organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1076

16-Iso­propyl-5,9-di­methyl­tetra­cyclo­[10.2.2.01,10.04,9]hexa­dec-15-ene-5,13,14-tri­methanol ethanol monosolvate

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, People's Republic of China
*Correspondence e-mail: shangsb@hotmail.com

(Received 4 March 2011; accepted 1 April 2011; online 7 April 2011)

The title compound, C24H40O3·C2H6O, is a substituted tetra­cyclo­[10.2.2.01,10.04,9]hexa­decane derivative obtained from the reduction of maleopimaric acid which was isolated from a maleic anhydride modified rosin. In the crystal, the triol mol­ecule and the ethanol solvent mol­ecule are linked by hydroxyl O—H⋯O hydrogen bonds, giving a two-dimensional network structure.

Related literature

For the isolation of maleic anhydride modified rosin, see: Halbrook & Lawrence (1958[Halbrook, N. J. & Lawrence, R. V. (1958). J. Am. Chem. Soc. 80, 368-370.]). For the crystal structure of maleopimaric acid, see: Rao et al. (2008[Rao, X. P., Song, Z. Q., Yao, Y. J., Han, C. R. & Shang, S. B. (2008). Nat. Prod. Res. 22, 854-859.]).

[Scheme 1]

Experimental

Crystal data
  • C24H40O3·C2H6O

  • Mr = 422.63

  • Orthorhombic, P 21 21 21

  • a = 9.1440 (18) Å

  • b = 9.6570 (19) Å

  • c = 28.073 (6) Å

  • V = 2478.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.993

  • 4919 measured reflections

  • 2615 independent reflections

  • 1786 reflections with I > 2σ(I)

  • Rint = 0.076

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.180

  • S = 1.00

  • 2615 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.85 2.27 2.749 (5) 116
O3—H3A⋯O1i 0.82 1.97 2.758 (5) 160
O4—H4C⋯O2ii 0.85 1.90 2.704 (6) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As an important natural resource, large amounts of rosin are available in China. Nowadays, rosin and its Diels-Alder adducts have been developed as a feedstock for synthesizing various chemicals and intermediates. Maleopimaric acid was isolated from maleic anhydride modified rosin (Halbrook & Lawrence, 1958), and its crystal structure has been reported (Rao et al., 2008). The title compound C24H40O3 . C2H6O (I) was obtained on reduction of this tricarboxylic acid. The asymmetric unit comprises a triol molecule and an ethanol molecule of solvation (Fig. 1). In the crystal structure the molecules are linked by hydroxyl O–H···O hydrogen bonds and other interactions (Table 1, Fig. 2), giving a two-dimensional network structure. The absolute configurations for the 8 chiral centres in this molecule could not be assigned from the analysis: the configurations for the chosen enantiomer were C1(R), C5(R), C6(R), C7(R), C8(S), C12(R), C13(R), C14(R).

Related literature top

For the isolation of maleic anhydride modified rosin, see: Halbrook & Lawrence (1958). For the crystal structure of maleopimaric acid, see: Rao et al. (2008).

Experimental top

Maleopimaric acid (12.0 g) was dissolved in tetrahydrofuran (300 ml) at 263 K while stirring vigorously and lithium aluminium hydride (6.9 g) was added over a period of 2 h. The reaction was maintained for 1 h at reflux temperature after which water (6.9 ml) and 10% sodium hydroxide solution (6.9 ml) were added dropwise at 263 K. The mixture was filtered and the filtrate was concentrated, giving the crude product which was recrystallized with ethanol, giving the title compound. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically with C—H distances of 0.93–0.98 Å and included in the refinement in a riding motion approximation, with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom. All hydroxyl H atoms were placed geometrically at distances of 0.82–0.85 Å. The absolute configurations for the 8 chiral centres in this molecule could not be determined and the configurations for the chosen enantiomer were C1(R), C5(R), C6(R), C7(R), C8(S), C12(R), C13(R), C14(R).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for (I), showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound in the unit cell, with hydrogen bonds shown as dashed lines.
16-isopropyl-5,9-dimethyltetracyclo[10.2.2.01,10.04,9]hexadec-15-ene- 5,13,14-trimethanol ethanol monosolvate top
Crystal data top
C24H40O3·C2H6OF(000) = 936
Mr = 422.63Dx = 1.132 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.1440 (18) Åθ = 9–13°
b = 9.6570 (19) ŵ = 0.07 mm1
c = 28.073 (6) ÅT = 293 K
V = 2478.9 (9) Å3Rod, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4 four-circle
diffractometer
1786 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Graphite monochromatorθmax = 25.4°, θmin = 1.5°
ω–2θ scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.978, Tmax = 0.993l = 330
4919 measured reflections3 standard reflections every 200 reflections
2615 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.10P)2 + 0.50P]
where P = (Fo2 + 2Fc2)/3
2615 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C24H40O3·C2H6OV = 2478.9 (9) Å3
Mr = 422.63Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1440 (18) ŵ = 0.07 mm1
b = 9.6570 (19) ÅT = 293 K
c = 28.073 (6) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4 four-circle
diffractometer
1786 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.076
Tmin = 0.978, Tmax = 0.9933 standard reflections every 200 reflections
4919 measured reflections intensity decay: 1%
2615 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0631 restraint
wR(F2) = 0.180H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
2615 reflectionsΔρmin = 0.22 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1259 (4)0.9737 (4)0.16607 (12)0.0551 (10)
H1A0.10380.89210.17480.083*
C10.1816 (5)0.8655 (5)0.08762 (16)0.0379 (12)
O20.6060 (4)0.0733 (3)0.19112 (12)0.0476 (9)
H2A0.52440.05140.17870.071*
C20.0246 (6)0.8104 (5)0.08231 (19)0.0480 (14)
H2B0.02040.80580.11360.058*
H2C0.03150.87520.06320.058*
O30.6437 (4)0.4603 (4)0.27068 (12)0.0512 (9)
H3A0.72280.47210.28390.077*
C30.0171 (6)0.6667 (6)0.05903 (19)0.0491 (14)
H3B0.08380.63580.05780.059*
H3C0.05380.67190.02670.059*
C40.1076 (5)0.5638 (5)0.08736 (18)0.0435 (12)
H4A0.10130.47380.07210.052*
H4B0.06610.55510.11900.052*
C50.2677 (5)0.6040 (5)0.09188 (16)0.0335 (11)
C60.2777 (5)0.7538 (4)0.11185 (16)0.0329 (11)
H6A0.23820.74660.14420.039*
C70.3387 (5)0.5085 (4)0.12991 (16)0.0330 (10)
H7A0.27680.51690.15830.040*
C80.4957 (5)0.5467 (4)0.14670 (14)0.0290 (10)
C90.5092 (5)0.7028 (5)0.15633 (17)0.0361 (11)
H9A0.46570.72290.18710.043*
H9B0.61210.72660.15820.043*
C100.4373 (5)0.7937 (5)0.11907 (17)0.0365 (11)
H10A0.48940.78460.08910.044*
H10B0.44300.88980.12900.044*
C110.3361 (5)0.3518 (4)0.11655 (18)0.0390 (12)
H11A0.25900.30540.13410.047*
H11B0.31600.34150.08280.047*
C120.4843 (6)0.2851 (5)0.12847 (18)0.0396 (12)
H12A0.48370.18670.12000.048*
C130.5099 (5)0.3032 (5)0.18254 (16)0.0345 (11)
H13A0.42290.26750.19880.041*
C140.5201 (5)0.4612 (5)0.19389 (15)0.0343 (11)
H14A0.43560.48180.21420.041*
C150.6011 (6)0.3603 (5)0.10101 (17)0.0418 (12)
C160.6064 (5)0.4944 (5)0.11130 (16)0.0369 (11)
H16A0.67480.55300.09740.044*
C170.2395 (7)0.9152 (6)0.03954 (18)0.0601 (16)
H17A0.24600.83810.01800.090*
H17B0.33460.95540.04370.090*
H17C0.17410.98340.02660.090*
C180.1740 (6)0.9966 (5)0.11865 (19)0.0495 (13)
H18A0.27041.03850.11970.059*
H18B0.10841.06220.10360.059*
C190.3445 (6)0.5886 (5)0.04277 (16)0.0466 (13)
H19A0.33620.49450.03210.070*
H19B0.44590.61260.04580.070*
H19C0.29880.64900.02010.070*
C200.6958 (7)0.2905 (6)0.06440 (19)0.0571 (15)
H20A0.75570.36250.04940.069*
C210.5967 (10)0.2283 (7)0.0251 (2)0.086 (2)
H21A0.53240.29870.01310.129*
H21B0.53990.15390.03820.129*
H21C0.65640.19370.00040.129*
C220.7994 (9)0.1842 (9)0.0851 (2)0.108 (3)
H22A0.85700.22620.10980.161*
H22B0.86280.15020.06050.161*
H22C0.74430.10870.09820.161*
C230.6387 (6)0.2176 (5)0.19917 (18)0.0400 (11)
H23A0.72590.24380.18170.048*
H23B0.65630.23380.23280.048*
C240.6531 (6)0.5052 (5)0.22226 (17)0.0460 (13)
H24A0.74030.46640.20780.055*
H24B0.66160.60530.22140.055*
O40.8584 (5)0.9317 (6)0.20316 (18)0.0869 (15)
H4C0.78820.98880.20610.130*
C250.8793 (10)0.8696 (12)0.2457 (4)0.157 (5)
H25A0.78470.83330.25510.189*
H25B0.90210.94320.26800.189*
C260.9818 (13)0.7624 (13)0.2547 (6)0.222 (8)
H26A0.97930.73860.28790.333*
H26B1.07820.79370.24640.333*
H26C0.95740.68260.23600.333*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.055 (2)0.058 (2)0.052 (2)0.006 (2)0.0004 (18)0.0159 (18)
C10.045 (3)0.034 (2)0.034 (3)0.006 (2)0.008 (2)0.004 (2)
O20.045 (2)0.0382 (18)0.059 (2)0.0058 (18)0.0007 (18)0.0046 (16)
C20.051 (3)0.044 (3)0.049 (3)0.011 (3)0.013 (3)0.003 (2)
O30.055 (2)0.057 (2)0.042 (2)0.005 (2)0.0229 (17)0.0004 (17)
C30.035 (3)0.058 (3)0.054 (3)0.001 (3)0.014 (2)0.006 (3)
C40.043 (3)0.039 (3)0.049 (3)0.002 (2)0.008 (2)0.000 (2)
C50.036 (3)0.033 (2)0.032 (2)0.002 (2)0.003 (2)0.003 (2)
C60.039 (3)0.031 (2)0.028 (2)0.002 (2)0.000 (2)0.001 (2)
C70.036 (2)0.028 (2)0.036 (2)0.002 (2)0.002 (2)0.0007 (19)
C80.031 (2)0.030 (2)0.025 (2)0.001 (2)0.0003 (19)0.0025 (19)
C90.036 (3)0.031 (2)0.041 (3)0.000 (2)0.011 (2)0.005 (2)
C100.042 (3)0.028 (2)0.040 (3)0.003 (2)0.000 (2)0.001 (2)
C110.041 (3)0.031 (2)0.046 (3)0.001 (2)0.005 (2)0.004 (2)
C120.048 (3)0.024 (2)0.047 (3)0.003 (2)0.007 (2)0.008 (2)
C130.034 (3)0.032 (2)0.038 (3)0.002 (2)0.001 (2)0.003 (2)
C140.036 (3)0.036 (2)0.030 (2)0.002 (2)0.004 (2)0.001 (2)
C150.045 (3)0.043 (3)0.037 (3)0.014 (2)0.004 (2)0.002 (2)
C160.031 (2)0.043 (3)0.037 (3)0.003 (2)0.000 (2)0.006 (2)
C170.078 (4)0.055 (3)0.047 (3)0.013 (3)0.001 (3)0.017 (3)
C180.049 (3)0.041 (3)0.059 (3)0.008 (2)0.009 (3)0.002 (3)
C190.056 (3)0.049 (3)0.035 (3)0.009 (3)0.005 (2)0.004 (2)
C200.071 (4)0.056 (3)0.044 (3)0.014 (3)0.011 (3)0.001 (3)
C210.125 (7)0.080 (5)0.053 (4)0.012 (5)0.017 (4)0.022 (4)
C220.125 (7)0.125 (7)0.073 (5)0.082 (6)0.028 (5)0.005 (5)
C230.044 (3)0.036 (2)0.040 (3)0.005 (2)0.003 (2)0.002 (2)
C240.049 (3)0.049 (3)0.040 (3)0.003 (3)0.016 (2)0.004 (2)
O40.058 (3)0.100 (3)0.103 (4)0.033 (3)0.011 (3)0.024 (3)
C250.092 (7)0.185 (11)0.194 (11)0.032 (8)0.064 (8)0.100 (10)
C260.098 (8)0.212 (15)0.356 (18)0.024 (9)0.054 (10)0.189 (14)
Geometric parameters (Å, º) top
O1—C181.419 (6)C12—C131.546 (6)
O1—H1A0.8500C12—H12A0.9800
C1—C171.527 (7)C13—C231.512 (6)
C1—C181.538 (7)C13—C141.561 (6)
C1—C21.539 (7)C13—H13A0.9800
C1—C61.549 (6)C14—C241.515 (6)
O2—C231.444 (6)C14—H14A0.9800
O2—H2A0.8500C15—C161.327 (7)
C2—C31.536 (7)C15—C201.504 (7)
C2—H2B0.9700C16—H16A0.9300
C2—H2C0.9700C17—H17A0.9600
O3—C241.429 (6)C17—H17B0.9600
O3—H3A0.8200C17—H17C0.9600
C3—C41.518 (7)C18—H18A0.9700
C3—H3B0.9700C18—H18B0.9700
C3—H3C0.9700C19—H19A0.9600
C4—C51.521 (7)C19—H19B0.9600
C4—H4A0.9700C19—H19C0.9600
C4—H4B0.9700C20—C221.513 (9)
C5—C71.553 (6)C20—C211.549 (9)
C5—C61.553 (6)C20—H20A0.9800
C5—C191.554 (6)C21—H21A0.9600
C6—C101.523 (6)C21—H21B0.9600
C6—H6A0.9800C21—H21C0.9600
C7—C81.555 (6)C22—H22A0.9600
C7—C111.559 (6)C22—H22B0.9600
C7—H7A0.9800C22—H22C0.9600
C8—C161.505 (6)C23—H23A0.9700
C8—C91.537 (6)C23—H23B0.9700
C8—C141.577 (6)C24—H24A0.9700
C9—C101.516 (6)C24—H24B0.9700
C9—H9A0.9700O4—C251.349 (10)
C9—H9B0.9700O4—H4C0.8500
C10—H10A0.9700C25—C261.420 (9)
C10—H10B0.9700C25—H25A0.9700
C11—C121.538 (7)C25—H25B0.9700
C11—H11A0.9700C26—H26A0.9600
C11—H11B0.9700C26—H26B0.9600
C12—C151.504 (7)C26—H26C0.9600
C18—O1—H1A119.2C12—C13—C14108.6 (4)
C17—C1—C18104.9 (4)C23—C13—H13A107.2
C17—C1—C2110.3 (4)C12—C13—H13A107.2
C18—C1—C2107.3 (4)C14—C13—H13A107.2
C17—C1—C6114.3 (4)C24—C14—C13115.4 (4)
C18—C1—C6110.5 (4)C24—C14—C8114.1 (4)
C2—C1—C6109.3 (4)C13—C14—C8109.4 (3)
C23—O2—H2A119.1C24—C14—H14A105.7
C3—C2—C1113.3 (4)C13—C14—H14A105.7
C3—C2—H2B108.9C8—C14—H14A105.7
C1—C2—H2B108.9C16—C15—C20124.5 (5)
C3—C2—H2C108.9C16—C15—C12112.6 (5)
C1—C2—H2C108.9C20—C15—C12122.8 (4)
H2B—C2—H2C107.7C15—C16—C8116.5 (5)
C24—O3—H3A109.5C15—C16—H16A121.7
C4—C3—C2110.2 (4)C8—C16—H16A121.7
C4—C3—H3B109.6C1—C17—H17A109.5
C2—C3—H3B109.6C1—C17—H17B109.5
C4—C3—H3C109.6H17A—C17—H17B109.5
C2—C3—H3C109.6C1—C17—H17C109.5
H3B—C3—H3C108.1H17A—C17—H17C109.5
C3—C4—C5113.7 (4)H17B—C17—H17C109.5
C3—C4—H4A108.8O1—C18—C1114.7 (4)
C5—C4—H4A108.8O1—C18—H18A108.6
C3—C4—H4B108.8C1—C18—H18A108.6
C5—C4—H4B108.8O1—C18—H18B108.6
H4A—C4—H4B107.7C1—C18—H18B108.6
C4—C5—C7107.9 (4)H18A—C18—H18B107.6
C4—C5—C6108.9 (4)C5—C19—H19A109.5
C7—C5—C6106.3 (3)C5—C19—H19B109.5
C4—C5—C19109.7 (4)H19A—C19—H19B109.5
C7—C5—C19111.3 (4)C5—C19—H19C109.5
C6—C5—C19112.5 (4)H19A—C19—H19C109.5
C10—C6—C1115.2 (4)H19B—C19—H19C109.5
C10—C6—C5109.9 (4)C15—C20—C22113.7 (5)
C1—C6—C5117.2 (4)C15—C20—C21108.9 (5)
C10—C6—H6A104.3C22—C20—C21112.1 (6)
C1—C6—H6A104.3C15—C20—H20A107.2
C5—C6—H6A104.3C22—C20—H20A107.2
C5—C7—C8116.9 (4)C21—C20—H20A107.2
C5—C7—C11113.9 (4)C20—C21—H21A109.5
C8—C7—C11108.5 (4)C20—C21—H21B109.5
C5—C7—H7A105.5H21A—C21—H21B109.5
C8—C7—H7A105.5C20—C21—H21C109.5
C11—C7—H7A105.5H21A—C21—H21C109.5
C16—C8—C9113.0 (4)H21B—C21—H21C109.5
C16—C8—C7109.9 (3)C20—C22—H22A109.5
C9—C8—C7111.1 (4)C20—C22—H22B109.5
C16—C8—C14106.5 (3)H22A—C22—H22B109.5
C9—C8—C14110.8 (4)C20—C22—H22C109.5
C7—C8—C14105.1 (3)H22A—C22—H22C109.5
C10—C9—C8114.3 (4)H22B—C22—H22C109.5
C10—C9—H9A108.7O2—C23—C13108.5 (4)
C8—C9—H9A108.7O2—C23—H23A110.0
C10—C9—H9B108.7C13—C23—H23A110.0
C8—C9—H9B108.7O2—C23—H23B110.0
H9A—C9—H9B107.6C13—C23—H23B110.0
C9—C10—C6111.1 (4)H23A—C23—H23B108.4
C9—C10—H10A109.4O3—C24—C14111.5 (4)
C6—C10—H10A109.4O3—C24—H24A109.3
C9—C10—H10B109.4C14—C24—H24A109.3
C6—C10—H10B109.4O3—C24—H24B109.3
H10A—C10—H10B108.0C14—C24—H24B109.3
C12—C11—C7109.9 (4)H24A—C24—H24B108.0
C12—C11—H11A109.7C25—O4—H4C108.0
C7—C11—H11A109.7O4—C25—C26125.2 (11)
C12—C11—H11B109.7O4—C25—H25A106.0
C7—C11—H11B109.7C26—C25—H25A106.0
H11A—C11—H11B108.2O4—C25—H25B106.0
C15—C12—C11108.2 (4)C26—C25—H25B106.0
C15—C12—C13109.9 (4)H25A—C25—H25B106.3
C11—C12—C13107.5 (4)C25—C26—H26A109.5
C15—C12—H12A110.4C25—C26—H26B109.5
C11—C12—H12A110.4H26A—C26—H26B109.5
C13—C12—H12A110.4C25—C26—H26C109.5
C23—C13—C12111.1 (4)H26A—C26—H26C109.5
C23—C13—C14115.1 (4)H26B—C26—H26C109.5
C17—C1—C2—C375.7 (5)C5—C7—C11—C12137.0 (4)
C18—C1—C2—C3170.6 (4)C8—C7—C11—C124.9 (5)
C6—C1—C2—C350.7 (6)C7—C11—C12—C1558.8 (5)
C1—C2—C3—C457.0 (6)C7—C11—C12—C1359.9 (5)
C2—C3—C4—C558.6 (6)C15—C12—C13—C2373.2 (5)
C3—C4—C5—C7168.2 (4)C11—C12—C13—C23169.3 (4)
C3—C4—C5—C653.2 (5)C15—C12—C13—C1454.4 (5)
C3—C4—C5—C1970.3 (5)C11—C12—C13—C1463.2 (5)
C17—C1—C6—C1055.4 (5)C23—C13—C14—C243.2 (6)
C18—C1—C6—C1062.6 (5)C12—C13—C14—C24128.5 (4)
C2—C1—C6—C10179.5 (4)C23—C13—C14—C8127.1 (4)
C17—C1—C6—C576.2 (6)C12—C13—C14—C81.8 (5)
C18—C1—C6—C5165.8 (4)C16—C8—C14—C2475.8 (5)
C2—C1—C6—C547.9 (5)C9—C8—C14—C2447.4 (5)
C4—C5—C6—C10177.1 (4)C7—C8—C14—C24167.5 (4)
C7—C5—C6—C1061.1 (5)C16—C8—C14—C1355.2 (5)
C19—C5—C6—C1061.0 (5)C9—C8—C14—C13178.4 (4)
C4—C5—C6—C148.9 (5)C7—C8—C14—C1361.5 (4)
C7—C5—C6—C1165.0 (4)C11—C12—C15—C1659.2 (6)
C19—C5—C6—C172.9 (5)C13—C12—C15—C1657.9 (5)
C4—C5—C7—C8170.1 (4)C11—C12—C15—C20118.2 (5)
C6—C5—C7—C853.3 (5)C13—C12—C15—C20124.7 (5)
C19—C5—C7—C869.6 (5)C20—C15—C16—C8176.0 (4)
C4—C5—C7—C1162.0 (5)C12—C15—C16—C81.3 (6)
C6—C5—C7—C11178.8 (4)C9—C8—C16—C15179.8 (4)
C19—C5—C7—C1158.3 (5)C7—C8—C16—C1555.0 (5)
C5—C7—C8—C1681.2 (5)C14—C8—C16—C1558.4 (5)
C11—C7—C8—C1649.2 (5)C17—C1—C18—O1178.4 (4)
C5—C7—C8—C944.7 (5)C2—C1—C18—O164.3 (5)
C11—C7—C8—C9175.1 (4)C6—C1—C18—O154.8 (6)
C5—C7—C8—C14164.5 (4)C16—C15—C20—C22115.7 (7)
C11—C7—C8—C1465.0 (4)C12—C15—C20—C2267.2 (8)
C16—C8—C9—C1081.0 (5)C16—C15—C20—C21118.4 (6)
C7—C8—C9—C1043.1 (6)C12—C15—C20—C2158.7 (6)
C14—C8—C9—C10159.6 (4)C12—C13—C23—O262.5 (5)
C8—C9—C10—C654.2 (6)C14—C13—C23—O2173.5 (4)
C1—C6—C10—C9161.3 (4)C13—C14—C24—O371.8 (5)
C5—C6—C10—C963.8 (5)C8—C14—C24—O3160.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.852.412.689 (6)100
O2—H2A···O3ii0.852.272.749 (5)116
O3—H3A···O1ii0.821.972.758 (5)160
O4—H4C···O2iii0.851.902.704 (6)157
C2—H2B···O10.972.572.979 (6)106
C6—H6A···O10.982.502.959 (6)108
C12—H12A···O20.982.542.918 (6)103
C23—H23B···O30.972.433.086 (6)124
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H40O3·C2H6O
Mr422.63
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.1440 (18), 9.6570 (19), 28.073 (6)
V3)2478.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
4919, 2615, 1786
Rint0.076
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.180, 1.00
No. of reflections2615
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.852.272.749 (5)116
O3—H3A···O1i0.821.972.758 (5)160
O4—H4C···O2ii0.851.902.704 (6)157
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

We thank the Forestry Commonwealth Industry Special Foundation of China for support (No. 200704008).

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHalbrook, N. J. & Lawrence, R. V. (1958). J. Am. Chem. Soc. 80, 368–370.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRao, X. P., Song, Z. Q., Yao, Y. J., Han, C. R. & Shang, S. B. (2008). Nat. Prod. Res. 22, 854–859.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1076
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds