organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-methyl-2,6-di­phenyl­piperidine-1-carboxyl­ate

aDepartment of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul-143 701, Republic of Korea
*Correspondence e-mail: sampath@konkuk.ac.kr

(Received 18 April 2011; accepted 19 May 2011; online 25 May 2011)

In the title compound, C21H25NO2, the piperidine ring adopts a twisted boat conformation characterized by puckering parameters θ = 89.5 (1) and φ = 257.5 (2)°. The phenyl groups are located in equatorial and axial positions on the central piperidine ring, while the methyl group is in an equatorial position. The dihedral angle between the phenyl rings is 49.8 (1)°. An intra­molecular C—H⋯O inter­action occurs. The crystal structure features weak inter­molecular C—H⋯O inter­actions and a stabilizing inter­molecular C—H⋯π contact involving the axial phenyl ring.

Related literature

For the biological activity of related piperidines, see: Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981-2985.]); Aridoss et al. (2007[Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188-204.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For the conformation of piperidine derivatives, see: Ravindran et al. (1991[Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem. 56, 4833-4840.]); Krishna Kumar & Krishna Pillay (1996[Krishna Kumar, R. & Krishna Pillay, M. (1996). Indian J. Chem. Sect. B, 35, 418-425.]). For the synthesis of the title compound, see: Sampath et al. (2003[Sampath, N., Malathy Sony, S. M., Ponnuswamy, M. N. & Nethaji, M. (2003). Acta Cryst. C59, o346-o348.]); Noller & Baliah (1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO2

  • Mr = 323.42

  • Monoclinic, P 21 /n

  • a = 10.4113 (3) Å

  • b = 10.6073 (6) Å

  • c = 16.2782 (6) Å

  • β = 95.960 (2)°

  • V = 1787.98 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.26 × 0.22 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3698 measured reflections

  • 3502 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.012

  • Standard reflections: 3; every 60 minutes intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.03

  • 3502 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1 0.93 2.91 3.519 (2) 125
C14—H14⋯O2i 0.93 2.82 3.406 (2) 122
C10—H10⋯O1ii 0.93 2.67 3.460 (3) 144
C3—H3BCg1iii 0.97 2.70 3.666 (2) 172
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms, 1996[Harms, K. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Piperidines and its N-substituted derivatives show significant pharmacological properties (Parthiban et al., 2009; Aridoss et al., 2007). Substitution by electron withdrawing groups (CHO, COCH2CH3, COPh, NO, etc.) at N-th position of piperidine ring causes major changes in the ring conformation (Ravindran et al., 1991; Krishna Kumar & Krishna Pillay, 1996). In the title compound (Fig. 1), the ethylacetate group substituting the piperidine ring shows extended conformation and the hetero π electron delocalization through the atoms N1, C20, O1 and O2 causes twisted boat conformation for the piperidine core, with puckering amplitude, QT = 0.718 (1) Å and phase angle = 89.5 (2)° (Nardelli, 1995; Cremer & Pople, 1975).

The phenyl rings at C2 and C6 atoms are oriented in the axial and equatorial positions, respectively, and the dihedral angle between them is 49.8 (1)°. Similarly, the methyl group at C5 is also oriented in equatorial position. All these substitutions are confirmed by the respective torsion angles. In addition, the substitution of ethylacetate group on N1 atom showed extended conformation with respect to the piperidine ring, which is also confirmed by the torsion angles.

The packing diagram of the title compound viewed down a-axis is shown in Fig. 2. The molecules did not present any classical H-bonds. However, the molecules are involved in weak intra- and intermolecular C—H···O interactions (Table 1), which stabilize the molecules in the crystal packing. Interestingly, a C—H···π interaction (C3—H3B···Cg1; Cg1 is the centroid of the ring C13···C18) also helps for the crystal packing.

Related literature top

For the biological activity of related piperidines, see: Parthiban et al. (2009); Aridoss et al. (2007). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1995). For the conformation of piperidine derivatives, see: Ravindran et al. (1991); Krishna Kumar & Krishna Pillay (1996). For the synthesis of the title compound, see: Sampath et al. (2003); Noller & Baliah (1948).

Experimental top

The compound, 3-methyl-2,6-diphenylpiperidin-4-one was obtained by adopting an earlier method (Sampath et al., 2003; Noller & Baliah, 1948) and it was reduced using amalgamated zinc in aqueous methanol solution in the presence of HCl, giving 3-methyl-2,6-diphenylpiperidine as a product. To a well stirred solution of 3,5-dimethyl-2,6-diphenylpiperidin-4-one (2 mM) and triethylamine (4 mM) in freshly distilled benzene (50 ml), a little excess amount of ethylchloroacetate (2.2 mM) in benzene (10 ml) was added drop-wise over about half an hour and stirring was continued until the completion of reaction. The reaction mixture was then poured into water and extracted with dichloromethane. Recrystallization of the title compound using pure ethanol resulted in suitable colorless crystals.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.98 Å for methine, and 0.96 Å for methyl H atoms. The Uiso parameters for H atoms were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with displacement ellipsoid drawn at the 30% probability level. Hydrogen atoms were removed for clarity.
[Figure 2] Fig. 2. A unit cell packing of the crystal structure of the title compound viewed down a-axis.
Ethyl 3-methyl-2,6-diphenylpiperidine-1-carboxylate top
Crystal data top
C21H25NO2F(000) = 696
Mr = 323.42Dx = 1.201 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.4113 (3) Åθ = 0–90°
b = 10.6073 (6) ŵ = 0.60 mm1
c = 16.2782 (6) ÅT = 293 K
β = 95.960 (2)°Needle, colourless
V = 1787.98 (13) Å30.26 × 0.22 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 72.0°, θmin = 4.8°
Graphite monochromatorh = 012
ω scansk = 013
3698 measured reflectionsl = 2019
3502 independent reflections3 standard reflections every 60 min
2428 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.2748P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3502 reflectionsΔρmax = 0.17 e Å3
218 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0022 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H25NO2V = 1787.98 (13) Å3
Mr = 323.42Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.4113 (3) ŵ = 0.60 mm1
b = 10.6073 (6) ÅT = 293 K
c = 16.2782 (6) Å0.26 × 0.22 × 0.18 mm
β = 95.960 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
3698 measured reflections3 standard reflections every 60 min
3502 independent reflections intensity decay: none
2428 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
3502 reflectionsΔρmin = 0.20 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92030 (13)0.42372 (12)0.12110 (7)0.0586 (4)
O20.99447 (12)0.61660 (11)0.15872 (7)0.0516 (3)
N10.90776 (13)0.49725 (13)0.25183 (8)0.0427 (3)
C20.81474 (15)0.39802 (16)0.26812 (10)0.0455 (4)
H20.78410.36200.21420.055*
C30.69751 (17)0.45929 (18)0.30030 (11)0.0516 (4)
H3A0.63700.39390.31230.062*
H3B0.65500.51270.25740.062*
C40.73118 (18)0.5382 (2)0.37787 (12)0.0584 (5)
H4A0.70730.49180.42540.070*
H4B0.68100.61530.37350.070*
C50.87457 (16)0.57150 (17)0.39184 (10)0.0470 (4)
H50.92120.49750.41550.056*
C60.92925 (15)0.60452 (16)0.30998 (9)0.0414 (4)
H60.88200.67770.28570.050*
C71.07053 (16)0.63999 (16)0.32679 (9)0.0435 (4)
C81.16351 (18)0.55226 (19)0.35314 (13)0.0587 (5)
H81.14160.46750.35550.070*
C91.2899 (2)0.5901 (2)0.37612 (15)0.0718 (6)
H91.35160.53010.39420.086*
C101.3249 (2)0.7134 (2)0.37269 (14)0.0680 (6)
H101.40950.73780.38880.082*
C111.2344 (2)0.8007 (2)0.34532 (14)0.0686 (6)
H111.25760.88510.34210.082*
C121.10831 (19)0.76434 (18)0.32231 (12)0.0563 (5)
H121.04770.82490.30340.068*
C130.87742 (17)0.28998 (16)0.31910 (10)0.0459 (4)
C140.81423 (19)0.22492 (19)0.37698 (11)0.0565 (5)
H140.73390.25280.38970.068*
C150.8691 (2)0.1193 (2)0.41592 (12)0.0676 (6)
H150.82560.07680.45460.081*
C160.9876 (2)0.0766 (2)0.39778 (13)0.0685 (6)
H161.02410.00510.42370.082*
C171.0513 (2)0.1403 (2)0.34120 (13)0.0657 (5)
H171.13180.11210.32910.079*
C180.99719 (19)0.24578 (18)0.30200 (12)0.0558 (5)
H181.04160.28790.26360.067*
C190.8953 (2)0.6789 (2)0.45370 (11)0.0642 (5)
H19A0.98560.69920.46220.096*
H19B0.86590.65360.50520.096*
H19C0.84760.75150.43280.096*
C200.93902 (16)0.50599 (16)0.17288 (10)0.0440 (4)
C211.0362 (2)0.6314 (2)0.07700 (12)0.0637 (5)
H21A0.96440.61690.03510.076*
H21B1.10390.57130.06880.076*
C221.0848 (3)0.7612 (2)0.07088 (15)0.0802 (7)
H22A1.11320.77400.01720.120*
H22B1.15580.77440.11250.120*
H22C1.01690.81990.07890.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0793 (9)0.0536 (8)0.0446 (7)0.0032 (7)0.0148 (6)0.0103 (6)
O20.0663 (8)0.0519 (7)0.0388 (6)0.0084 (6)0.0165 (5)0.0009 (5)
N10.0506 (8)0.0425 (7)0.0355 (7)0.0050 (6)0.0076 (6)0.0007 (6)
C20.0476 (9)0.0477 (9)0.0408 (8)0.0065 (7)0.0024 (7)0.0012 (7)
C30.0453 (9)0.0592 (11)0.0500 (10)0.0015 (8)0.0038 (7)0.0055 (8)
C40.0522 (10)0.0690 (13)0.0566 (11)0.0021 (9)0.0179 (8)0.0046 (9)
C50.0513 (9)0.0530 (10)0.0378 (8)0.0001 (8)0.0095 (7)0.0017 (7)
C60.0464 (9)0.0409 (8)0.0376 (8)0.0002 (7)0.0068 (6)0.0019 (6)
C70.0476 (9)0.0451 (9)0.0386 (8)0.0019 (7)0.0077 (7)0.0015 (7)
C80.0526 (11)0.0519 (11)0.0712 (12)0.0010 (9)0.0048 (9)0.0060 (9)
C90.0508 (11)0.0749 (15)0.0881 (16)0.0031 (10)0.0001 (10)0.0103 (12)
C100.0519 (11)0.0813 (15)0.0705 (13)0.0152 (11)0.0052 (9)0.0012 (11)
C110.0689 (13)0.0583 (12)0.0788 (14)0.0205 (11)0.0080 (11)0.0033 (11)
C120.0594 (11)0.0460 (10)0.0630 (11)0.0039 (9)0.0044 (9)0.0018 (8)
C130.0528 (9)0.0429 (9)0.0414 (8)0.0076 (7)0.0023 (7)0.0010 (7)
C140.0594 (11)0.0592 (11)0.0507 (10)0.0094 (9)0.0047 (8)0.0073 (9)
C150.0900 (16)0.0600 (12)0.0514 (11)0.0104 (11)0.0015 (10)0.0136 (9)
C160.0953 (16)0.0522 (12)0.0539 (11)0.0051 (11)0.0124 (11)0.0025 (9)
C170.0695 (13)0.0556 (12)0.0705 (13)0.0114 (10)0.0005 (10)0.0046 (10)
C180.0613 (11)0.0481 (10)0.0591 (10)0.0012 (9)0.0116 (9)0.0002 (8)
C190.0748 (13)0.0732 (14)0.0466 (10)0.0042 (11)0.0162 (9)0.0146 (9)
C200.0492 (9)0.0448 (9)0.0389 (8)0.0021 (7)0.0094 (7)0.0016 (7)
C210.0800 (13)0.0707 (13)0.0445 (10)0.0055 (11)0.0266 (9)0.0037 (9)
C220.0898 (16)0.0844 (16)0.0706 (13)0.0249 (13)0.0288 (12)0.0115 (12)
Geometric parameters (Å, º) top
O1—C201.2148 (19)C10—C111.362 (3)
O2—C201.338 (2)C10—H100.9300
O2—C211.4500 (19)C11—C121.382 (3)
N1—C201.3612 (19)C11—H110.9300
N1—C21.473 (2)C12—H120.9300
N1—C61.482 (2)C13—C181.387 (2)
C2—C131.522 (2)C13—C141.388 (2)
C2—C31.523 (2)C14—C151.382 (3)
C2—H20.9800C14—H140.9300
C3—C41.525 (3)C15—C161.375 (3)
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—C171.368 (3)
C4—C51.528 (2)C16—H160.9300
C4—H4A0.9700C17—C181.379 (3)
C4—H4B0.9700C17—H170.9300
C5—C191.521 (2)C18—H180.9300
C5—C61.543 (2)C19—H19A0.9600
C5—H50.9800C19—H19B0.9600
C6—C71.515 (2)C19—H19C0.9600
C6—H60.9800C21—C221.474 (3)
C7—C81.379 (2)C21—H21A0.9700
C7—C121.381 (2)C21—H21B0.9700
C8—C91.389 (3)C22—H22A0.9600
C8—H80.9300C22—H22B0.9600
C9—C101.361 (3)C22—H22C0.9600
C9—H90.9300
C20—O2—C21115.37 (14)C10—C11—C12120.3 (2)
C20—N1—C2116.41 (13)C10—C11—H11119.9
C20—N1—C6121.04 (13)C12—C11—H11119.9
C2—N1—C6119.48 (12)C7—C12—C11121.33 (19)
N1—C2—C13112.56 (13)C7—C12—H12119.3
N1—C2—C3108.81 (14)C11—C12—H12119.3
C13—C2—C3116.58 (14)C18—C13—C14117.88 (17)
N1—C2—H2106.0C18—C13—C2119.25 (15)
C13—C2—H2106.0C14—C13—C2122.56 (16)
C3—C2—H2106.0C15—C14—C13120.83 (19)
C2—C3—C4113.29 (15)C15—C14—H14119.6
C2—C3—H3A108.9C13—C14—H14119.6
C4—C3—H3A108.9C16—C15—C14120.4 (2)
C2—C3—H3B108.9C16—C15—H15119.8
C4—C3—H3B108.9C14—C15—H15119.8
H3A—C3—H3B107.7C17—C16—C15119.4 (2)
C3—C4—C5112.78 (14)C17—C16—H16120.3
C3—C4—H4A109.0C15—C16—H16120.3
C5—C4—H4A109.0C16—C17—C18120.6 (2)
C3—C4—H4B109.0C16—C17—H17119.7
C5—C4—H4B109.0C18—C17—H17119.7
H4A—C4—H4B107.8C17—C18—C13120.92 (19)
C19—C5—C4109.96 (15)C17—C18—H18119.5
C19—C5—C6111.23 (15)C13—C18—H18119.5
C4—C5—C6111.50 (14)C5—C19—H19A109.5
C19—C5—H5108.0C5—C19—H19B109.5
C4—C5—H5108.0H19A—C19—H19B109.5
C6—C5—H5108.0C5—C19—H19C109.5
N1—C6—C7112.66 (13)H19A—C19—H19C109.5
N1—C6—C5109.43 (13)H19B—C19—H19C109.5
C7—C6—C5109.80 (13)O1—C20—O2123.46 (15)
N1—C6—H6108.3O1—C20—N1124.70 (16)
C7—C6—H6108.3O2—C20—N1111.84 (14)
C5—C6—H6108.3O2—C21—C22107.49 (17)
C8—C7—C12117.81 (17)O2—C21—H21A110.2
C8—C7—C6121.71 (16)C22—C21—H21A110.2
C12—C7—C6120.28 (16)O2—C21—H21B110.2
C7—C8—C9120.24 (19)C22—C21—H21B110.2
C7—C8—H8119.9H21A—C21—H21B108.5
C9—C8—H8119.9C21—C22—H22A109.5
C10—C9—C8121.1 (2)C21—C22—H22B109.5
C10—C9—H9119.4H22A—C22—H22B109.5
C8—C9—H9119.4C21—C22—H22C109.5
C9—C10—C11119.2 (2)H22A—C22—H22C109.5
C9—C10—H10120.4H22B—C22—H22C109.5
C11—C10—H10120.4
C20—N1—C2—C13108.65 (16)C8—C9—C10—C110.8 (4)
C6—N1—C2—C1390.94 (17)C9—C10—C11—C120.8 (3)
C20—N1—C2—C3120.56 (16)C8—C7—C12—C111.5 (3)
C6—N1—C2—C339.84 (19)C6—C7—C12—C11173.46 (16)
N1—C2—C3—C457.33 (19)C10—C11—C12—C70.4 (3)
C13—C2—C3—C471.2 (2)N1—C2—C13—C1841.5 (2)
C2—C3—C4—C517.3 (2)C3—C2—C13—C18168.23 (16)
C3—C4—C5—C19163.67 (16)N1—C2—C13—C14145.07 (16)
C3—C4—C5—C639.8 (2)C3—C2—C13—C1418.3 (2)
C20—N1—C6—C762.3 (2)C18—C13—C14—C150.2 (3)
C2—N1—C6—C7138.25 (14)C2—C13—C14—C15173.29 (17)
C20—N1—C6—C5175.28 (14)C13—C14—C15—C160.1 (3)
C2—N1—C6—C515.8 (2)C14—C15—C16—C170.5 (3)
C19—C5—C6—N1179.64 (15)C15—C16—C17—C180.5 (3)
C4—C5—C6—N157.23 (19)C16—C17—C18—C130.2 (3)
C19—C5—C6—C755.50 (19)C14—C13—C18—C170.2 (3)
C4—C5—C6—C7178.64 (15)C2—C13—C18—C17173.55 (17)
N1—C6—C7—C853.5 (2)C21—O2—C20—O12.2 (3)
C5—C6—C7—C868.8 (2)C21—O2—C20—N1177.33 (15)
N1—C6—C7—C12131.73 (16)C2—N1—C20—O117.4 (2)
C5—C6—C7—C12106.04 (18)C6—N1—C20—O1177.46 (16)
C12—C7—C8—C91.6 (3)C2—N1—C20—O2163.14 (14)
C6—C7—C8—C9173.36 (18)C6—N1—C20—O23.1 (2)
C7—C8—C9—C100.4 (3)C20—O2—C21—C22175.60 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.982.282.749 (2)109
C18—H18···O10.932.913.519 (2)125
C14—H14···O2i0.932.823.406 (2)122
C10—H10···O1ii0.932.673.460 (3)144
C3—H3B···Cg1iii0.972.703.666 (2)172
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H25NO2
Mr323.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.4113 (3), 10.6073 (6), 16.2782 (6)
β (°) 95.960 (2)
V3)1787.98 (13)
Z4
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3698, 3502, 2428
Rint0.012
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.03
No. of reflections3502
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms, 1996), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O10.932.913.519 (2)125
C14—H14···O2i0.932.823.406 (2)122
C10—H10···O1ii0.932.673.460 (3)144
C3—H3B···Cg1iii0.972.703.666 (2)172
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

References

First citationAridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res. 16, 188–204.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKrishna Kumar, R. & Krishna Pillay, M. (1996). Indian J. Chem. Sect. B, 35, 418–425.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRavindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem. 56, 4833–4840.  CrossRef CAS Web of Science Google Scholar
First citationSampath, N., Malathy Sony, S. M., Ponnuswamy, M. N. & Nethaji, M. (2003). Acta Cryst. C59, o346–o348.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds