organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1221

Bi­phenyl-3,3′-dicarb­­oxy­lic acid

aCollege of Mechanical and Materials Engineering, China Three Gorges University, Yichang, Hubei 443002, People's Republic of China
*Correspondence e-mail: junzhao08@126.com

(Received 9 April 2011; accepted 16 April 2011; online 29 April 2011)

The asymmetric unit of the title compound, C14H10O4, contains one half mol­ecule, the complete mol­ecule being generated by a twofold axis. The two benzene rings form a dihedral angle of 43.11 (5)°. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into one-dimensional zigzag chains. These chains are further connected into two-dimensional supra­molecular layers by weak ππ stacking inter­actions between neighbouring benzene rings, with centroid–centroid distances of 3.7648 (8) Å.

Related literature

For general background non-covalent intermolecular interactions, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Desiraju (2003[Desiraju, G. R. (2003). J. Mol. Struct. 656, 5-15.]); Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwing, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Li et al. (2010[Li, D. S., Wu, Y. P., Zhang, P., Du, M., Zhao, J., Li, C. P. & Wang, Y. Y. (2010). Cryst. Growth Des. 10, 2037-2040.]). For the structures of related complexes, see: Wang et al. (2005[Wang, R. H., Han, L., Jiang, F. L., Zhou, Y. F., Yuan, D. Q. & Hong, M. C. (2005). Cryst. Growth Des. 5, 129-135.]); Zhu (2010[Zhu, B.-Y. (2010). Acta Cryst. E66, m1214.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O4

  • Mr = 242.22

  • Monoclinic, P 2/n

  • a = 6.6123 (9) Å

  • b = 3.7648 (8) Å

  • c = 22.554 (3) Å

  • β = 93.14 (2)°

  • V = 560.61 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.21 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.986

  • 5212 measured reflections

  • 1286 independent reflections

  • 1006 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.155

  • S = 1.04

  • 1286 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.6268 (17) 169
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Non-covalent intermolecular interactions, mainly hydrogen bonding and aromatic stacking, play the key role to perfectly project and regulate the detailed crystal packing of supramolecular materials (Desiraju, 2003). Aromatic carboxylates have also been proved to be effective building blocks in constructing various architectures (Yaghi et al., 2003; Li et al., 2010; Wang et al., 2005; Zhu, 2010). Recently, we obtained the title compound under hydrothermal conditions and we report its crystal structure here.

The asymmetric unit of the title compound, C14H10O4, contains one-half molecule, the complete molecule being generated by a two-fold axis (Fig. 1). The two benzene rings form a dihedral angle of 43.11 (5)°. The carboxylic acid groups form the classic cyclic R22(8) hydrogen-bond motif (Etter et al., 1990) with other acid groups of neighbouring molecules (Table 1). These interactions result into one-dimensional zigzag chains (Fig. 2). The chains are further connected into two-dimensional supramolecular layers by weak π-π stacking interactions between neighbouring benzene rings, with centroid-centroid distances of 3.7648 (8) Å.

Related literature top

For general background on hydrogen bonding, see: Etter et al. (1990); Desiraju (2003); For general background on aromatic carboxylates, see: Yaghi et al. (2003); Li et al. (2010). For related structures, see: Wang et al. (2005); Zhu (2010).

Experimental top

A mixture of 3,3'-biphenyldicarboxylic acid (0.0242 g, 0.1 mmol), Pb(CH3COO)2 (0.0379 g, 0.1 mmol), water (8 ml) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 413 K for 3 days, and then cooled to room temperature at 5 K h-1 to obtain colorless prism crystals suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms [symmetry code (A): -x + 3/2, y, -z + 1/2].
[Figure 2] Fig. 2. View of the one-dimensional chains connected by cyclic R22(8) hydrogen-bonds.
[Figure 3] Fig. 3. View of the two-dimensional layers formed by weak π-π stacking interactions between neighbouring benzene rings.
Biphenyl-3,3'-dicarboxylic acid top
Crystal data top
C14H10O4F(000) = 252
Mr = 242.22Dx = 1.435 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 1286 reflections
a = 6.6123 (9) Åθ = 3.2–27.6°
b = 3.7648 (8) ŵ = 0.11 mm1
c = 22.554 (3) ÅT = 296 K
β = 93.14 (2)°Prism, colourless
V = 560.61 (15) Å30.21 × 0.18 × 0.13 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1286 independent reflections
Radiation source: fine-focus sealed tube1006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ϕ and ω scansθmax = 27.6°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.978, Tmax = 0.986k = 44
5212 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0843P)2]
where P = (Fo2 + 2Fc2)/3
1286 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H10O4V = 560.61 (15) Å3
Mr = 242.22Z = 2
Monoclinic, P2/nMo Kα radiation
a = 6.6123 (9) ŵ = 0.11 mm1
b = 3.7648 (8) ÅT = 296 K
c = 22.554 (3) Å0.21 × 0.18 × 0.13 mm
β = 93.14 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1286 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1006 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.986Rint = 0.107
5212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
1286 reflectionsΔρmin = 0.25 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73331 (19)0.2984 (4)0.48869 (5)0.0617 (5)
H10.66010.39230.51240.093*
C20.7741 (2)0.2032 (4)0.38631 (6)0.0340 (4)
O20.48155 (17)0.4652 (4)0.42503 (5)0.0527 (4)
C30.6866 (2)0.2063 (4)0.32849 (6)0.0323 (4)
H30.55420.28600.32160.039*
C40.79643 (19)0.0906 (4)0.28086 (6)0.0321 (4)
C10.6531 (2)0.3318 (4)0.43585 (6)0.0373 (4)
C50.9952 (2)0.0282 (4)0.29269 (7)0.0384 (4)
H51.07010.10630.26150.046*
C70.9722 (2)0.0838 (4)0.39736 (7)0.0402 (4)
H71.03010.08110.43590.048*
C61.0825 (2)0.0316 (4)0.35005 (8)0.0421 (4)
H61.21490.11100.35700.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0573 (8)0.1005 (11)0.0274 (6)0.0284 (7)0.0010 (5)0.0027 (6)
C20.0336 (7)0.0401 (7)0.0285 (7)0.0010 (6)0.0038 (5)0.0021 (6)
O20.0415 (7)0.0832 (9)0.0336 (6)0.0178 (6)0.0024 (5)0.0019 (5)
C30.0270 (7)0.0397 (7)0.0305 (7)0.0014 (5)0.0030 (5)0.0024 (5)
C40.0297 (7)0.0374 (7)0.0295 (8)0.0018 (5)0.0033 (5)0.0013 (5)
C10.0352 (8)0.0475 (8)0.0291 (7)0.0020 (6)0.0012 (5)0.0009 (6)
C50.0294 (7)0.0501 (9)0.0363 (8)0.0027 (6)0.0071 (6)0.0010 (6)
C70.0350 (8)0.0520 (9)0.0332 (8)0.0019 (6)0.0028 (5)0.0037 (6)
C60.0272 (7)0.0571 (9)0.0418 (9)0.0075 (6)0.0014 (6)0.0046 (7)
Geometric parameters (Å, º) top
O1—C11.2837 (17)C4—C51.400 (2)
O1—H10.8200C4—C4i1.490 (3)
C2—C71.394 (2)C5—C61.388 (2)
C2—C31.3975 (19)C5—H50.9300
C2—C11.490 (2)C7—C61.394 (2)
O2—C11.2520 (18)C7—H70.9300
C3—C41.399 (2)C6—H60.9300
C3—H30.9300
C1—O1—H1109.5O2—C1—C2120.13 (13)
C7—C2—C3120.43 (13)O1—C1—C2116.90 (12)
C7—C2—C1120.56 (13)C6—C5—C4121.26 (13)
C3—C2—C1119.01 (12)C6—C5—H5119.4
C2—C3—C4120.53 (12)C4—C5—H5119.4
C2—C3—H3119.7C2—C7—C6119.28 (14)
C4—C3—H3119.7C2—C7—H7120.4
C3—C4—C5118.33 (13)C6—C7—H7120.4
C3—C4—C4i120.83 (14)C5—C6—C7120.16 (13)
C5—C4—C4i120.83 (14)C5—C6—H6119.9
O2—C1—O1122.97 (13)C7—C6—H6119.9
C7—C2—C3—C40.1 (2)C3—C2—C1—O1174.69 (14)
C1—C2—C3—C4179.39 (13)C3—C4—C5—C60.1 (2)
C2—C3—C4—C50.1 (2)C4i—C4—C5—C6179.54 (11)
C2—C3—C4—C4i179.53 (10)C3—C2—C7—C60.2 (2)
C7—C2—C1—O2174.22 (14)C1—C2—C7—C6179.33 (14)
C3—C2—C1—O25.3 (2)C4—C5—C6—C70.2 (2)
C7—C2—C1—O15.8 (2)C2—C7—C6—C50.2 (2)
Symmetry code: (i) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.821.822.6268 (17)169
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10O4
Mr242.22
Crystal system, space groupMonoclinic, P2/n
Temperature (K)296
a, b, c (Å)6.6123 (9), 3.7648 (8), 22.554 (3)
β (°) 93.14 (2)
V3)560.61 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5212, 1286, 1006
Rint0.107
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.155, 1.04
No. of reflections1286
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.6268 (17)168.7
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Hubei Province of China (grant No. 2010CDB10707) and the Project of Hubei Provincial Education Office (grant No. Q20101203).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2003). J. Mol. Struct. 656, 5–15.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, D. S., Wu, Y. P., Zhang, P., Du, M., Zhao, J., Li, C. P. & Wang, Y. Y. (2010). Cryst. Growth Des. 10, 2037–2040.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R. H., Han, L., Jiang, F. L., Zhou, Y. F., Yuan, D. Q. & Hong, M. C. (2005). Cryst. Growth Des. 5, 129–135.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwing, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhu, B.-Y. (2010). Acta Cryst. E66, m1214.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1221
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds