metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­kis(μ4-4,6-di­methyl-5-nitro­benzene-1,3-di­carboxyl­ato-κ2O1:O1′:O3:O3′)bis­­(pyridine-κN)dizinc]

aSchool of Materials Science and Engineering, University of Jinan, Jinan 250100, People's Republic of China
*Correspondence e-mail: mse_maqy@ujn.edu.cn

(Received 19 January 2011; accepted 7 April 2011; online 13 April 2011)

In the title complex, [Zn2(C10H7NO6)2(C5H5N)2]n, the repeat unit is a centrosymmetic tetra-carboxyl­ato-O,O'-bridged dimer in which each ZnII atom is five-coordinated by four O atoms from different dianionic 4,6-dimethyl-5-nitro­iso­phthalate ligands [Zn—O = 2.0283 (18)–2.0540 (19) Å] and one N atom from a pyridine mol­ecule [Zn—N = 2.030 (2) Å] in the axial site of a slightly distorted square-pyramidal coordination sphere. The Zn⋯Zn separation is 2.9750 (6) Å. The complex dimers are extended into a two-dimensional polymeric structure parallel to (100) through bridges provided by the second carboxyl­ate group of the ligand.

Related literature

For the structure of a similar but discrete tetra-carboxyl­ato-bridged Zn2 dimer, see: Yu et al. (2011[Yu, Z.-Y., Lin, K.-H., Zhang, F.-F., Shao, M. & Li, M. (2011). Acta Cryst. E67, m206.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H7NO6)(C5H5N)]

  • Mr = 381.64

  • Monoclinic, P 21 /c

  • a = 10.2947 (9) Å

  • b = 11.8526 (10) Å

  • c = 12.8501 (11) Å

  • β = 97.933 (2)°

  • V = 1553.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.824, Tmax = 0.879

  • 8899 measured reflections

  • 3525 independent reflections

  • 2750 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 1.03

  • 3525 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title complex [Zn2(C10H7NO6)2(C5H5N)2]n (I) was obtained by chance when we were attempting to prepare some porous metal-organic framework materials by the reaction of 4,6-dimethyl-5-nitroisophthalic acid with Zn(NO3)2. In (I), the repeating unit is a centrosymmetic tetra-carboxylato O,O' bridged dimer (Fig. 1) in which each ZnII is five-coordinated by four O atoms from different dianionic 4,6-dimethyl-5-nitroisophthalate ligands [Zn—O, 2.0283 (18)–2.0540 (19) Å] and one N atom from a pyridine molecule [Zn—N, 2.030 (2) Å] in the axial site of a slightly distorted square pyramidal coordination sphere. Each of the Zn atoms has an approximately square-pyramidal environment, with four O atoms in a plane and the pyridine N atom at the apical site. The Zn—Zn separation in the dimer is 2.9750 (6) Å. This dimeric unit is similar to that found in the structure of the tetra-benzoato-bridged but discrete Zn2 dimer with 4-(dimethylamino)pyridine (Yu et al., 2011). The complex dimers in (I) are extended into a two-dimensional polymer structure through bridges provided by the second carboxylate group of the ligand (Figs. 2, 3).

Related literature top

For the structure of a similar but discrete tetra-carboxylato-bridged Zn2 dimer, see: Yu et al. (2011).

Experimental top

4,6-Dimethyl-5-nitroisophthalic acid (2 mg, 0.0046 mmol) and Zn(NO3)2 (4 mg, 0.0137 mmol) were dissolved in 1 ml of a mixed DMSO–H2O solvent (2:1) and 2 drops pyridine were added. This solution was sealed in a Pyrex glass tube and heated to 120° C over a period of 10 h, and then maintained at this temperature for 50 h, after which it was cooled to room temperature over 17 h. Colourless rod crystals were obtained, which were filtered, washed with water and dried in air.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined in a riding mode with Uiso(H) = 1.2Ueq(C). The methyl H atoms are rotationally disordered over six equal half-occupancy sites.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atom numbering scheme for the centrosymmetric dimeric unit in the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry codes are: (i) -x+1, -y, -z + 1; (ii) -x + 1, y - 1/2, -z - 3/2; (iii) x, -y + 1/2, z + 1/2. The second set of hydrogen atoms on the 50% rotationally-disordered methyl groups (C8 and C9) are omitted.
[Figure 2] Fig. 2. The two-dimensional polymeric extension of the title compound viewed down the a axial direction.
[Figure 3] Fig. 3. The packed structure of the title compound viewed down the c axial direction.
Poly[tetrakis(µ4-4,6-dimethyl-5-nitrobenzene-1,3-dicarboxylato- κ2O1:O1':O3:O3')bis(pyridine- κN)dizinc] top
Crystal data top
[Zn(C10H7NO6)(C5H5N)]F(000) = 776
Mr = 381.64Dx = 1.632 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2968 reflections
a = 10.2947 (9) Åθ = 2.3–26.1°
b = 11.8526 (10) ŵ = 1.62 mm1
c = 12.8501 (11) ÅT = 298 K
β = 97.933 (2)°Rod, colourless
V = 1553.0 (2) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3525 independent reflections
Radiation source: fine-focus sealed tube2750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 813
Tmin = 0.824, Tmax = 0.879k = 1515
8899 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.6981P]
where P = (Fo2 + 2Fc2)/3
3525 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn(C10H7NO6)(C5H5N)]V = 1553.0 (2) Å3
Mr = 381.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2947 (9) ŵ = 1.62 mm1
b = 11.8526 (10) ÅT = 298 K
c = 12.8501 (11) Å0.12 × 0.10 × 0.08 mm
β = 97.933 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3525 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2750 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.879Rint = 0.029
8899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
3525 reflectionsΔρmin = 0.43 e Å3
217 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.63668 (3)0.03544 (2)0.53898 (2)0.0233 (1)
O10.65410 (19)0.13708 (16)0.54695 (18)0.0546 (8)
O20.4496 (2)0.18909 (15)0.49411 (17)0.0508 (7)
O30.55390 (18)0.03094 (18)0.67374 (14)0.0454 (7)
O40.6491 (2)0.02213 (19)0.38329 (14)0.0499 (7)
O50.7497 (2)0.62087 (19)0.42547 (16)0.0600 (8)
O60.9095 (2)0.5865 (2)0.5453 (2)0.0703 (10)
N10.7959 (2)0.57613 (18)0.50579 (17)0.0352 (7)
N20.8232 (2)0.07998 (17)0.59645 (16)0.0298 (6)
C10.5998 (2)0.32743 (18)0.56737 (17)0.0245 (7)
C20.6751 (2)0.39863 (19)0.51257 (17)0.0253 (7)
C30.7112 (2)0.50127 (19)0.56086 (18)0.0258 (7)
C40.6795 (2)0.53868 (18)0.65714 (17)0.0253 (7)
C50.5997 (2)0.46553 (19)0.70674 (17)0.0235 (6)
C60.5600 (2)0.36307 (19)0.66100 (17)0.0260 (7)
C70.5647 (3)0.2080 (2)0.53197 (18)0.0283 (7)
C80.7134 (3)0.3664 (2)0.4076 (2)0.0382 (9)
C90.7241 (3)0.6519 (2)0.7019 (2)0.0416 (9)
C100.5618 (2)0.48883 (19)0.81384 (17)0.0259 (7)
C110.9056 (3)0.1198 (3)0.5336 (2)0.0455 (10)
C121.0338 (3)0.1460 (3)0.5712 (3)0.0625 (14)
C131.0764 (3)0.1350 (3)0.6760 (3)0.0739 (15)
C140.9916 (4)0.0970 (4)0.7408 (3)0.0817 (14)
C150.8655 (3)0.0695 (3)0.6982 (2)0.0559 (11)
H6A0.505200.316800.694000.0310*
H8A0.678900.293000.387900.0570*0.500
H8B0.807200.365100.412300.0570*0.500
H8C0.678300.420600.355700.0570*0.500
H8D0.764100.426100.382700.0570*0.500
H8E0.635800.354100.358300.0570*0.500
H8F0.764600.298500.414900.0570*0.500
H9A0.692500.662600.768100.0620*0.500
H9B0.690000.710400.654100.0620*0.500
H9C0.818200.654900.712200.0620*0.500
H9D0.774700.689300.654800.0620*0.500
H9E0.777100.641500.768800.0620*0.500
H9F0.648900.697000.710800.0620*0.500
H11A0.875700.130000.462600.0550*
H12A1.090600.170900.525800.0750*
H13A1.162300.153200.703000.0890*
H14A1.018500.089800.812600.0980*
H15A0.808100.042700.742300.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0253 (2)0.0240 (2)0.0210 (1)0.0011 (1)0.0044 (1)0.0003 (1)
O10.0406 (12)0.0231 (10)0.0991 (18)0.0015 (9)0.0057 (12)0.0082 (10)
O20.0471 (12)0.0278 (10)0.0708 (14)0.0077 (9)0.0156 (10)0.0060 (9)
O30.0346 (10)0.0791 (15)0.0245 (9)0.0051 (10)0.0108 (8)0.0017 (9)
O40.0510 (12)0.0788 (15)0.0218 (9)0.0216 (11)0.0114 (9)0.0125 (9)
O50.0789 (16)0.0588 (14)0.0439 (12)0.0111 (12)0.0142 (11)0.0230 (11)
O60.0460 (14)0.0838 (18)0.0819 (18)0.0243 (13)0.0113 (13)0.0200 (15)
N10.0456 (14)0.0298 (11)0.0338 (12)0.0076 (10)0.0185 (10)0.0013 (9)
N20.0285 (11)0.0286 (10)0.0324 (11)0.0014 (9)0.0047 (9)0.0001 (9)
C10.0281 (12)0.0225 (11)0.0229 (11)0.0012 (9)0.0036 (9)0.0028 (9)
C20.0302 (12)0.0246 (12)0.0220 (11)0.0007 (10)0.0064 (9)0.0024 (9)
C30.0298 (13)0.0227 (11)0.0261 (12)0.0020 (9)0.0077 (10)0.0036 (9)
C40.0317 (13)0.0204 (11)0.0239 (11)0.0007 (10)0.0043 (9)0.0005 (9)
C50.0278 (12)0.0243 (11)0.0189 (10)0.0017 (10)0.0047 (9)0.0002 (9)
C60.0303 (13)0.0243 (12)0.0244 (12)0.0048 (9)0.0079 (10)0.0010 (9)
C70.0412 (15)0.0237 (12)0.0215 (11)0.0049 (11)0.0100 (10)0.0010 (9)
C80.0552 (18)0.0334 (14)0.0293 (13)0.0001 (12)0.0171 (12)0.0026 (11)
C90.0616 (19)0.0268 (13)0.0390 (15)0.0123 (13)0.0160 (14)0.0078 (11)
C100.0355 (14)0.0236 (12)0.0195 (11)0.0024 (10)0.0075 (10)0.0011 (9)
C110.0412 (17)0.0514 (18)0.0456 (16)0.0133 (14)0.0122 (13)0.0050 (14)
C120.0423 (19)0.066 (2)0.083 (3)0.0198 (16)0.0219 (18)0.004 (2)
C130.0309 (18)0.073 (3)0.111 (3)0.0081 (17)0.0148 (19)0.020 (2)
C140.053 (2)0.110 (3)0.071 (2)0.023 (2)0.0308 (19)0.039 (2)
C150.0443 (18)0.074 (2)0.0458 (18)0.0131 (16)0.0064 (14)0.0239 (16)
Geometric parameters (Å, º) top
Zn1—O12.0540 (19)C5—C101.507 (3)
Zn1—O32.0336 (18)C11—C121.377 (4)
Zn1—O42.0283 (18)C12—C131.364 (5)
Zn1—N22.030 (2)C13—C141.363 (5)
Zn1—O2i2.0450 (19)C14—C151.377 (5)
O1—C71.242 (3)C6—H6A0.9300
O2—C71.238 (4)C8—H8A0.9600
O3—C10ii1.246 (3)C8—H8B0.9600
O4—C10iii1.240 (3)C8—H8C0.9600
O5—N11.199 (3)C8—H8D0.9600
O6—N11.215 (3)C8—H8E0.9600
N1—C31.490 (3)C8—H8F0.9600
N2—C111.336 (4)C9—H9A0.9600
N2—C151.326 (3)C9—H9B0.9600
C1—C21.400 (3)C9—H9C0.9600
C1—C61.389 (3)C9—H9D0.9600
C1—C71.515 (3)C9—H9E0.9600
C2—C31.393 (3)C9—H9F0.9600
C2—C81.506 (3)C11—H11A0.9300
C3—C41.395 (3)C12—H12A0.9300
C4—C51.406 (3)C13—H13A0.9300
C4—C91.507 (3)C14—H14A0.9300
C5—C61.386 (3)C15—H15A0.9300
O1—Zn1—O388.59 (9)N2—C11—C12121.7 (3)
O1—Zn1—O487.41 (9)C11—C12—C13119.1 (3)
O1—Zn1—N299.73 (8)C12—C13—C14119.3 (3)
O1—Zn1—O2i158.34 (8)C13—C14—C15118.9 (3)
O3—Zn1—O4158.24 (8)N2—C15—C14122.2 (3)
O3—Zn1—N2100.58 (8)C1—C6—H6A119.00
O2i—Zn1—O388.82 (8)C5—C6—H6A119.00
O4—Zn1—N2101.18 (8)C2—C8—H8A109.00
O2i—Zn1—O487.07 (9)C2—C8—H8B109.00
O2i—Zn1—N2101.89 (8)C2—C8—H8C109.00
Zn1—O1—C7127.48 (18)C2—C8—H8D109.00
Zn1i—O2—C7127.43 (17)C2—C8—H8E109.00
Zn1—O3—C10ii129.39 (16)C2—C8—H8F109.00
Zn1—O4—C10iii126.61 (17)H8A—C8—H8B110.00
O5—N1—O6124.0 (2)H8A—C8—H8C109.00
O5—N1—C3118.9 (2)H8B—C8—H8C109.00
O6—N1—C3117.0 (2)H8D—C8—H8E109.00
Zn1—N2—C11121.32 (17)H8D—C8—H8F110.00
Zn1—N2—C15120.00 (19)H8E—C8—H8F109.00
C11—N2—C15118.7 (2)C4—C9—H9A109.00
C2—C1—C6120.2 (2)C4—C9—H9B109.00
C2—C1—C7122.5 (2)C4—C9—H9C110.00
C6—C1—C7117.2 (2)C4—C9—H9D110.00
C1—C2—C3115.8 (2)C4—C9—H9E109.00
C1—C2—C8122.0 (2)C4—C9—H9F109.00
C3—C2—C8122.3 (2)H9A—C9—H9B109.00
N1—C3—C2116.51 (19)H9A—C9—H9C109.00
N1—C3—C4117.13 (19)H9B—C9—H9C110.00
C2—C3—C4126.3 (2)H9D—C9—H9E109.00
C3—C4—C5115.4 (2)H9D—C9—H9F110.00
C3—C4—C9121.7 (2)H9E—C9—H9F109.00
C5—C4—C9122.9 (2)N2—C11—H11A119.00
C4—C5—C6120.3 (2)C12—C11—H11A119.00
C4—C5—C10122.8 (2)C11—C12—H12A120.00
C6—C5—C10116.71 (19)C13—C12—H12A120.00
C1—C6—C5121.9 (2)C12—C13—H13A120.00
O1—C7—O2126.0 (2)C14—C13—H13A120.00
O1—C7—C1116.4 (2)C13—C14—H14A121.00
O2—C7—C1117.6 (2)C15—C14—H14A121.00
O3iv—C10—C5117.08 (19)N2—C15—H15A119.00
O4v—C10—C5117.53 (19)C14—C15—H15A119.00
O3iv—C10—O4v125.3 (2)
O3—Zn1—O1—C770.9 (2)C15—N2—C11—C122.4 (5)
O4—Zn1—O1—C787.7 (2)C11—N2—C15—C140.8 (5)
N2—Zn1—O1—C7171.4 (2)Zn1—N2—C11—C12177.4 (3)
O2i—Zn1—O1—C712.3 (4)Zn1—N2—C15—C14179.1 (3)
O1—Zn1—O3—C10ii82.6 (2)C2—C1—C6—C54.3 (3)
O4—Zn1—O3—C10ii3.2 (4)C2—C1—C7—O174.4 (3)
N2—Zn1—O3—C10ii177.8 (2)C7—C1—C2—C87.3 (3)
O2i—Zn1—O3—C10ii75.9 (2)C7—C1—C6—C5172.4 (2)
O1—Zn1—O4—C10iii75.2 (2)C6—C1—C2—C33.3 (3)
O3—Zn1—O4—C10iii4.4 (4)C6—C1—C7—O275.5 (3)
N2—Zn1—O4—C10iii174.7 (2)C7—C1—C2—C3173.3 (2)
O2i—Zn1—O4—C10iii83.8 (2)C6—C1—C2—C8176.2 (2)
O1—Zn1—N2—C11106.3 (2)C6—C1—C7—O1102.3 (3)
O1—Zn1—N2—C1573.6 (2)C2—C1—C7—O2107.9 (3)
O3—Zn1—N2—C11163.4 (2)C8—C2—C3—C4179.4 (2)
O3—Zn1—N2—C1516.8 (2)C8—C2—C3—N12.9 (3)
O4—Zn1—N2—C1117.0 (2)C1—C2—C3—C40.0 (3)
O4—Zn1—N2—C15162.8 (2)C1—C2—C3—N1177.59 (19)
O2i—Zn1—N2—C1172.3 (2)N1—C3—C4—C92.4 (3)
O2i—Zn1—N2—C15107.8 (2)C2—C3—C4—C52.2 (3)
O1—Zn1—O2i—C7i3.3 (4)C2—C3—C4—C9180.0 (2)
O3—Zn1—O2i—C7i79.9 (2)N1—C3—C4—C5179.84 (19)
O4—Zn1—O2i—C7i78.7 (2)C3—C4—C5—C61.3 (3)
N2—Zn1—O2i—C7i179.5 (2)C9—C4—C5—C6179.0 (2)
Zn1—O1—C7—O211.5 (4)C3—C4—C5—C10176.5 (2)
Zn1—O1—C7—C1166.09 (17)C9—C4—C5—C105.8 (3)
Zn1i—O2—C7—O18.2 (4)C10—C5—C6—C1173.6 (2)
Zn1i—O2—C7—C1169.35 (16)C4—C5—C10—O3iv138.0 (2)
Zn1—O3—C10ii—C5ii169.14 (16)C4—C5—C10—O4v44.5 (3)
Zn1—O3—C10ii—O4i8.1 (4)C6—C5—C10—O3iv46.6 (3)
Zn1—O4—C10iii—O3i8.2 (4)C6—C5—C10—O4v130.9 (2)
Zn1—O4—C10iii—C5iii169.07 (16)C4—C5—C6—C11.9 (3)
O6—N1—C3—C2108.6 (3)N2—C11—C12—C132.5 (5)
O5—N1—C3—C4111.8 (3)C11—C12—C13—C140.8 (6)
O6—N1—C3—C469.3 (3)C12—C13—C14—C150.8 (6)
O5—N1—C3—C270.4 (3)C13—C14—C15—N20.8 (6)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H7NO6)(C5H5N)]
Mr381.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.2947 (9), 11.8526 (10), 12.8501 (11)
β (°) 97.933 (2)
V3)1553.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.824, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
8899, 3525, 2750
Rint0.029
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.03
No. of reflections3525
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Scientific and Technological Project of Shandong Province (2008SGG0809) and Doctoral Foundation of Shandong Province (2009SBS0913).

References

First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Z.-Y., Lin, K.-H., Zhang, F.-F., Shao, M. & Li, M. (2011). Acta Cryst. E67, m206.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds