organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1047

rac-2,2′-(Thiane-2,6-di­yl)bis­­[1-(4-bromo­phen­yl)ethanone]

aCollege of Chemistry and Chemical Engineering, Graduate University of Chinese, Academy of Sciences, Beijing, 100049, People's Republic of China
*Correspondence e-mail: liqiangliu@163.com

(Received 17 March 2011; accepted 30 March 2011; online 7 April 2011)

In the title compound, C21H20Br2O2S, prepared by the reaction of 1,9-bis­(4-bromo­phen­yl)nona-2,7-diene-1,9-dione with sodium sulfide nona­hydrate in acetonitrile, the six-membered thio­pyran ring has a chair conformation while the H atoms ortho to the S atom adopt a cis configuration. The dihedral angle between the two benzene rings is 2.59 (8)°.

Related literature

For the synthesis of 1,9-bis­(4-bromo­phen­yl)nona-2,7-diene-1,9-dione, see: Yang, Cauble et al. (2004[Yang, J., Cauble, D. F., Berro, A. J., Bauld, N. L. & Krische, M. J. (2004). J. Org. Chem. 69, 7979-7984.]); Yang, Felton et al. (2004[Yang, J., Felton, G. A. N., Bauld, N. L. & Krische, M. J. (2004). J. Am. Chem. Soc. 126, 1634-1635.]). For the synthesis of compounds containing sulfur, see: Knapp et al. (2002[Knapp, S., Gonzalez, S., Myers, D. S., Eckman, L. L. & Bewley, C. A. (2002). Org. Lett. 4, 4337-4339.]); Yao et al. (2003[Yao, W., Liao, M., Zhang, X., Xu, H. & Wang, J. (2003). Eur. J. Org. Chem. pp. 1784-1788.]); Oliveira et al. (1999[Oliveira, M. G., Soares, B. G., Santos, C. M. F., Diniz, M. F. & Dutra, R. C. L. (1999). Macromol. Rapid Commun. 20, 526-531.]). For applications of natural products containing sulfur, see: Qi et al. (2004[Qi, X., Lee, S. H., Yoon, J. & Lee, Y. S. (2004). Tetrahedron, 60, 3599-3603.]); Zhang & Zhang (2006[Zhang, L. & Zhang, Y. J. (2006). Tetrahedron Lett. 47 775-778.]); Barco et al. (2006[Barco, A., Baricordi, N., Benetti, S., Risi, C. D. & Pollini, G. P. (2006). Tetrahedron Lett. 47, 8087-8090.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20Br2O2S

  • Mr = 496.25

  • Triclinic, [P \overline 1]

  • a = 6.484 (4) Å

  • b = 12.970 (5) Å

  • c = 13.076 (4) Å

  • α = 71.14 (3)°

  • β = 79.45 (4)°

  • γ = 79.52 (4)°

  • V = 1014.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.11 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Siemens P4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.381, Tmax = 0.459

  • 4549 measured reflections

  • 3548 independent reflections

  • 2220 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.112

  • S = 1.07

  • 3548 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The mothods for the synthesis of compounds containing sulfur have been described (Knapp et al., 2002; Yao et al., 2003; Oliveira et al. 1999). Natural products containing sulfur often have biological activity, so that the methods for their synthesis have received considerable attention among researchers. In this paper, we report the structure of the title compound C21H20Br2O2S (I), prepared by the reaction of 1,9-bis(4-bromophenyl)nona-2,7-diene-1,9-dione with sodium sulfide nonahydrate in acetonitrile. In the crystal, the six-membered thiopyran ring has a chair conformation with the H atoms ortho to the S (H9 and H13) adopting a cis configuration (Fig. 1). The dihedral angle between the benzene rings on the substituent chains is 2.59 (8)°.

Related literature top

For the synthesis of 1,9-bis(4-bromophenyl)nona-2,7-diene-1,9-dione, see: Yang, Cauble et al. (2004); Yang, Felton et al. (2004). For the synthesis of compounds containing sulfur, see: Knapp et al. (2002); Yao et al. (2003); Oliveira et al. (1999). For applications of natural products containing sulfur, see: Qi et al. (2004); Zhang & Zhang (2006); Barco et al. (2006).

Experimental top

The reaction mixture of 1,9-bis(4-bromophenyl)nona-2,7-diene-1,9-dione (100 mg, 0.20 mmol) with sodium sulfide nonahydrate (67 mg, 0.28 mmol) in 50 ml of acetonitrile was stirred for 11 days at room temperature, affording the title compound (20 mg; yield 32%). Colorless single crystals were obtained by slow evaporation of an ethyl acetate solution in air.

Refinement top

All hydrogen atoms were generated geometically with C—H bond distances of 0.93–0.98 Å according to criteria described in the SHELXTL manual (Bruker, 1997). These were included in the refinement with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular conformation of the title compound showing 35% probability displacement ellipsoids and the atom numbering scheme
rac-2,2'-(Thiane-2,6-diyl)bis[1-(4-bromophenyl)ethanone] top
Crystal data top
C21H20Br2O2SZ = 2
Mr = 496.25F(000) = 496
Triclinic, P1Dx = 1.625 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.484 (4) ÅCell parameters from 45 reflections
b = 12.970 (5) Åθ = 5.6–12.4°
c = 13.076 (4) ŵ = 4.11 mm1
α = 71.14 (3)°T = 295 K
β = 79.45 (4)°Prism, colorless
γ = 79.52 (4)°0.40 × 0.30 × 0.20 mm
V = 1014.1 (7) Å3
Data collection top
Siemens P4 four-circle
diffractometer
2220 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ω scansh = 17
Absorption correction: ψ scan
(North et al., 1968)
k = 1414
Tmin = 0.381, Tmax = 0.459l = 1515
4549 measured reflections3 standard reflections every 97 reflections
3548 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.001P)2 + 2.0P]
where P = (Fo2 + 2Fc2)/3
3548 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C21H20Br2O2Sγ = 79.52 (4)°
Mr = 496.25V = 1014.1 (7) Å3
Triclinic, P1Z = 2
a = 6.484 (4) ÅMo Kα radiation
b = 12.970 (5) ŵ = 4.11 mm1
c = 13.076 (4) ÅT = 295 K
α = 71.14 (3)°0.40 × 0.30 × 0.20 mm
β = 79.45 (4)°
Data collection top
Siemens P4 four-circle
diffractometer
2220 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.381, Tmax = 0.4593 standard reflections every 97 reflections
4549 measured reflections intensity decay: none
3548 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.07Δρmax = 0.51 e Å3
3548 reflectionsΔρmin = 0.41 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47955 (9)1.39832 (4)0.65329 (4)0.08336 (16)
Br20.87756 (10)0.46636 (4)0.19734 (4)0.09195 (19)
S10.35503 (17)0.97967 (9)0.19248 (8)0.0594 (3)
O10.0519 (5)1.2370 (2)0.3377 (2)0.0755 (9)
O20.0963 (5)0.8256 (2)0.0195 (2)0.0740 (9)
C10.2190 (6)1.2490 (3)0.4300 (3)0.0477 (10)
C20.4267 (6)1.2193 (3)0.4523 (3)0.0596 (12)
H2A0.51531.16870.42200.071*
C30.5051 (7)1.2633 (3)0.5185 (3)0.0673 (13)
H3A0.64531.24380.53160.081*
C40.3711 (6)1.3365 (3)0.5645 (3)0.0559 (11)
C50.1643 (7)1.3678 (3)0.5447 (3)0.0597 (12)
H5A0.07601.41750.57640.072*
C60.0894 (7)1.3245 (3)0.4772 (3)0.0568 (12)
H6A0.04991.34600.46300.068*
C70.1259 (7)1.2030 (3)0.3601 (3)0.0543 (11)
C80.2614 (6)1.1124 (3)0.3196 (3)0.0557 (11)
H8A0.31381.05520.38150.067*
H8B0.38291.14200.27110.067*
C90.1493 (6)1.0605 (3)0.2598 (3)0.0494 (10)
H9A0.07761.11900.20420.059*
C100.0111 (6)0.9885 (3)0.3336 (3)0.0601 (12)
H10A0.11621.03220.37090.072*
H10B0.05990.93030.38840.072*
C110.1229 (6)0.9372 (3)0.2727 (3)0.0650 (13)
H11A0.22860.89560.32380.078*
H11B0.19540.99530.21840.078*
C120.0287 (6)0.8618 (3)0.2168 (3)0.0588 (12)
H12A0.05190.82930.18260.071*
H12B0.09790.80270.27170.071*
C130.1970 (6)0.9190 (3)0.1311 (3)0.0517 (11)
H13A0.12840.97710.07390.062*
C140.3569 (6)0.8426 (3)0.0794 (3)0.0561 (12)
H14A0.47550.88150.04000.067*
H14B0.41000.78050.13740.067*
C150.2757 (7)0.7987 (3)0.0020 (3)0.0543 (12)
C160.4289 (6)0.7209 (3)0.0478 (3)0.0530 (11)
C170.3596 (7)0.6792 (3)0.1196 (3)0.0645 (13)
H17A0.22250.70170.13720.077*
C180.4938 (7)0.6047 (3)0.1650 (3)0.0667 (13)
H18A0.44790.57800.21370.080*
C190.6922 (7)0.5709 (3)0.1379 (3)0.0646 (13)
C200.7680 (8)0.6127 (3)0.0700 (3)0.0719 (14)
H20A0.90690.59120.05500.086*
C210.6352 (7)0.6872 (3)0.0241 (3)0.0657 (13)
H21A0.68460.71480.02290.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1169 (4)0.0718 (3)0.0768 (3)0.0107 (3)0.0346 (3)0.0323 (2)
Br20.1217 (5)0.0730 (3)0.0745 (3)0.0071 (3)0.0042 (3)0.0334 (2)
S10.0517 (6)0.0715 (6)0.0667 (6)0.0140 (5)0.0006 (5)0.0374 (5)
O10.0630 (18)0.0824 (17)0.0972 (18)0.0060 (16)0.0260 (15)0.0490 (15)
O20.0769 (19)0.0751 (17)0.0793 (17)0.0154 (16)0.0348 (15)0.0364 (14)
C10.051 (2)0.0488 (19)0.0465 (19)0.0129 (18)0.0055 (17)0.0160 (16)
C20.049 (2)0.067 (2)0.067 (2)0.004 (2)0.000 (2)0.0335 (19)
C30.063 (3)0.075 (3)0.074 (3)0.010 (2)0.014 (2)0.033 (2)
C40.070 (3)0.053 (2)0.050 (2)0.016 (2)0.013 (2)0.0154 (17)
C50.076 (3)0.050 (2)0.052 (2)0.003 (2)0.011 (2)0.0193 (17)
C60.058 (3)0.055 (2)0.056 (2)0.001 (2)0.012 (2)0.0159 (18)
C70.055 (2)0.055 (2)0.053 (2)0.007 (2)0.0016 (19)0.0191 (17)
C80.056 (2)0.060 (2)0.058 (2)0.013 (2)0.0022 (19)0.0272 (17)
C90.043 (2)0.057 (2)0.0519 (19)0.0110 (18)0.0026 (17)0.0212 (17)
C100.056 (2)0.064 (2)0.061 (2)0.012 (2)0.004 (2)0.0246 (19)
C110.052 (2)0.070 (3)0.072 (3)0.017 (2)0.000 (2)0.019 (2)
C120.063 (3)0.058 (2)0.059 (2)0.024 (2)0.005 (2)0.0159 (19)
C130.057 (2)0.051 (2)0.0507 (19)0.0033 (19)0.0162 (18)0.0179 (16)
C140.063 (3)0.055 (2)0.055 (2)0.010 (2)0.011 (2)0.0196 (18)
C150.072 (3)0.0383 (19)0.052 (2)0.006 (2)0.013 (2)0.0118 (16)
C160.066 (3)0.0443 (19)0.051 (2)0.0110 (19)0.0120 (19)0.0125 (17)
C170.074 (3)0.065 (2)0.060 (2)0.010 (2)0.016 (2)0.0232 (19)
C180.080 (3)0.068 (2)0.064 (2)0.016 (2)0.011 (2)0.0317 (19)
C190.083 (3)0.054 (2)0.053 (2)0.007 (2)0.001 (2)0.0183 (19)
C200.078 (3)0.063 (2)0.074 (3)0.004 (2)0.013 (2)0.026 (2)
C210.075 (3)0.068 (2)0.061 (2)0.007 (2)0.015 (2)0.0262 (19)
Geometric parameters (Å, º) top
Br1—C41.895 (4)C10—H10A0.9700
Br2—C191.906 (4)C10—H10B0.9700
S1—C91.819 (4)C11—C121.518 (6)
S1—C131.820 (4)C11—H11A0.9700
O1—C71.210 (5)C11—H11B0.9700
O2—C151.209 (5)C12—C131.518 (5)
C1—C21.389 (5)C12—H12A0.9700
C1—C61.395 (5)C12—H12B0.9700
C1—C71.497 (6)C13—C141.523 (5)
C2—C31.386 (6)C13—H13A0.9800
C2—H2A0.9300C14—C151.517 (6)
C3—C41.377 (6)C14—H14A0.9700
C3—H3A0.9300C14—H14B0.9700
C4—C51.375 (6)C15—C161.500 (5)
C5—C61.381 (6)C16—C211.389 (6)
C5—H5A0.9300C16—C171.396 (6)
C6—H6A0.9300C17—C181.385 (6)
C7—C81.513 (5)C17—H17A0.9300
C8—C91.523 (6)C18—C191.354 (6)
C8—H8A0.9700C18—H18A0.9300
C8—H8B0.9700C19—C201.376 (7)
C9—C101.512 (5)C20—C211.385 (6)
C9—H9A0.9800C20—H20A0.9300
C10—C111.528 (6)C21—H21A0.9300
C9—S1—C13101.01 (18)C12—C11—H11B109.1
C2—C1—C6117.9 (4)C10—C11—H11B109.1
C2—C1—C7123.7 (4)H11A—C11—H11B107.8
C6—C1—C7118.4 (4)C11—C12—C13114.0 (3)
C3—C2—C1121.6 (4)C11—C12—H12A108.8
C3—C2—H2A119.2C13—C12—H12A108.8
C1—C2—H2A119.2C11—C12—H12B108.8
C4—C3—C2118.6 (4)C13—C12—H12B108.8
C4—C3—H3A120.7H12A—C12—H12B107.7
C2—C3—H3A120.7C12—C13—C14114.1 (3)
C5—C4—C3121.6 (4)C12—C13—S1110.2 (3)
C5—C4—Br1119.8 (3)C14—C13—S1104.6 (3)
C3—C4—Br1118.6 (3)C12—C13—H13A109.2
C4—C5—C6119.1 (4)C14—C13—H13A109.2
C4—C5—H5A120.5S1—C13—H13A109.2
C6—C5—H5A120.5C15—C14—C13116.0 (3)
C5—C6—C1121.2 (4)C15—C14—H14A108.3
C5—C6—H6A119.4C13—C14—H14A108.3
C1—C6—H6A119.4C15—C14—H14B108.3
O1—C7—C1120.8 (4)C13—C14—H14B108.3
O1—C7—C8121.6 (4)H14A—C14—H14B107.4
C1—C7—C8117.6 (3)O2—C15—C16121.3 (4)
C7—C8—C9114.9 (3)O2—C15—C14121.8 (4)
C7—C8—H8A108.5C16—C15—C14117.0 (4)
C9—C8—H8A108.5C21—C16—C17118.6 (4)
C7—C8—H8B108.5C21—C16—C15122.9 (4)
C9—C8—H8B108.5C17—C16—C15118.5 (4)
H8A—C8—H8B107.5C18—C17—C16120.4 (4)
C10—C9—C8113.7 (3)C18—C17—H17A119.8
C10—C9—S1110.1 (3)C16—C17—H17A119.8
C8—C9—S1106.4 (3)C19—C18—C17119.6 (4)
C10—C9—H9A108.8C19—C18—H18A120.2
C8—C9—H9A108.8C17—C18—H18A120.2
S1—C9—H9A108.8C18—C19—C20121.5 (4)
C9—C10—C11113.2 (3)C18—C19—Br2120.3 (4)
C9—C10—H10A108.9C20—C19—Br2118.1 (4)
C11—C10—H10A108.9C19—C20—C21119.3 (5)
C9—C10—H10B108.9C19—C20—H20A120.4
C11—C10—H10B108.9C21—C20—H20A120.4
H10A—C10—H10B107.7C20—C21—C16120.5 (4)
C12—C11—C10112.6 (3)C20—C21—H21A119.8
C12—C11—H11A109.1C16—C21—H21A119.8
C10—C11—H11A109.1

Experimental details

Crystal data
Chemical formulaC21H20Br2O2S
Mr496.25
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.484 (4), 12.970 (5), 13.076 (4)
α, β, γ (°)71.14 (3), 79.45 (4), 79.52 (4)
V3)1014.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)4.11
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerSiemens P4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.381, 0.459
No. of measured, independent and
observed [I > 2σ(I)] reflections
4549, 3548, 2220
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.112, 1.07
No. of reflections3548
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by the NSFC·SRF for ROCS, SEM, the Present Fund of GUCAS and the Opening Fund of the Laboratory of Organic Solids, CAS, China

References

First citationBarco, A., Baricordi, N., Benetti, S., Risi, C. D. & Pollini, G. P. (2006). Tetrahedron Lett. 47, 8087–8090.  CrossRef CAS Google Scholar
First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationKnapp, S., Gonzalez, S., Myers, D. S., Eckman, L. L. & Bewley, C. A. (2002). Org. Lett. 4, 4337–4339.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOliveira, M. G., Soares, B. G., Santos, C. M. F., Diniz, M. F. & Dutra, R. C. L. (1999). Macromol. Rapid Commun. 20, 526–531.  CrossRef CAS Google Scholar
First citationQi, X., Lee, S. H., Yoon, J. & Lee, Y. S. (2004). Tetrahedron, 60, 3599–3603.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Cauble, D. F., Berro, A. J., Bauld, N. L. & Krische, M. J. (2004). J. Org. Chem. 69, 7979–7984.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, J., Felton, G. A. N., Bauld, N. L. & Krische, M. J. (2004). J. Am. Chem. Soc. 126, 1634–1635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYao, W., Liao, M., Zhang, X., Xu, H. & Wang, J. (2003). Eur. J. Org. Chem. pp. 1784–1788.  CrossRef Google Scholar
First citationZhang, L. & Zhang, Y. J. (2006). Tetrahedron Lett. 47 775–778.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1047
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds