organic compounds
1-[6-(6-Acetylpyridin-2-yl)pyridin-2-yl]ethanone
aDepartment of Chemistry, Faculty of Arts and Sciences, Zonguldak Karaelmas University, TR-67100 Zonguldak, Turkey, and bSchool of Chemistry, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: sengul@karaelmas.edu.tr
In the title compound, C14H12N2O2, the comprises one half-molecule with an inversion center between the pyridine rings. The rings are trans coplanar with the acetyl groups deviating slightly from the mean planes, making a dihedral angle of 4.63 (4)°. In the crystal, molecules are linked by weak intermolecular C—H⋯O hydrogen bonds, forming a supramolecular sheet parallel to (100).
Related literature
The compound is of interest with respect to supramolecular chemistry as a precursor for polypyridyl bridging ligands. For related structures, see: Parks et al. (1973); Potts et al. (1993); Zong et al. (2006); Şengül et al. (1998); Agac et al. (2010); Iyoda et al. (1990); Janiak et al. (1999); O'Donnell & Steel (2010); Kochel (2005). For applications of related structures, see: Parks et al. (1973); Iyoda et al. (1990); Şengül et al. (2009); Agac et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681101556X/bq2286sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681101556X/bq2286Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681101556X/bq2286Isup3.cml
The title compound was synthesized by the reported method of homocoupling of aryl halides using Ni(II) complex and zinc in the presence of triphenylphosphine by Janiak et al. (1999). The spectroscopic and analytical data are in good agreement with the reported values in literature by Zong et al., 2006; Potts et al., 1993; Agac et al., 2010 and Parks et al., 1973. The solid was crystallized from dichloromethane to afford colourless needless suitable for X-ray diffraction. Mp.: 178.5–179.5 °C. 1H-NMR (dmso-d6, δp.p.m.): 8.81(d, 2H, J3,4 = 8 Hz, H3,3'), 8.23(d, 2H, J5,4 = 7 Hz, H5,5'), 8.07(dd, 2H, J4,3 = 8.2 Hz, J4,5 = 1 Hz, H4,4'), 2.79(s, 6H, 2xCH3). Calc. for C14H12N2O2: C, 69,99; H, 5,03; N, 11,66 Found: C,62,54; H, 4,54; N, 11,68%. IR (ATR, ν cm-1): 3056 (CHar), 2990 (CHal), 1590 (C=O), 1487 and 1437 (C=N and C=C), 1311, 1182, 1120, 1094, 1071, 995, 861, 748, 720. UV-Vis (MeCN, λmax/nm): 286, 258, 219.
Hydrogen atoms were fixed in idealized positions [0.98 Å (CH3) & 0.95 Å (CH)] and refined using the riding model with Uĩso (H) set to 1.5 and 1.2Ueq(carrier) respectively.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C14H12N2O2 | F(000) = 252 |
Mr = 240.26 | Dx = 1.356 Mg m−3 |
Monoclinic, P21/c | Melting point: 452 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9338 (2) Å | Cell parameters from 10564 reflections |
b = 13.8005 (8) Å | θ = 2.9–27.5° |
c = 10.8728 (6) Å | µ = 0.09 mm−1 |
β = 94.437 (4)° | T = 120 K |
V = 588.50 (6) Å3 | Rod, colourless |
Z = 2 | 0.50 × 0.20 × 0.20 mm |
Bruker–Nonius Kappa CCD diffractometer with APEXII area detector | 1336 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 1220 reflections with I > 2σ(I) |
10cm confocal mirrors monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | h = −5→4 |
Tmin = 0.955, Tmax = 0.982 | k = −17→17 |
10564 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.237P] where P = (Fo2 + 2Fc2)/3 |
1336 reflections | (Δ/σ)max = 0.001 |
83 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C14H12N2O2 | V = 588.50 (6) Å3 |
Mr = 240.26 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.9338 (2) Å | µ = 0.09 mm−1 |
b = 13.8005 (8) Å | T = 120 K |
c = 10.8728 (6) Å | 0.50 × 0.20 × 0.20 mm |
β = 94.437 (4)° |
Bruker–Nonius Kappa CCD diffractometer with APEXII area detector | 1336 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 1220 reflections with I > 2σ(I) |
Tmin = 0.955, Tmax = 0.982 | Rint = 0.034 |
10564 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.26 e Å−3 |
1336 reflections | Δρmin = −0.19 e Å−3 |
83 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4161 (3) | 0.54168 (8) | 0.46613 (10) | 0.0185 (3) | |
C2 | 0.4431 (3) | 0.63598 (9) | 0.51269 (11) | 0.0234 (3) | |
H2 | 0.5670 | 0.6485 | 0.5895 | 0.028* | |
C3 | 0.2863 (3) | 0.71096 (9) | 0.44508 (12) | 0.0277 (3) | |
H3 | 0.3018 | 0.7757 | 0.4748 | 0.033* | |
C4 | 0.1063 (3) | 0.69010 (9) | 0.33338 (12) | 0.0248 (3) | |
H4 | −0.0011 | 0.7402 | 0.2846 | 0.030* | |
C5 | 0.0871 (3) | 0.59397 (8) | 0.29474 (10) | 0.0197 (3) | |
C6 | −0.1175 (3) | 0.56675 (9) | 0.17703 (11) | 0.0216 (3) | |
C7 | −0.1483 (3) | 0.46102 (9) | 0.14615 (11) | 0.0247 (3) | |
H7A | −0.2969 | 0.4528 | 0.0703 | 0.037* | |
H7B | −0.2460 | 0.4266 | 0.2139 | 0.037* | |
H7C | 0.0780 | 0.4346 | 0.1341 | 0.037* | |
N1 | 0.2396 (2) | 0.52066 (7) | 0.35884 (9) | 0.0190 (2) | |
O1 | −0.2556 (3) | 0.62953 (7) | 0.11205 (8) | 0.0315 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0184 (5) | 0.0192 (6) | 0.0174 (5) | −0.0012 (4) | −0.0011 (4) | 0.0013 (4) |
C2 | 0.0270 (6) | 0.0206 (6) | 0.0215 (6) | −0.0012 (5) | −0.0047 (5) | −0.0012 (4) |
C3 | 0.0333 (7) | 0.0185 (6) | 0.0297 (7) | 0.0004 (5) | −0.0073 (5) | −0.0017 (5) |
C4 | 0.0275 (6) | 0.0199 (6) | 0.0259 (6) | 0.0018 (5) | −0.0053 (5) | 0.0032 (5) |
C5 | 0.0199 (6) | 0.0200 (6) | 0.0189 (5) | 0.0005 (4) | −0.0012 (4) | 0.0018 (4) |
C6 | 0.0210 (6) | 0.0234 (6) | 0.0199 (6) | 0.0019 (4) | −0.0019 (4) | 0.0016 (4) |
C7 | 0.0258 (6) | 0.0245 (6) | 0.0225 (6) | 0.0006 (5) | −0.0063 (5) | −0.0017 (5) |
N1 | 0.0191 (5) | 0.0197 (5) | 0.0178 (5) | 0.0000 (4) | −0.0014 (4) | 0.0016 (4) |
O1 | 0.0384 (6) | 0.0282 (5) | 0.0259 (5) | 0.0068 (4) | −0.0104 (4) | 0.0033 (4) |
C1—N1 | 1.3423 (15) | C4—H4 | 0.9500 |
C1—C2 | 1.3975 (16) | C5—N1 | 1.3433 (14) |
C1—C1i | 1.492 (2) | C5—C6 | 1.5058 (16) |
C2—C3 | 1.3861 (17) | C6—O1 | 1.2189 (15) |
C2—H2 | 0.9500 | C6—C7 | 1.5000 (17) |
C3—C4 | 1.3878 (17) | C7—H7A | 0.9800 |
C3—H3 | 0.9500 | C7—H7B | 0.9800 |
C4—C5 | 1.3919 (17) | C7—H7C | 0.9800 |
N1—C1—C2 | 122.39 (11) | N1—C5—C6 | 116.16 (10) |
N1—C1—C1i | 116.22 (12) | C4—C5—C6 | 120.48 (10) |
C2—C1—C1i | 121.39 (13) | O1—C6—C7 | 122.48 (11) |
C3—C2—C1 | 119.01 (11) | O1—C6—C5 | 120.02 (11) |
C3—C2—H2 | 120.5 | C7—C6—C5 | 117.49 (10) |
C1—C2—H2 | 120.5 | C6—C7—H7A | 109.5 |
C2—C3—C4 | 119.03 (11) | C6—C7—H7B | 109.5 |
C2—C3—H3 | 120.5 | H7A—C7—H7B | 109.5 |
C4—C3—H3 | 120.5 | C6—C7—H7C | 109.5 |
C3—C4—C5 | 118.28 (11) | H7A—C7—H7C | 109.5 |
C3—C4—H4 | 120.9 | H7B—C7—H7C | 109.5 |
C5—C4—H4 | 120.9 | C1—N1—C5 | 117.92 (10) |
N1—C5—C4 | 123.35 (11) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1ii | 0.95 | 2.56 | 3.2992 (16) | 135 |
Symmetry code: (ii) x+1, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H12N2O2 |
Mr | 240.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 3.9338 (2), 13.8005 (8), 10.8728 (6) |
β (°) | 94.437 (4) |
V (Å3) | 588.50 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.50 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker–Nonius Kappa CCD diffractometer with APEXII area detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.955, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10564, 1336, 1220 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.105, 1.10 |
No. of reflections | 1336 |
No. of parameters | 83 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.19 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.95 | 2.56 | 3.2992 (16) | 134.8 |
Symmetry code: (i) x+1, −y+3/2, z+1/2. |
Acknowledgements
This work was supported by the research project fund of Zonguldak Karaelmas University (grant No. 2010–13–02–04) and the UK Engineering and Physical Sciences Research Council.
References
Agac, C., Yilmaz, I., Sengul, A. & Coles, S. J. (2010). Turk. J. Chem. 34, 781–791. CAS Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Iyoda, M., Otsuka, H., Sato, K., Nisato, N. & Oda, M. (1990). Bull. Chem. Soc. Jpn, 63, 80–87. CrossRef CAS Web of Science Google Scholar
Janiak, C., Deblon, S., Wu, H.-P., Kolm, M. J., Klüfers, P., Piotrowski, H. & Mayer, P. (1999). Eur. J. Inorg. Chem. 1999, 1507–1521. CrossRef Google Scholar
Kochel, A. (2005). Acta Cryst. E61, o926–o927. Web of Science CSD CrossRef IUCr Journals Google Scholar
O'Donnell, M. A. & Steel, P. J. (2010). Acta Cryst. E66, m1630. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parks, J. E., Wagner, B. E. & Holm, R. H. (1973). J. Organomet. Chem. 56, 53–66. CrossRef CAS Web of Science Google Scholar
Potts, K. T., Raiford, K. A. G. & Keshavarz-K, M. (1993). J. Am. Chem. Soc. 115, 2793–2807. CrossRef CAS Google Scholar
Sengül, A., Hursthouse, M. B., Coles, S. J. & Gillard, R. D. (1998). Acta Cryst. C54, 661–662. Web of Science CSD CrossRef IUCr Journals Google Scholar
Şengül, A., Wang, W.-J. & Coles, S. J. (2009). Polyhedron, 28, 69–76. Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167–175. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The principles of supramolecular chemistry provide guidelines for the construction of quite complex molecules or constructs from relatively simple components. In this respect, 6,6'-diacetyl-2,2'-bipyridine, acting as a diketone has been widely used as a precursor or building block for the construction of polypyridine bridging ligands [Şengül et al., 2009; Agac et al., 2010; Potts et al., 1993; Zong et al., 2006]. The well established coordination ability of 2,2'-bipyridine suggests that ligands containing multiple pyridine rings joined through their 2,6-positions would be ideal for the self-assembly of mono-, double-, or triple-stranded helicates containing one or more transition-metal cations and producing a variety of coordination geometries and architectures. This area is therefore of interest with respect to supramolecular chemistry as a precursor for polypyridyl bridging ligands (Janiak et al., 1999; Potts et al., 1993; Zong et al., 2006) and derivatives are important materials for the preparation of oximes or other funcionalities (Iyoda et al., 1990; Parks et al., 1973; Agac et al., 2010).
As a continuation of work on the structures of such compounds (Şengül et al., 1998) the title compound derived from the coupling of 6-bromo-2-acetylpyridine is reported herein. The molecule of the title compound (Fig. 1.) possesses a twofold symmetry where each of the pyridyl rings are trans to each other, forming an essentially planar structure. The bond lengths have normal values (Şengül et al., 1998), and are comparable to those observed in similar compounds (Janiak et al., 1999; O'Donnell & Steel, 2010; Kochel, 2005; Şengül et al. 2009).
In the crystal, molecules are linked through intermolecular C-H···O H-bonds (Table 1) to form a supramolecular network parallel to (100) (Fig. 1).