 (16)
H7A0.144 (2)0.430 (3)0.8122 (19)0.046 (5)*
H7B0.043 (3)0.425 (3)0.825 (2)0.062 (7)*
H40.086 (4)1.300 (4)0.653 (2)0.058 (7)*
H8B0.312 (3)0.559 (4)0.858 (2)0.069 (7)*
H8A0.208 (4)0.446 (3)0.949 (2)0.091 (10)*
H1A0.060 (3)0.070 (3)0.9285 (17)0.035 (5)*
H1B0.008 (3)0.118 (3)0.8930 (19)0.045 (5)*
H1C0.144 (3)0.067 (3)0.9181 (19)0.047 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (6)0.0250 (6)0.0312 (6)0.0017 (5)0.0065 (5)0.0078 (5)
C20.0240 (6)0.0262 (6)0.0300 (6)0.0008 (4)0.0065 (5)0.0067 (5)
C30.0428 (8)0.0286 (7)0.0387 (8)0.0024 (6)0.0068 (6)0.0130 (6)
C40.0567 (10)0.0237 (6)0.0467 (9)0.0024 (6)0.0108 (8)0.0092 (6)
C50.0438 (8)0.0273 (7)0.0374 (7)0.0021 (6)0.0134 (6)0.0018 (6)
C60.0289 (6)0.0291 (6)0.0303 (6)0.0027 (5)0.0090 (5)0.0069 (5)
C70.0331 (7)0.0350 (7)0.0300 (7)0.0061 (5)0.0079 (5)0.0063 (5)
N10.0263 (6)0.0313 (6)0.0243 (6)0.0042 (4)0.0055 (4)0.0061 (4)
O10.0251 (5)0.0461 (6)0.0361 (5)0.0001 (4)0.0002 (4)0.0140 (5)
O70.0362 (6)0.0295 (5)0.0361 (5)0.0013 (4)0.0069 (4)0.0105 (4)
O20.0336 (5)0.0292 (5)0.0376 (5)0.0074 (4)0.0033 (4)0.0094 (4)
O80.0391 (7)0.0573 (8)0.0577 (8)0.0184 (6)0.0190 (6)0.0066 (6)
O30.0306 (5)0.0376 (5)0.0417 (6)0.0068 (4)0.0152 (4)0.0031 (4)
O40.0646 (8)0.0348 (6)0.0307 (6)0.0039 (5)0.0029 (5)0.0115 (4)
O50.0622 (8)0.0433 (6)0.0285 (5)0.0086 (5)0.0079 (5)0.0034 (5)
O60.0906 (11)0.0314 (6)0.0418 (7)0.0058 (6)0.0132 (7)0.0033 (5)
S10.0201 (2)0.0276 (2)0.0285 (2)0.00186 (12)0.00404 (13)0.00819 (13)
Geometric parameters (Å, º) top
C1—C21.3775 (19)N1—N1i1.433 (2)
C1—C61.3954 (19)N1—H1A0.82 (2)
C1—H70.9300N1—H1B0.94 (2)
C2—C31.4030 (18)N1—H1C0.91 (2)
C2—S11.7594 (14)O1—S11.4495 (10)
C3—C41.374 (2)O7—H7A0.826 (15)
C3—H10.9300O7—H7B0.847 (15)
C4—C51.403 (2)O2—S11.4610 (10)
C4—H30.9300O8—H8B0.859 (16)
C5—O61.3453 (19)O8—H8A0.874 (17)
C5—C61.404 (2)O3—S11.4599 (10)
C6—C71.473 (2)O4—H40.79 (3)
C7—O51.2282 (18)O6—H60.8200
C7—O41.3115 (19)
C2—C1—C6120.48 (12)O5—C7—C6122.77 (14)
C2—C1—H7119.8O4—C7—C6114.08 (13)
C6—C1—H7119.8N1i—N1—H1A108.5 (13)
C1—C2—C3120.22 (13)N1i—N1—H1B109.8 (13)
C1—C2—S1119.44 (10)H1A—N1—H1B109.2 (19)
C3—C2—S1120.34 (11)N1i—N1—H1C104.8 (14)
C4—C3—C2119.94 (14)H1A—N1—H1C110.6 (18)
C4—C3—H1120.0H1B—N1—H1C113.7 (18)
C2—C3—H1120.0H7A—O7—H7B108.4 (18)
C3—C4—C5120.36 (13)H8B—O8—H8A104 (2)
C3—C4—H3119.8C7—O4—H4111.4 (18)
C5—C4—H3119.8C5—O6—H6109.5
O6—C5—C4118.15 (13)O1—S1—O3112.19 (7)
O6—C5—C6122.23 (14)O1—S1—O2112.97 (6)
C4—C5—C6119.63 (14)O3—S1—O2110.87 (6)
C1—C6—C5119.37 (13)O1—S1—C2107.30 (6)
C1—C6—C7120.56 (12)O3—S1—C2106.83 (6)
C5—C6—C7120.07 (13)O2—S1—C2106.24 (6)
O5—C7—O4123.15 (14)
C6—C1—C2—C30.4 (2)C4—C5—C6—C7180.00 (15)
C6—C1—C2—S1179.78 (10)C1—C6—C7—O5178.27 (14)
C1—C2—C3—C40.5 (2)C5—C6—C7—O51.3 (2)
S1—C2—C3—C4179.82 (13)C1—C6—C7—O42.0 (2)
C2—C3—C4—C50.1 (3)C5—C6—C7—O4178.35 (14)
C3—C4—C5—O6179.70 (16)C1—C2—S1—O1139.04 (11)
C3—C4—C5—C60.3 (3)C3—C2—S1—O141.61 (14)
C2—C1—C6—C50.0 (2)C1—C2—S1—O3100.46 (12)
C2—C1—C6—C7179.62 (12)C3—C2—S1—O378.89 (13)
O6—C5—C6—C1179.65 (14)C1—C2—S1—O217.95 (13)
C4—C5—C6—C10.4 (2)C3—C2—S1—O2162.70 (12)
O6—C5—C6—C70.0 (2)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O50.821.882.6074 (18)146
O7—H7A···O2ii0.83 (2)1.98 (2)2.8036 (15)177 (2)
O7—H7B···O80.85 (2)1.84 (2)2.6754 (17)171 (2)
O4—H4···O7iii0.79 (3)1.89 (3)2.6758 (16)174 (3)
O8—H8B···O2iv0.86 (2)2.00 (2)2.8384 (16)165 (2)
O8—H8A···O3v0.87 (2)1.95 (2)2.8213 (17)177 (3)
N1—H1A···O3vi0.82 (2)1.93 (2)2.7493 (17)175.2 (19)
N1—H1B···O70.94 (2)1.84 (2)2.7798 (16)174.5 (19)
N1—H1C···O1vii0.91 (2)1.84 (2)2.6813 (16)154 (2)
Symmetry codes: (ii) x, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y+2, z+1; (v) x, y1, z+1; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula0.5N2H62+·C7H5O6S·2H2O
Mr270.25
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0620 (5), 7.2069 (4), 11.5995 (8)
α, β, γ (°)78.460 (3), 75.806 (3), 77.379 (3)
V3)551.77 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.823, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
9320, 2711, 2582
Rint0.057
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.12
No. of reflections2711
No. of parameters187
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.52

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O50.821.882.6074 (18)146.4
O7—H7A···O2i0.826 (15)1.978 (15)2.8036 (15)177 (2)
O7—H7B···O80.847 (15)1.836 (16)2.6754 (17)171 (2)
O4—H4···O7ii0.79 (3)1.89 (3)2.6758 (16)174 (3)
O8—H8B···O2iii0.859 (16)2.001 (18)2.8384 (16)165 (2)
O8—H8A···O3iv0.874 (17)1.948 (17)2.8213 (17)177 (3)
N1—H1A···O3v0.82 (2)1.93 (2)2.7493 (17)175.2 (19)
N1—H1B···O70.94 (2)1.84 (2)2.7798 (16)174.5 (19)
N1—H1C···O1vi0.91 (2)1.84 (2)2.6813 (16)154 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y1, z+1; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the services of Sophisticated Test and Instrumentation Centre, Cochin University, Kochi, for providing the single-crystal X-ray diffraction data. We thank the All India Council for Technical Education, New Delhi (grant-in-aid No. 8023/BOR/RID/RPS-012/2009-10), for financial support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2323–o2324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlapotke, T. M., White, P. S. & Tornieporth-Oetting, I. C. (1996). Polyhedron, 15, 2579–2582.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, o3209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2005). Acta Cryst. C61, o555–o558.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2008). Acta Cryst. E64, o461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, J.-R., Yang, Z.-H., Liu, C.-H. & Li, L.-L. (2008). Acta Cryst. E64, o1289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z., Yao, K., Liu, Z. & Xu, H. (2008). Acta Cryst. E64, o1192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, W., Huang, X., Xu, X. & Meng, X. (2010). Acta Cryst. C66, o508–o512.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1236-o1237
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds