metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(2-acet­amido-5-methyl­benzoato-κO1)tetra­aqua­zinc

aCollege of Chemistry & Material Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China
*Correspondence e-mail: hjf@fjnu.edu.cn

(Received 10 March 2011; accepted 31 March 2011; online 7 April 2011)

In the title compound, [Zn(C10H10NO3)2(H2O)4], the ZnII atom lies on a crystallographic inversion center and is six-coordinated by two monodentate trans-related 2-(N-acetyl­amino)-5-methyl­benzoato ligands and four water mol­ecules, giving a slightly distorted octa­hedral geometry. There are two intra­molecular hydrogen bonds [amine N—H⋯Ocarbox­yl and water O—H⋯Ocarbox­yl], while extensive inter­molecular water O—H⋯O hydrogen-bonding inter­actions extend the complex units into a two-dimensional network structure along (100).

Related literature

The study of metal coordination polymers has enhanced our understanding of the relationship between mol­ecular structure and material function, see: Dai et al. (2005[Dai, Y. M., Ma, E., Tang, E., Zhang, J., Li, Z. J., Huang, X. & Yao, Y. G. (2005). Cryst. Growth Des. 5, 1313-1315.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1639.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H10NO3)2(H2O)4]

  • Mr = 521.83

  • Monoclinic, C 2/c

  • a = 19.300 (4) Å

  • b = 9.3000 (19) Å

  • c = 13.300 (3) Å

  • β = 107.60 (3)°

  • V = 2275.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 296 K

  • 0.42 × 0.40 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.626, Tmax = 0.752

  • 10817 measured reflections

  • 2130 independent reflections

  • 1941 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.179

  • S = 1.11

  • 2130 reflections

  • 164 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.95 2.616 (4) 133
O1W—H1WA⋯O2i 0.81 (2) 1.90 (2) 2.704 (4) 170 (5)
O1W—H1WB⋯O3ii 0.83 (2) 1.88 (2) 2.707 (4) 177 (4)
O2W—H2WA⋯O2i 0.80 (4) 2.12 (4) 2.916 (5) 172 (5)
O2W—H2WB⋯O3iii 0.83 (4) 1.84 (3) 2.627 (4) 159 (5)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent decades, the study of metal coordination polymers has witnessed tremendous growth as an attractive interface between synthetic chemistry and materials science, which significantly boosts the understanding of the relationship between molecular structure and material function (Moulton & Zaworotko, 2001; Dai et al., 2005). The crystal engineering of coordination polymers is highly influenced by the judicious choice of ligands, metal coordination geometry, template design and other subtle factors, such as counterions, solvent choice and reaction temperature. The deprotonated 2-(N-acetylamino)-5-methylbenzoic acid (HNB) ligands are good candidates in this respect for the construction of supramolecular architectures because in such bitopical ligands the N-acetyl group can act as a hydrogen-bond donor and/or acceptor, while the carboxyl function has strong coordination abilities with many metal ions. Taking these advantages into account, recently we have begun to assemble HNB and zinc ions into polymeric complexes under hydrothermal conditions. Herein, we report the synthesis and crystal structure of the title compound, [Zn(C10H10NO3)2(H2O)4] (I).

In the structure of (I) the ZnII metal center lies on a crystallographic inversion center. The local coordination environment around ZnII atom is slightly distorted octahedral, comprising two monodentate trans-related 2-(N-acetylamino)-5-methylbenzoato ligands and four water molecules (Fig. 1). Two intramolecular hydrogen bonds [amine N—H···Ocarboxyl and water O—H···Ocarboxyl] stabilize the complex units while extensive intermolecular water O—H···Oacetyl hydrogen-bonding interactions are observed in the structure (Table 1), giving rise to double-stranded chains. Further interactions involving the coordinated water ligands and the uncoordinated O atoms of the carboxyl group are gives a two-dimensional network structure (Fig. 2).

Related literature top

The study of metal coordination polymers has enhanced our understanding of the relationship between molecular structure and material function, see: Dai et al. (2005); Moulton & Zaworotko (2001).

Experimental top

ZnSO4.7H2O (1.00 mmol, 0.28 g), 2-(N-acetylamino)-5-methylbenzoic acid (HNB) (1.00 mmol, 0.19 g) and NaOH (1.00 mmol, 0.04 g) were mixed in water (15 ml) and heated at 403 K for 3 days in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature at a rate of 5° C h-1, yellow block crystals were isolated, washed with ethanol and then dried in air (33% yield).

Refinement top

H atoms attached to carbon and nitrogen were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.86, 0.96 and 0.93 Å for NH, CH2 and aromatic CH groups, respectively and Uiso(H) = 1.2Ueq(N, C)]. The aqua H atoms were located from difference maps and their coordinates refined but with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Local coordination around Zn ion in (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (a): -x + 1, -y, -z + 2
[Figure 2] Fig. 2. The crystal packing of (I) with hydrogen bonds shown as dashed lines.
trans-Bis(2-acetamido-5-methylbenzoato-κO1)tetraaquazinc top
Crystal data top
[Zn(C10H10NO3)2(H2O)4]F(000) = 1088
Mr = 521.83Dx = 1.523 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4107 reflections
a = 19.300 (4) Åθ = 3.1–25.6°
b = 9.3000 (19) ŵ = 1.14 mm1
c = 13.300 (3) ÅT = 296 K
β = 107.60 (3)°Block, yellow
V = 2275.5 (9) Å30.42 × 0.40 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2130 independent reflections
Radiation source: fine-focus sealed tube1941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2321
Tmin = 0.626, Tmax = 0.752k = 1011
10817 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.1075P)2 + 9.1602P]
where P = (Fo2 + 2Fc2)/3
2130 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.49 e Å3
2 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Zn(C10H10NO3)2(H2O)4]V = 2275.5 (9) Å3
Mr = 521.83Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.300 (4) ŵ = 1.14 mm1
b = 9.3000 (19) ÅT = 296 K
c = 13.300 (3) Å0.42 × 0.40 × 0.25 mm
β = 107.60 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2130 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1941 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.752Rint = 0.029
10817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.49 e Å3
2130 reflectionsΔρmin = 0.77 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00001.00000.0283 (3)
N10.61735 (18)0.4086 (4)1.0380 (3)0.0268 (7)
H1A0.60340.32791.05690.032*
O1W0.42661 (16)0.0994 (3)0.8725 (2)0.0280 (6)
H1WA0.410 (2)0.173 (3)0.890 (3)0.034*
H1WB0.422 (3)0.085 (4)0.8095 (18)0.034*
O10.57941 (14)0.1422 (3)0.9864 (2)0.0247 (6)
O2W0.47378 (16)0.1539 (3)1.1025 (2)0.0299 (7)
H2WA0.449 (2)0.211 (4)1.063 (3)0.036*
H2WB0.456 (2)0.097 (4)1.136 (3)0.036*
O20.6109 (2)0.6481 (3)1.0578 (3)0.0428 (8)
O30.59193 (17)0.0609 (3)0.8358 (2)0.0328 (7)
C10.5978 (2)0.5248 (5)1.0801 (3)0.0296 (9)
C20.7488 (2)0.4914 (4)0.8911 (4)0.0296 (10)
H2A0.78060.56470.88710.035*
C30.65394 (19)0.2748 (4)0.9062 (3)0.0208 (7)
C40.7454 (2)0.3684 (4)0.8315 (3)0.0269 (8)
C50.6976 (2)0.2625 (4)0.8402 (3)0.0244 (8)
H5A0.69430.17920.80030.029*
C60.6584 (2)0.3999 (4)0.9657 (3)0.0245 (8)
C70.7056 (3)0.5073 (4)0.9566 (4)0.0298 (10)
H7A0.70850.59160.99520.036*
C80.60481 (19)0.1505 (4)0.9089 (3)0.0218 (8)
C90.7926 (2)0.3494 (5)0.7609 (4)0.0374 (10)
H9A0.78250.25810.72590.056*
H9B0.84280.35320.80240.056*
H9C0.78270.42490.70930.056*
C100.5580 (3)0.4978 (5)1.1599 (4)0.0379 (11)
H10A0.54590.58811.18540.057*
H10B0.58840.44331.21780.057*
H10C0.51420.44491.12730.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0351 (5)0.0249 (4)0.0276 (4)0.0034 (2)0.0136 (3)0.0013 (2)
N10.0366 (18)0.0198 (16)0.0284 (17)0.0013 (14)0.0166 (14)0.0030 (13)
O1W0.0396 (16)0.0238 (14)0.0197 (13)0.0070 (12)0.0077 (12)0.0002 (11)
O10.0332 (14)0.0225 (13)0.0230 (13)0.0110 (11)0.0154 (11)0.0047 (10)
O2W0.0450 (17)0.0217 (14)0.0295 (15)0.0044 (12)0.0210 (13)0.0029 (11)
O20.066 (2)0.0219 (16)0.0467 (19)0.0081 (14)0.0265 (17)0.0020 (13)
O30.0511 (18)0.0284 (15)0.0262 (15)0.0162 (14)0.0224 (13)0.0083 (12)
C10.030 (2)0.031 (2)0.026 (2)0.0014 (17)0.0064 (17)0.0044 (17)
C20.031 (2)0.024 (2)0.035 (2)0.0084 (15)0.0119 (18)0.0032 (15)
C30.0233 (17)0.0192 (17)0.0194 (17)0.0015 (14)0.0058 (14)0.0028 (14)
C40.0258 (19)0.032 (2)0.0234 (19)0.0044 (16)0.0076 (15)0.0052 (16)
C50.0286 (19)0.0226 (18)0.0230 (18)0.0039 (15)0.0093 (15)0.0005 (14)
C60.0295 (19)0.0223 (19)0.0215 (18)0.0003 (16)0.0076 (15)0.0006 (15)
C70.038 (2)0.020 (2)0.033 (2)0.0051 (15)0.012 (2)0.0021 (15)
C80.0249 (18)0.0198 (17)0.0215 (18)0.0028 (14)0.0084 (15)0.0023 (14)
C90.038 (2)0.043 (3)0.038 (2)0.0123 (19)0.021 (2)0.0001 (19)
C100.043 (3)0.039 (3)0.037 (3)0.0061 (18)0.021 (2)0.0118 (18)
Geometric parameters (Å, º) top
Zn1—O1Wi2.070 (3)C2—C71.384 (7)
Zn1—O1W2.070 (3)C2—C41.382 (6)
Zn1—O12.073 (2)C2—H2A0.9300
Zn1—O1i2.073 (2)C3—C51.393 (5)
Zn1—O2W2.140 (3)C3—C61.395 (5)
Zn1—O2Wi2.140 (3)C3—C81.503 (5)
N1—C11.324 (5)C4—C51.379 (5)
N1—C61.421 (5)C4—C91.503 (6)
N1—H1A0.8600C5—H5A0.9300
O1W—H1WA0.811 (18)C6—C71.382 (6)
O1W—H1WB0.826 (18)C7—H7A0.9300
O1—C81.270 (4)C9—H9A0.9600
O2W—H2WA0.80 (4)C9—H9B0.9600
O2W—H2WB0.83 (4)C9—H9C0.9600
O2—C11.230 (5)C10—H10A0.9600
O3—C81.247 (5)C10—H10B0.9600
C1—C101.508 (6)C10—H10C0.9600
O1Wi—Zn1—O1W180.00 (12)C5—C3—C6118.7 (3)
O1Wi—Zn1—O190.89 (11)C5—C3—C8117.2 (3)
O1W—Zn1—O189.11 (11)C6—C3—C8124.0 (3)
O1Wi—Zn1—O1i89.11 (11)C5—C4—C2117.4 (4)
O1W—Zn1—O1i90.89 (11)C5—C4—C9121.1 (4)
O1—Zn1—O1i180.0C2—C4—C9121.5 (4)
O1Wi—Zn1—O2W90.67 (11)C4—C5—C3122.8 (4)
O1W—Zn1—O2W89.33 (11)C4—C5—H5A118.6
O1—Zn1—O2W87.28 (10)C3—C5—H5A118.6
O1i—Zn1—O2W92.72 (10)C7—C6—C3118.8 (4)
O1Wi—Zn1—O2Wi89.33 (11)C7—C6—N1122.4 (3)
O1W—Zn1—O2Wi90.67 (11)C3—C6—N1118.7 (3)
O1—Zn1—O2Wi92.72 (10)C6—C7—C2121.1 (4)
O1i—Zn1—O2Wi87.28 (10)C6—C7—H7A119.4
O2W—Zn1—O2Wi180.000 (1)C2—C7—H7A119.4
C1—N1—C6128.4 (3)O3—C8—O1123.9 (3)
C1—N1—H1A115.8O3—C8—C3118.3 (3)
C6—N1—H1A115.8O1—C8—C3117.8 (3)
Zn1—O1W—H1WA112 (3)C4—C9—H9A109.5
Zn1—O1W—H1WB126 (3)C4—C9—H9B109.5
H1WA—O1W—H1WB119 (3)H9A—C9—H9B109.5
C8—O1—Zn1125.9 (2)C4—C9—H9C109.5
Zn1—O2W—H2WA104 (4)H9A—C9—H9C109.5
Zn1—O2W—H2WB98 (3)H9B—C9—H9C109.5
H2WA—O2W—H2WB122 (3)C1—C10—H10A109.5
O2—C1—N1123.5 (4)C1—C10—H10B109.5
O2—C1—C10120.8 (4)H10A—C10—H10B109.5
N1—C1—C10115.7 (4)C1—C10—H10C109.5
C7—C2—C4121.1 (4)H10A—C10—H10C109.5
C7—C2—H2A119.4H10B—C10—H10C109.5
C4—C2—H2A119.4
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.952.616 (4)133
O1W—H1WA···O2ii0.81 (2)1.90 (2)2.704 (4)170 (5)
O1W—H1WB···O3iii0.83 (2)1.88 (2)2.707 (4)177 (4)
O2W—H2WA···O2ii0.80 (4)2.12 (4)2.916 (5)172 (5)
O2W—H2WB···O3i0.83 (4)1.84 (3)2.627 (4)159 (5)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H10NO3)2(H2O)4]
Mr521.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.300 (4), 9.3000 (19), 13.300 (3)
β (°) 107.60 (3)
V3)2275.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.42 × 0.40 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.626, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
10817, 2130, 1941
Rint0.029
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.179, 1.11
No. of reflections2130
No. of parameters164
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.77

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.952.616 (4)133
O1W—H1WA···O2i0.811 (18)1.90 (2)2.704 (4)170 (5)
O1W—H1WB···O3ii0.826 (18)1.882 (19)2.707 (4)177 (4)
O2W—H2WA···O2i0.80 (4)2.12 (4)2.916 (5)172 (5)
O2W—H2WB···O3iii0.83 (4)1.84 (3)2.627 (4)159 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+3/2; (iii) x+1, y, z+2.
 

Acknowledgements

This work was supported financially by the Foundation of the Ministry of Education of Fujian Province (JB08037).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, Y. M., Ma, E., Tang, E., Zhang, J., Li, Z. J., Huang, X. & Yao, Y. G. (2005). Cryst. Growth Des. 5, 1313–1315.  CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1639.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds