organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Di­hydro-2H-1,3-di­thiolo[4,5-b][1,4]dioxine-2-thione

aDepartment of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China, and bDepartment of Chemical Engineering, Ningbo University of Technology, Cuibai Road 89, Ningbo, People's Republic of China
*Correspondence e-mail: xunwenxiao@gmail.com

(Received 7 April 2011; accepted 9 May 2011; online 14 May 2011)

The title mol­ecule, C5H4O2S3, consists of a planar [mean deviation = 0.020 (1) Å] 1,3-dithiole-2-thione unit with an ethyl­enedi­oxy group in the 4,5-positions. The dioxine ring is in a twist-chair conformation.

Related literature

For related structures, see: Kanchanadevi et al. (2010[Kanchanadevi, J., Dhayalan, V., Mohanakrishnan, A. K., Anbalagan, G., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o3264-o3265.]); Rizvi et al. (2010[Rizvi, S. U. F., Siddiqui, H. L., Hussain, T., Azam, M. & Parvez, M. (2010). Acta Cryst. E66, o744.]); Suzuki et al. (1989[Suzuki, T., Yamochi, H. & Srdanov, G. (1989). J. Am. Chem. Soc. 111, 3108-3109.]); Xu et al. (2009[Xu, J., Xu, H., Quan, J., Sha, F. & Yao, C. (2009). Acta Cryst. E65, o668.]); Sugumar et al. (2008[Sugumar, P., Ranjith, S., Clement, J. A., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1049.]). For the synthesis of the title compound, see: Hartke & Lindenblatt (1990[Hartke, K. & Lindenblatt, T. (1990). Synthesis, pp. 281-283.]); Suzuki et al. (1989[Suzuki, T., Yamochi, H. & Srdanov, G. (1989). J. Am. Chem. Soc. 111, 3108-3109.]).

[Scheme 1]

Experimental

Crystal data
  • C5H4O2S3

  • Mr = 192.26

  • Monoclinic, P 21 /n

  • a = 5.4645 (8) Å

  • b = 13.430 (2) Å

  • c = 9.8189 (16) Å

  • β = 91.294 (3)°

  • V = 720.41 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 223 K

  • 0.55 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.605, Tmax = 0.826

  • 3605 measured reflections

  • 1332 independent reflections

  • 1199 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.17

  • 1332 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is a precursor to ethylenedioxotetrathiafulvalene(EDO-TTF). EDO-TTF has attracted much interest due to ultrafast gigantic photo-response in organic salts (EDO-TTF)2PF6.

In the title compound (Fig.1), the five-membered ring and attached S and O atoms are essentially coplanar, mean deviation from the mean plane 0.020 (1) Å. The C—S bond lengths range from 1.728 to 1.748 Å, it is smaller than that typical of C—S bond lengths, 1.82 Å, suggesting a degree of conjugation in the dithiole-2-thione system. The dioxine ring is in a twist-chair conformation.

Related literature top

For related structures, see: Kanchanadevi et al. (2010); Rizvi et al. (2010); Suzuki et al. (1989); Xu et al. (2009); Sugumar et al. (2008). For the synthesis of the title compound, see: Hartke & Lindenblatt (1990); Suzuki et al. (1989).

Experimental top

The C5H4S3O2 was prepared according to the literature (Suzuki et al., 1989).Yellow crystals were obtained from slow evaporation of a dichloromethane solution at room temperature.

Refinement top

The H atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.98 Å for methylene H-atoms, with Uiso(H) = 1.2(C) Ueq of the carrier atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing diagram view along the crystallographic b axis.
5,6-Dihydro-2H-1,3-dithiolo[4,5-b][1,4]dioxine-2-thione top
Crystal data top
C5H4O2S3F(000) = 392
Mr = 192.26Dx = 1.773 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 3311 reflections
a = 5.4645 (8) Åθ = 3.0–27.5°
b = 13.430 (2) ŵ = 0.96 mm1
c = 9.8189 (16) ÅT = 223 K
β = 91.294 (3)°Block, yellow
V = 720.41 (19) Å30.55 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
1332 independent reflections
Radiation source: fine-focus sealed tube1199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scansh = 66
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1416
Tmin = 0.605, Tmax = 0.826l = 119
3605 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.013P]
where P = (Fo2 + 2Fc2)/3
1332 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C5H4O2S3V = 720.41 (19) Å3
Mr = 192.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4645 (8) ŵ = 0.96 mm1
b = 13.430 (2) ÅT = 223 K
c = 9.8189 (16) Å0.55 × 0.20 × 0.20 mm
β = 91.294 (3)°
Data collection top
Rigaku Saturn
diffractometer
1332 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1199 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.826Rint = 0.021
3605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.17Δρmax = 0.39 e Å3
1332 reflectionsΔρmin = 0.41 e Å3
92 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.15131 (11)0.20574 (4)1.05803 (6)0.0394 (2)
S20.77835 (10)0.36220 (4)0.99990 (5)0.03292 (19)
S31.18427 (10)0.33798 (4)0.81841 (6)0.03387 (19)
O10.6189 (3)0.51707 (11)0.85167 (16)0.0381 (4)
O21.0238 (3)0.49167 (11)0.66988 (16)0.0367 (4)
C11.0418 (4)0.29782 (14)0.9629 (2)0.0282 (5)
C20.7954 (4)0.44643 (15)0.8651 (2)0.0276 (4)
C30.9812 (4)0.43492 (14)0.7810 (2)0.0280 (5)
C40.6183 (4)0.55689 (18)0.7147 (2)0.0412 (6)
H4A0.51990.61790.71150.049*
H4B0.54190.50860.65230.049*
C50.8699 (5)0.57960 (16)0.6687 (2)0.0413 (6)
H5A0.86070.60690.57610.050*
H5B0.94370.63030.72860.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0427 (4)0.0365 (3)0.0392 (4)0.0112 (2)0.0020 (3)0.0078 (2)
S20.0318 (3)0.0340 (3)0.0333 (3)0.0071 (2)0.0086 (2)0.0068 (2)
S30.0289 (3)0.0393 (3)0.0337 (3)0.0073 (2)0.0071 (2)0.0031 (2)
O10.0372 (8)0.0368 (8)0.0406 (9)0.0126 (7)0.0095 (7)0.0107 (7)
O20.0364 (8)0.0400 (9)0.0340 (9)0.0041 (7)0.0079 (7)0.0105 (6)
C10.0288 (11)0.0264 (11)0.0295 (11)0.0008 (8)0.0001 (9)0.0033 (8)
C20.0276 (10)0.0260 (10)0.0293 (11)0.0013 (8)0.0010 (8)0.0018 (8)
C30.0256 (10)0.0289 (10)0.0296 (11)0.0021 (8)0.0003 (9)0.0015 (8)
C40.0417 (13)0.0424 (12)0.0394 (13)0.0116 (11)0.0019 (10)0.0134 (10)
C50.0499 (14)0.0354 (12)0.0387 (13)0.0029 (10)0.0026 (11)0.0091 (10)
Geometric parameters (Å, º) top
S1—C11.654 (2)O2—C51.450 (3)
S2—C11.725 (2)C2—C31.332 (3)
S2—C21.746 (2)C4—C51.488 (3)
S3—C11.720 (2)C4—H4A0.9800
S3—C31.744 (2)C4—H4B0.9800
O1—C21.357 (2)C5—H5A0.9800
O1—C41.447 (3)C5—H5B0.9800
O2—C31.356 (2)
C1—S2—C296.07 (10)O1—C4—C5112.07 (18)
C1—S3—C396.32 (9)O1—C4—H4A109.2
C2—O1—C4109.56 (15)C5—C4—H4A109.2
C3—O2—C5110.75 (15)O1—C4—H4B109.2
S1—C1—S3122.39 (12)C5—C4—H4B109.2
S1—C1—S2123.28 (13)H4A—C4—H4B107.9
S3—C1—S2114.33 (12)O2—C5—C4111.73 (18)
C3—C2—O1124.84 (18)O2—C5—H5A109.3
C3—C2—S2116.70 (16)C4—C5—H5A109.3
O1—C2—S2118.45 (14)O2—C5—H5B109.3
C2—C3—O2125.52 (18)C4—C5—H5B109.3
C2—C3—S3116.52 (16)H5A—C5—H5B107.9
O2—C3—S3117.97 (14)
C3—S3—C1—S1177.35 (13)O1—C2—C3—S3179.51 (15)
C3—S3—C1—S22.19 (13)S2—C2—C3—S30.7 (2)
C2—S2—C1—S1177.05 (14)C5—O2—C3—C211.6 (3)
C2—S2—C1—S32.48 (13)C5—O2—C3—S3168.64 (15)
C4—O1—C2—C317.2 (3)C1—S3—C3—C20.90 (19)
C4—O1—C2—S2161.53 (15)C1—S3—C3—O2179.31 (15)
C1—S2—C2—C31.93 (18)C2—O1—C4—C545.5 (3)
C1—S2—C2—O1179.19 (16)C3—O2—C5—C439.8 (2)
O1—C2—C3—O20.3 (3)O1—C4—C5—O259.5 (3)
S2—C2—C3—O2179.05 (15)

Experimental details

Crystal data
Chemical formulaC5H4O2S3
Mr192.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)5.4645 (8), 13.430 (2), 9.8189 (16)
β (°) 91.294 (3)
V3)720.41 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.55 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.605, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
3605, 1332, 1199
Rint0.021
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.17
No. of reflections1332
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.41

Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the NNS (20902051), the Education Committee of Zhejiang Province (Z200906833), Ningbo Natural Science (2010 A610186) and the Ministry of Education Scientific Research Foundation for Returned Overseas Scholars.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHartke, K. & Lindenblatt, T. (1990). Synthesis, pp. 281–283.  CrossRef Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKanchanadevi, J., Dhayalan, V., Mohanakrishnan, A. K., Anbalagan, G., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o3264–o3265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRizvi, S. U. F., Siddiqui, H. L., Hussain, T., Azam, M. & Parvez, M. (2010). Acta Cryst. E66, o744.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugumar, P., Ranjith, S., Clement, J. A., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuzuki, T., Yamochi, H. & Srdanov, G. (1989). J. Am. Chem. Soc. 111, 3108–3109.  CrossRef CAS Google Scholar
First citationXu, J., Xu, H., Quan, J., Sha, F. & Yao, C. (2009). Acta Cryst. E65, o668.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds