organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)formamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fangshi.li@njut.edu.cn

(Received 16 March 2011; accepted 25 April 2011; online 7 May 2011)

In the title compound, C12H13N3O2, the dihedral angle between the pyrazole and benzene rings is 50.0 (3)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds to form a three-dimensional network. Two weak C—H⋯π inter­actions reinforce the crystal packing.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the preparation, see: Hosseini-Sarvari & Sharghi (2006[Hosseini-Sarvari, M. & Sharghi, H. (2006). J. Org. Chem. 71, 6652-6654.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N3O2

  • Mr = 231.25

  • Orthorhombic, P 21 21 21

  • a = 8.4220 (17) Å

  • b = 9.2950 (19) Å

  • c = 14.501 (3) Å

  • V = 1135.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.981, Tmax = 0.991

  • 2320 measured reflections

  • 2048 independent reflections

  • 1327 reflections with I > 2σ(I)

  • Rint = 0.088

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.158

  • S = 1.01

  • 2048 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.86 2.01 2.864 (5) 172
C10—H10BCg1ii 0.96 2.85 3.733 (5) 153
C12—H12ACg1iii 0.93 3.03 3.647 (5) 125
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x-1, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{3\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)formamide is an important intermediate for the synthesis of many drugs with antipyretic and analgesic effects. We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. In the crystal, molecules are linked via intermolecular N—H···O hydrogen bond (Table 1) to form a three-dimensional network. The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the rings C1—C6) and (N1/N2/C7-C9) is 50.0 (3)°.

In the crystal, there are one intermolecular N—H···O hydrogen bond and two C—H···π interactions, one is between the methyl hydrogen and the phenyl ring, and the other is between the aldehyde hydrogen and the phenyl ring. The molecules are linked to each other by the intermolecular hydrogen bonds to form a three-dimensional network, which seem to be very effective in the stabilization of the crystal structure (Fig. 2.).

Related literature top

For bond-length data, see: Allen et al. (1987). For the p reparation, see: Hosseini-Sarvari & Sharghi (2006).

Experimental top

The title compound, (I) was prepared by the reaction of aminoantipyrin and formic acid in the presence of zinc oxide reported in literature (Hosseini-Sarvari & Sharghi, 2006). The crystals were obtained by dissolving (I) (0.2 g) in acetone (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with N—H = 0.86Å (for NH), C—H = 0.93, 0.93 and 0.96Å for aromatic, aldehydic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4- yl)formamide top
Crystal data top
C12H13N3O2F(000) = 488
Mr = 231.25Dx = 1.353 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 8.4220 (17) Åθ = 9–13°
b = 9.2950 (19) ŵ = 0.10 mm1
c = 14.501 (3) ÅT = 293 K
V = 1135.2 (4) Å3Block, colorless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1327 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
Graphite monochromatorθmax = 25.3°, θmin = 2.6°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.981, Tmax = 0.991l = 1717
2320 measured reflections3 standard reflections every 200 reflections
2048 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.050P)2 + 0.950P]
where P = (Fo2 + 2Fc2)/3
2048 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H13N3O2V = 1135.2 (4) Å3
Mr = 231.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4220 (17) ŵ = 0.10 mm1
b = 9.2950 (19) ÅT = 293 K
c = 14.501 (3) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1327 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.088
Tmin = 0.981, Tmax = 0.9913 standard reflections every 200 reflections
2320 measured reflections intensity decay: 1%
2048 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2048 reflectionsΔρmin = 0.25 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0661 (4)0.6540 (3)0.6577 (2)0.0585 (9)
N10.0044 (4)0.7935 (4)0.5315 (2)0.0464 (9)
C10.0412 (6)0.5576 (5)0.4655 (3)0.0578 (12)
H1A0.10480.53350.51570.069*
O20.2871 (5)0.8913 (4)0.8637 (2)0.0757 (11)
N20.0004 (5)0.9417 (4)0.5102 (2)0.0524 (10)
C20.0105 (8)0.4577 (5)0.3988 (3)0.0781 (18)
H2A0.05360.36590.40310.094*
N30.1224 (5)0.9449 (4)0.7471 (2)0.0562 (10)
H3A0.07301.00810.77960.067*
C30.0846 (8)0.4939 (6)0.3253 (4)0.0777 (17)
H3B0.10590.42520.28030.093*
C40.1490 (6)0.6293 (6)0.3167 (3)0.0641 (14)
H4A0.21370.65240.26690.077*
C50.1153 (6)0.7298 (5)0.3838 (3)0.0593 (13)
H5A0.15560.82260.37870.071*
C60.0215 (5)0.6931 (5)0.4588 (3)0.0485 (11)
C70.0387 (5)1.0119 (4)0.5892 (3)0.0478 (11)
C80.0694 (5)0.9167 (4)0.6560 (3)0.0425 (10)
C90.0471 (5)0.7744 (5)0.6213 (3)0.0480 (11)
C100.1189 (6)0.9958 (5)0.4451 (3)0.0610 (13)
H10A0.10811.09820.43930.091*
H10B0.22340.97310.46730.091*
H10C0.10300.95150.38600.091*
C110.0424 (7)1.1725 (5)0.5918 (3)0.0712 (16)
H11A0.07501.20390.65190.107*
H11B0.06151.20950.57850.107*
H11C0.11631.20730.54650.107*
C120.2435 (6)0.8781 (5)0.7834 (3)0.0592 (12)
H12A0.30080.81600.74570.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.073 (2)0.0519 (19)0.0506 (18)0.0047 (16)0.0022 (16)0.0143 (15)
N10.056 (2)0.045 (2)0.0383 (18)0.0037 (18)0.0060 (16)0.0059 (16)
C10.069 (3)0.053 (3)0.051 (3)0.012 (3)0.004 (2)0.006 (2)
O20.087 (3)0.080 (2)0.060 (2)0.009 (2)0.0133 (19)0.0047 (19)
N20.071 (3)0.0441 (19)0.0423 (19)0.011 (2)0.0070 (18)0.0030 (17)
C20.127 (5)0.051 (3)0.057 (3)0.010 (3)0.021 (3)0.000 (3)
N30.069 (3)0.054 (2)0.046 (2)0.010 (2)0.0007 (19)0.0117 (19)
C30.119 (5)0.063 (3)0.052 (3)0.024 (4)0.016 (3)0.014 (3)
C40.060 (3)0.087 (4)0.045 (3)0.006 (3)0.007 (2)0.005 (3)
C50.067 (3)0.064 (3)0.047 (3)0.008 (3)0.010 (2)0.001 (2)
C60.050 (3)0.053 (3)0.042 (2)0.000 (2)0.004 (2)0.003 (2)
C70.050 (3)0.046 (2)0.047 (3)0.003 (2)0.005 (2)0.001 (2)
C80.039 (2)0.046 (2)0.042 (2)0.0001 (19)0.0031 (18)0.005 (2)
C90.044 (3)0.061 (3)0.039 (2)0.001 (2)0.0013 (19)0.004 (2)
C100.071 (3)0.062 (3)0.050 (3)0.006 (3)0.001 (2)0.010 (2)
C110.101 (5)0.048 (3)0.065 (3)0.000 (3)0.009 (3)0.007 (2)
C120.059 (3)0.057 (3)0.062 (3)0.004 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
O1—C91.248 (5)C3—H3B0.9300
N1—C91.384 (5)C4—C51.379 (6)
N1—N21.412 (5)C4—H4A0.9300
N1—C61.424 (5)C5—C61.387 (6)
C1—C21.365 (6)C5—H5A0.9300
C1—C61.369 (6)C7—C81.338 (5)
C1—H1A0.9300C7—C111.493 (6)
O2—C121.228 (5)C8—C91.427 (6)
N2—C71.359 (5)C10—H10A0.9600
N2—C101.463 (5)C10—H10B0.9600
C2—C31.375 (8)C10—H10C0.9600
C2—H2A0.9300C11—H11A0.9600
N3—C121.305 (6)C11—H11B0.9600
N3—C81.419 (5)C11—H11C0.9600
N3—H3A0.8600C12—H12A0.9300
C3—C41.376 (7)
C9—N1—N2108.9 (3)C5—C6—N1120.4 (4)
C9—N1—C6124.3 (3)C8—C7—N2109.8 (4)
N2—N1—C6118.3 (3)C8—C7—C11129.7 (4)
C2—C1—C6120.1 (5)N2—C7—C11120.4 (4)
C2—C1—H1A119.9C7—C8—N3127.8 (4)
C6—C1—H1A119.9C7—C8—C9109.4 (4)
C7—N2—N1106.9 (3)N3—C8—C9122.7 (4)
C7—N2—C10123.0 (4)O1—C9—N1123.6 (4)
N1—N2—C10117.4 (4)O1—C9—C8131.7 (4)
C1—C2—C3119.6 (5)N1—C9—C8104.7 (4)
C1—C2—H2A120.2N2—C10—H10A109.5
C3—C2—H2A120.2N2—C10—H10B109.5
C12—N3—C8122.2 (4)H10A—C10—H10B109.5
C12—N3—H3A118.9N2—C10—H10C109.5
C8—N3—H3A118.9H10A—C10—H10C109.5
C2—C3—C4121.6 (5)H10B—C10—H10C109.5
C2—C3—H3B119.2C7—C11—H11A109.5
C4—C3—H3B119.2C7—C11—H11B109.5
C3—C4—C5118.3 (5)H11A—C11—H11B109.5
C3—C4—H4A120.8C7—C11—H11C109.5
C5—C4—H4A120.8H11A—C11—H11C109.5
C4—C5—C6120.3 (5)H11B—C11—H11C109.5
C4—C5—H5A119.8O2—C12—N3124.7 (5)
C6—C5—H5A119.8O2—C12—H12A117.7
C1—C6—C5120.1 (4)N3—C12—H12A117.7
C1—C6—N1119.4 (4)
C9—N1—N2—C75.6 (5)N1—N2—C7—C11175.9 (4)
C6—N1—N2—C7155.0 (4)C10—N2—C7—C1135.6 (7)
C9—N1—N2—C10148.5 (4)N2—C7—C8—N3176.4 (4)
C6—N1—N2—C1062.1 (5)C11—C7—C8—N33.6 (8)
C6—C1—C2—C30.5 (8)N2—C7—C8—C91.2 (5)
C1—C2—C3—C40.5 (9)C11—C7—C8—C9178.8 (5)
C2—C3—C4—C50.4 (8)C12—N3—C8—C7130.2 (5)
C3—C4—C5—C61.4 (7)C12—N3—C8—C947.1 (6)
C2—C1—C6—C50.5 (7)N2—N1—C9—O1175.3 (4)
C2—C1—C6—N1176.6 (4)C6—N1—C9—O128.2 (6)
C4—C5—C6—C11.5 (7)N2—N1—C9—C84.8 (4)
C4—C5—C6—N1175.6 (4)C6—N1—C9—C8151.9 (4)
C9—N1—C6—C161.7 (6)C7—C8—C9—O1177.7 (5)
N2—N1—C6—C1154.0 (4)N3—C8—C9—O10.0 (7)
C9—N1—C6—C5115.4 (5)C7—C8—C9—N12.3 (5)
N2—N1—C6—C528.9 (6)N3—C8—C9—N1180.0 (4)
N1—N2—C7—C84.1 (5)C8—N3—C12—O2174.8 (4)
C10—N2—C7—C8144.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.012.864 (5)172
C10—H10B···Cg1ii0.962.853.733 (5)153
C12—H12A···Cg1iii0.933.033.647 (5)125
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y+3/2, z+3/2; (iii) x, y+3/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H13N3O2
Mr231.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.4220 (17), 9.2950 (19), 14.501 (3)
V3)1135.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2320, 2048, 1327
Rint0.088
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.158, 1.01
No. of reflections2048
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.862.012.864 (5)172
C10—H10B···Cg1ii0.962.853.733 (5)153
C12—H12A···Cg1iii0.933.033.647 (5)125
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y+3/2, z+3/2; (iii) x, y+3/2, z+3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHosseini-Sarvari, M. & Sharghi, H. (2006). J. Org. Chem. 71, 6652–6654.  Web of Science PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds