organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[6-(6-Acetyl­pyridin-2-yl)pyridin-2-yl]ethanone

aDepartment of Chemistry, Faculty of Arts and Sciences, Zonguldak Karaelmas University, TR-67100 Zonguldak, Turkey, and bSchool of Chemistry, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: sengul@karaelmas.edu.tr

(Received 8 March 2011; accepted 25 April 2011; online 7 May 2011)

In the title compound, C14H12N2O2, the asymmetric unit comprises one half-mol­ecule with an inversion center between the pyridine rings. The rings are trans coplanar with the acetyl groups deviating slightly from the mean planes, making a dihedral angle of 4.63 (4)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, forming a supra­molecular sheet parallel to (100).

Related literature

The compound is of inter­est with respect to supra­molecular chemistry as a precursor for polypyridyl bridging ligands. For related structures, see: Parks et al. (1973[Parks, J. E., Wagner, B. E. & Holm, R. H. (1973). J. Organomet. Chem. 56, 53-66.]); Potts et al. (1993[Potts, K. T., Raiford, K. A. G. & Keshavarz-K, M. (1993). J. Am. Chem. Soc. 115, 2793-2807.]); Zong et al. (2006[Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167-175.]); Şengül et al. (1998)[Sengül, A., Hursthouse, M. B., Coles, S. J. & Gillard, R. D. (1998). Acta Cryst. C54, 661-662.]; Agac et al. (2010[Agac, C., Yilmaz, I., Sengul, A. & Coles, S. J. (2010). Turk. J. Chem. 34, 781-791.]); Iyoda et al. (1990[Iyoda, M., Otsuka, H., Sato, K., Nisato, N. & Oda, M. (1990). Bull. Chem. Soc. Jpn, 63, 80-87.]); Janiak et al. (1999[Janiak, C., Deblon, S., Wu, H.-P., Kolm, M. J., Klüfers, P., Piotrowski, H. & Mayer, P. (1999). Eur. J. Inorg. Chem. 1999, 1507-1521.]); O'Donnell & Steel (2010[O'Donnell, M. A. & Steel, P. J. (2010). Acta Cryst. E66, m1630.]); Kochel (2005[Kochel, A. (2005). Acta Cryst. E61, o926-o927.]). For applications of related structures, see: Parks et al. (1973[Parks, J. E., Wagner, B. E. & Holm, R. H. (1973). J. Organomet. Chem. 56, 53-66.]); Iyoda et al. (1990[Iyoda, M., Otsuka, H., Sato, K., Nisato, N. & Oda, M. (1990). Bull. Chem. Soc. Jpn, 63, 80-87.]); Şengül et al. (2009[Şengül, A., Wang, W.-J. & Coles, S. J. (2009). Polyhedron, 28, 69-76.]); Agac et al. (2010[Agac, C., Yilmaz, I., Sengul, A. & Coles, S. J. (2010). Turk. J. Chem. 34, 781-791.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O2

  • Mr = 240.26

  • Monoclinic, P 21 /c

  • a = 3.9338 (2) Å

  • b = 13.8005 (8) Å

  • c = 10.8728 (6) Å

  • β = 94.437 (4)°

  • V = 588.50 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer with APEXII area detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.982

  • 10564 measured reflections

  • 1336 independent reflections

  • 1220 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.10

  • 1336 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.56 3.2992 (16) 135
Symmetry code: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The principles of supramolecular chemistry provide guidelines for the construction of quite complex molecules or constructs from relatively simple components. In this respect, 6,6'-diacetyl-2,2'-bipyridine, acting as a diketone has been widely used as a precursor or building block for the construction of polypyridine bridging ligands [Şengül et al., 2009; Agac et al., 2010; Potts et al., 1993; Zong et al., 2006]. The well established coordination ability of 2,2'-bipyridine suggests that ligands containing multiple pyridine rings joined through their 2,6-positions would be ideal for the self-assembly of mono-, double-, or triple-stranded helicates containing one or more transition-metal cations and producing a variety of coordination geometries and architectures. This area is therefore of interest with respect to supramolecular chemistry as a precursor for polypyridyl bridging ligands (Janiak et al., 1999; Potts et al., 1993; Zong et al., 2006) and derivatives are important materials for the preparation of oximes or other funcionalities (Iyoda et al., 1990; Parks et al., 1973; Agac et al., 2010).

As a continuation of work on the structures of such compounds (Şengül et al., 1998) the title compound derived from the coupling of 6-bromo-2-acetylpyridine is reported herein. The molecule of the title compound (Fig. 1.) possesses a twofold symmetry where each of the pyridyl rings are trans to each other, forming an essentially planar structure. The bond lengths have normal values (Şengül et al., 1998), and are comparable to those observed in similar compounds (Janiak et al., 1999; O'Donnell & Steel, 2010; Kochel, 2005; Şengül et al. 2009).

In the crystal, molecules are linked through intermolecular C-H···O H-bonds (Table 1) to form a supramolecular network parallel to (100) (Fig. 1).

Related literature top

The compound is of interest with respect to supramolecular chemistry as a precursor for polypyridyl bridging ligands. For related structures, see: Parks et al. (1973); Potts et al. (1993); Zong et al. (2006); Şengül et al. (1998); Agac et al. (2010); Iyoda et al. (1990); Janiak et al. (1999); O'Donnell & Steel (2010); Kochel (2005). For applications of related structures, see: Parks et al. (1973); Iyoda et al. (1990); Şengül et al. (2009); Agac et al. (2010).

Experimental top

The title compound was synthesized by the reported method of homocoupling of aryl halides using Ni(II) complex and zinc in the presence of triphenylphosphine by Janiak et al. (1999). The spectroscopic and analytical data are in good agreement with the reported values in literature by Zong et al., 2006; Potts et al., 1993; Agac et al., 2010 and Parks et al., 1973. The solid was crystallized from dichloromethane to afford colourless needless suitable for X-ray diffraction. Mp.: 178.5–179.5 °C. 1H-NMR (dmso-d6, δp.p.m.): 8.81(d, 2H, J3,4 = 8 Hz, H3,3'), 8.23(d, 2H, J5,4 = 7 Hz, H5,5'), 8.07(dd, 2H, J4,3 = 8.2 Hz, J4,5 = 1 Hz, H4,4'), 2.79(s, 6H, 2xCH3). Calc. for C14H12N2O2: C, 69,99; H, 5,03; N, 11,66 Found: C,62,54; H, 4,54; N, 11,68%. IR (ATR, ν cm-1): 3056 (CHar), 2990 (CHal), 1590 (C=O), 1487 and 1437 (C=N and C=C), 1311, 1182, 1120, 1094, 1071, 995, 861, 748, 720. UV-Vis (MeCN, λmax/nm): 286, 258, 219.

Refinement top

Hydrogen atoms were fixed in idealized positions [0.98 Å (CH3) & 0.95 Å (CH)] and refined using the riding model with Uĩso (H) set to 1.5 and 1.2Ueq(carrier) respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x, -y, -z
[Figure 2] Fig. 2. Intermolecular C=O···H contacts forming a supramolecular sheet along the a axis
1-[6-(6-Acetylpyridin-2-yl)pyridin-2-yl]ethanone top
Crystal data top
C14H12N2O2F(000) = 252
Mr = 240.26Dx = 1.356 Mg m3
Monoclinic, P21/cMelting point: 452 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 3.9338 (2) ÅCell parameters from 10564 reflections
b = 13.8005 (8) Åθ = 2.9–27.5°
c = 10.8728 (6) ŵ = 0.09 mm1
β = 94.437 (4)°T = 120 K
V = 588.50 (6) Å3Rod, colourless
Z = 20.50 × 0.20 × 0.20 mm
Data collection top
Bruker–Nonius Kappa CCD
diffractometer with APEXII area detector
1336 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1220 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.034
ϕ and ω scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 54
Tmin = 0.955, Tmax = 0.982k = 1717
10564 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.237P]
where P = (Fo2 + 2Fc2)/3
1336 reflections(Δ/σ)max = 0.001
83 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H12N2O2V = 588.50 (6) Å3
Mr = 240.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 3.9338 (2) ŵ = 0.09 mm1
b = 13.8005 (8) ÅT = 120 K
c = 10.8728 (6) Å0.50 × 0.20 × 0.20 mm
β = 94.437 (4)°
Data collection top
Bruker–Nonius Kappa CCD
diffractometer with APEXII area detector
1336 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1220 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.982Rint = 0.034
10564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.10Δρmax = 0.26 e Å3
1336 reflectionsΔρmin = 0.19 e Å3
83 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4161 (3)0.54168 (8)0.46613 (10)0.0185 (3)
C20.4431 (3)0.63598 (9)0.51269 (11)0.0234 (3)
H20.56700.64850.58950.028*
C30.2863 (3)0.71096 (9)0.44508 (12)0.0277 (3)
H30.30180.77570.47480.033*
C40.1063 (3)0.69010 (9)0.33338 (12)0.0248 (3)
H40.00110.74020.28460.030*
C50.0871 (3)0.59397 (8)0.29474 (10)0.0197 (3)
C60.1175 (3)0.56675 (9)0.17703 (11)0.0216 (3)
C70.1483 (3)0.46102 (9)0.14615 (11)0.0247 (3)
H7A0.29690.45280.07030.037*
H7B0.24600.42660.21390.037*
H7C0.07800.43460.13410.037*
N10.2396 (2)0.52066 (7)0.35884 (9)0.0190 (2)
O10.2556 (3)0.62953 (7)0.11205 (8)0.0315 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0184 (5)0.0192 (6)0.0174 (5)0.0012 (4)0.0011 (4)0.0013 (4)
C20.0270 (6)0.0206 (6)0.0215 (6)0.0012 (5)0.0047 (5)0.0012 (4)
C30.0333 (7)0.0185 (6)0.0297 (7)0.0004 (5)0.0073 (5)0.0017 (5)
C40.0275 (6)0.0199 (6)0.0259 (6)0.0018 (5)0.0053 (5)0.0032 (5)
C50.0199 (6)0.0200 (6)0.0189 (5)0.0005 (4)0.0012 (4)0.0018 (4)
C60.0210 (6)0.0234 (6)0.0199 (6)0.0019 (4)0.0019 (4)0.0016 (4)
C70.0258 (6)0.0245 (6)0.0225 (6)0.0006 (5)0.0063 (5)0.0017 (5)
N10.0191 (5)0.0197 (5)0.0178 (5)0.0000 (4)0.0014 (4)0.0016 (4)
O10.0384 (6)0.0282 (5)0.0259 (5)0.0068 (4)0.0104 (4)0.0033 (4)
Geometric parameters (Å, º) top
C1—N11.3423 (15)C4—H40.9500
C1—C21.3975 (16)C5—N11.3433 (14)
C1—C1i1.492 (2)C5—C61.5058 (16)
C2—C31.3861 (17)C6—O11.2189 (15)
C2—H20.9500C6—C71.5000 (17)
C3—C41.3878 (17)C7—H7A0.9800
C3—H30.9500C7—H7B0.9800
C4—C51.3919 (17)C7—H7C0.9800
N1—C1—C2122.39 (11)N1—C5—C6116.16 (10)
N1—C1—C1i116.22 (12)C4—C5—C6120.48 (10)
C2—C1—C1i121.39 (13)O1—C6—C7122.48 (11)
C3—C2—C1119.01 (11)O1—C6—C5120.02 (11)
C3—C2—H2120.5C7—C6—C5117.49 (10)
C1—C2—H2120.5C6—C7—H7A109.5
C2—C3—C4119.03 (11)C6—C7—H7B109.5
C2—C3—H3120.5H7A—C7—H7B109.5
C4—C3—H3120.5C6—C7—H7C109.5
C3—C4—C5118.28 (11)H7A—C7—H7C109.5
C3—C4—H4120.9H7B—C7—H7C109.5
C5—C4—H4120.9C1—N1—C5117.92 (10)
N1—C5—C4123.35 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.952.563.2992 (16)135
Symmetry code: (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)3.9338 (2), 13.8005 (8), 10.8728 (6)
β (°) 94.437 (4)
V3)588.50 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerBruker–Nonius Kappa CCD
diffractometer with APEXII area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.955, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10564, 1336, 1220
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.10
No. of reflections1336
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.563.2992 (16)134.8
Symmetry code: (i) x+1, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the research project fund of Zonguldak Karaelmas University (grant No. 2010–13–02–04) and the UK Engineering and Physical Sciences Research Council.

References

First citationAgac, C., Yilmaz, I., Sengul, A. & Coles, S. J. (2010). Turk. J. Chem. 34, 781–791.  CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIyoda, M., Otsuka, H., Sato, K., Nisato, N. & Oda, M. (1990). Bull. Chem. Soc. Jpn, 63, 80–87.  CrossRef CAS Web of Science Google Scholar
First citationJaniak, C., Deblon, S., Wu, H.-P., Kolm, M. J., Klüfers, P., Piotrowski, H. & Mayer, P. (1999). Eur. J. Inorg. Chem. 1999, 1507–1521.  CrossRef Google Scholar
First citationKochel, A. (2005). Acta Cryst. E61, o926–o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationO'Donnell, M. A. & Steel, P. J. (2010). Acta Cryst. E66, m1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParks, J. E., Wagner, B. E. & Holm, R. H. (1973). J. Organomet. Chem. 56, 53–66.  CrossRef CAS Web of Science Google Scholar
First citationPotts, K. T., Raiford, K. A. G. & Keshavarz-K, M. (1993). J. Am. Chem. Soc. 115, 2793–2807.  CrossRef CAS Google Scholar
First citationSengül, A., Hursthouse, M. B., Coles, S. J. & Gillard, R. D. (1998). Acta Cryst. C54, 661–662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞengül, A., Wang, W.-J. & Coles, S. J. (2009). Polyhedron, 28, 69–76.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167–175.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds