organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium 4,6-dioxo-2-sulfanyl­idene-1,3-diazinan-5-ide

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 11 April 2011; accepted 3 May 2011; online 7 May 2011)

In the title salt, NH4+·C4H3N2O2S, the asymmetric unit comprises two half-occupied ammonium positions and a 4,6-dioxo-2-sulfanylidene-1,3-diazinan-5-ide anion. The anion shows C2 as well as Cs symmetry and is present in its diketonic tautomeric form. Intra­cyclic angles span a range from 116.64 (9)–124.67 (9)°. Inter­molecular N—H⋯O hydrogen bonds connect the cations and anions to form a three-dimensional network.

Related literature

For the crystal structures of 2-thio­barbituric acid, its hydrate and several of its tautomeric forms, see: Calas & Martinez (1967[Calas, M.-R. & Martinez, J. (1967). C. R. Acad. Sci. Ser. C (Chim.), 265, 631.]); Chierotti et al. (2010[Chierotti, M. R., Ferrero, L., Garino, N., Gobetto, R., Pellegrino, L., Braga, D., Grepioni, F. & Maini, L. (2010). Chem. Eur. J. 16, 4347-4358.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C4H3N2O2S

  • Mr = 161.19

  • Monoclinic, P 2/c

  • a = 11.3308 (4) Å

  • b = 3.9396 (1) Å

  • c = 14.6945 (5) Å

  • β = 98.644 (1)°

  • V = 648.49 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 200 K

  • 0.53 × 0.19 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 1.000

  • 6071 measured reflections

  • 1604 independent reflections

  • 1476 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.067

  • S = 1.10

  • 1604 reflections

  • 116 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯O2i 0.832 (17) 1.971 (17) 2.8025 (12) 179.0 (16)
N2—H72⋯O1ii 0.874 (16) 1.976 (16) 2.8483 (12) 175.7 (15)
N90—H901⋯S1iii 0.902 (17) 2.426 (16) 3.3252 (8) 174.8 (14)
N90—H902⋯O2 0.866 (17) 1.927 (17) 2.7929 (12) 177.7 (16)
N91—H911⋯O1iv 0.88 (2) 1.90 (2) 2.7622 (13) 166.0 (18)
N91—H912⋯O1v 0.87 (2) 2.66 (2) 3.0669 (15) 110.0 (16)
N91—H912⋯S1vi 0.87 (2) 2.62 (2) 3.3069 (3) 136.0 (19)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) [-x, y, -z+{\script{1\over 2}}]; (vi) [x, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Multidentate ligands play a major role in the synthesis of coordination polymers and metal-organic framework compounds (MOFs). Especially derivatives of benzoic acid have found widespread use in this aspect and a variety of these coordination polymers have been characterized in solution and in the solid state. Owing to the desire to synthesize functionalized MOFs whose poresizes or even complete architectural set-ups might easily be influenced upon variation of external parameters such as pH value or the presence and concentration of molecules that might reside inside the pores of these MOFs, chelating ligands related to benzoic acid but with the ability to change their bonding behaviour are necessary. In this aspect, 2-thiobarbituric acid seemed of interest since it may adopt several tautomeric forms whose persistence can be influenced by such external parameters. In order to gather structural information to allow for the tailored synthesis of MOFs based on thiobarbituric acid, we determined the crystal structure of its ammonium salt. The crystal structures of 2-thiobarbituric acid, its hydrate as well as several of its tautomeric forms are apparent in the literature (Calas & Martinez (1967); Chierotti et al. (2010)).

The thiobarbituric acid anion is present in its diketonic tautomeric form according to C—O bond lengths. Deprotonation took place on the methylene group. The intracyclic angles span a range from 116.64 (9)–124.67 (9) ° with the biggest angles invariably found on the nitrogen atoms and the smallest angle present on the sulfur-bonded carbon atom. The unit cell comprises two half-occupied ammonium cations (Fig. 1). The small puckering amplitude of the six-membered ring precludes a conformation analysis.

The crystal structure is dominated by hydrogen bonds. All of the ammonium cations' hydrogen atoms act as donors while both ketonic oxygen atoms of the heterocycle as well as the sulfur atom act as acceptors. The intracyclic NH groups participate in hydrogen bonds as well, however, they only have the ketonic oxygen atoms as acceptors. The latter intermolecular interactions connect the thiobarbituric acid anions to chains along [1 1 0] where each dimeric subunit shows inversion symmetry (Fig. 2). In terms of graph-set analysis (Etter et al. (1990); Bernstein et al. (1995)), the descriptor for the hydrogen bonds giving rise to these chains is R22(8)R22(8) on the unitary level. Taking into account the van-der-Waals radii of the atoms present in the crystal structure, the carbon-bond H atom participates in a C–H···S contact, which is, however, not very pronounced. In total, the molecules in the unit cell are connected to a three-dimensional network where layers of thiobarbituric acid anions are orientated parallel as well as approximately perpendicular towards each other (Fig. 3).

The packing of the compound in the crystal is shown in Figure 4.

Related literature top

For the crystal structures of 2-thiobarbituric acid, its hydrate and several of its tautomeric forms, see: Calas & Martinez (1967); Chierotti et al. (2010). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). [Author: please check new scheme; original showed anion as C4H5N2O2S-]

Experimental top

2-Thiobarbituric acid was obtained commercially (Aldrich). Upon dissolution in hot, aqueous ammonia (c = 1.0 M) and subsequent cooling to room temperature, crystals suitable for the X-ray diffraction study were obtained.

Refinement top

The carbon-bound H-atom was placed in a calculated position (C—H 0.95 Å) and was included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). All other H atoms were located on a difference map and refined as riding on their parent atoms with individual isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts among the thiobarbituric acid anions, viewed along [0 - 1 0]. Symmetry operators: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1.
[Figure 3] Fig. 3. Hydrogen bonding system in the crystal structure of the title compound, viewed along [0 - 1 0]. Colour code for the atoms: green – sulfur, red – oxygen, blue – nitrogen, black – carbon; hydrogen atoms are shown as end of sticks.
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed along [0 1 0].
Ammonium 4,6-dioxo-2-sulfanylidene-1,3-diazinan-5-ide top
Crystal data top
NH4+·C4H3N2O2SF(000) = 336
Mr = 161.19Dx = 1.651 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 1604 reflections
a = 11.3308 (4) Åθ = 3.1–28.3°
b = 3.9396 (1) ŵ = 0.44 mm1
c = 14.6945 (5) ÅT = 200 K
β = 98.644 (1)°Rod, colourless
V = 648.49 (4) Å30.53 × 0.19 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1604 independent reflections
Radiation source: fine-focus sealed tube1476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1415
Tmin = 0.876, Tmax = 1.000k = 45
6071 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.2247P]
where P = (Fo2 + 2Fc2)/3
1604 reflections(Δ/σ)max = 0.001
116 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
NH4+·C4H3N2O2SV = 648.49 (4) Å3
Mr = 161.19Z = 4
Monoclinic, P2/cMo Kα radiation
a = 11.3308 (4) ŵ = 0.44 mm1
b = 3.9396 (1) ÅT = 200 K
c = 14.6945 (5) Å0.53 × 0.19 × 0.08 mm
β = 98.644 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1604 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1476 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 1.000Rint = 0.017
6071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.33 e Å3
1604 reflectionsΔρmin = 0.20 e Å3
116 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25562 (2)1.03184 (7)0.667084 (17)0.01875 (10)
O10.05012 (7)0.4191 (2)0.39646 (5)0.02247 (19)
O20.44635 (7)0.7956 (3)0.39645 (6)0.0262 (2)
N10.34683 (8)0.8796 (3)0.51685 (6)0.01740 (19)
H710.4077 (15)0.978 (4)0.5427 (12)0.027 (4)*
N20.15417 (8)0.7040 (2)0.51663 (6)0.01649 (19)
H720.0908 (14)0.678 (4)0.5433 (10)0.024 (4)*
C10.25140 (9)0.8614 (3)0.56115 (7)0.0151 (2)
C20.14770 (9)0.5599 (3)0.42919 (7)0.0160 (2)
C30.24801 (9)0.5883 (3)0.38550 (7)0.0182 (2)
H30.24660.49600.32560.022*
C40.35073 (9)0.7513 (3)0.42884 (7)0.0177 (2)
N900.50000.4019 (4)0.25000.0202 (3)
H9010.5638 (14)0.272 (4)0.2710 (11)0.034 (4)*
H9020.4821 (15)0.527 (4)0.2944 (11)0.031 (4)*
N910.00000.9763 (4)0.25000.0234 (3)
H9110.0284 (17)1.109 (5)0.2961 (13)0.048 (5)*
H9120.0539 (19)0.853 (6)0.2290 (15)0.064 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01756 (15)0.02527 (16)0.01378 (14)0.00002 (10)0.00348 (10)0.00417 (9)
O10.0173 (4)0.0325 (4)0.0175 (4)0.0085 (3)0.0023 (3)0.0039 (3)
O20.0176 (4)0.0417 (5)0.0209 (4)0.0090 (4)0.0085 (3)0.0104 (4)
N10.0138 (4)0.0247 (5)0.0139 (4)0.0039 (4)0.0025 (3)0.0034 (4)
N20.0136 (4)0.0234 (5)0.0130 (4)0.0027 (3)0.0037 (3)0.0001 (3)
C10.0153 (4)0.0169 (5)0.0131 (4)0.0005 (4)0.0020 (4)0.0017 (4)
C20.0159 (4)0.0190 (5)0.0127 (5)0.0013 (4)0.0007 (4)0.0012 (4)
C30.0184 (5)0.0237 (5)0.0128 (5)0.0030 (4)0.0031 (4)0.0022 (4)
C40.0167 (5)0.0228 (5)0.0141 (4)0.0014 (4)0.0043 (4)0.0012 (4)
N900.0193 (6)0.0243 (7)0.0170 (6)0.0000.0032 (5)0.000
N910.0251 (7)0.0260 (7)0.0204 (7)0.0000.0074 (6)0.000
Geometric parameters (Å, º) top
S1—C11.6893 (10)N2—H720.874 (16)
O1—C21.2656 (13)C2—C31.3914 (15)
O2—C41.2592 (13)C3—C41.3963 (14)
N1—C11.3452 (14)C3—H30.9500
N1—C41.3955 (13)N90—H9010.902 (17)
N1—H710.832 (17)N90—H9020.866 (17)
N2—C11.3453 (13)N91—H9110.88 (2)
N2—C21.3965 (13)N91—H9120.87 (2)
C1—N1—C4124.67 (9)O1—C2—N2116.73 (10)
C1—N1—H71118.4 (12)C3—C2—N2117.27 (9)
C4—N1—H71116.9 (12)C2—C3—C4120.62 (10)
C1—N2—C2124.11 (9)C2—C3—H3119.7
C1—N2—H72120.3 (10)C4—C3—H3119.7
C2—N2—H72115.5 (10)O2—C4—N1116.68 (9)
N1—C1—N2116.64 (9)O2—C4—C3126.64 (10)
N1—C1—S1120.74 (8)N1—C4—C3116.68 (9)
N2—C1—S1122.62 (8)H901—N90—H902109.4 (14)
O1—C2—C3125.99 (10)H911—N91—H912114.2 (19)
C4—N1—C1—N20.76 (16)O1—C2—C3—C4179.77 (11)
C4—N1—C1—S1178.90 (8)N2—C2—C3—C40.82 (16)
C2—N2—C1—N10.48 (16)C1—N1—C4—O2178.58 (11)
C2—N2—C1—S1179.87 (8)C1—N1—C4—C31.12 (16)
C1—N2—C2—O1179.70 (10)C2—C3—C4—O2179.40 (12)
C1—N2—C2—C31.25 (16)C2—C3—C4—N10.27 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O2i0.832 (17)1.971 (17)2.8025 (12)179.0 (16)
N2—H72···O1ii0.874 (16)1.976 (16)2.8483 (12)175.7 (15)
N90—H901···S1iii0.902 (17)2.426 (16)3.3252 (8)174.8 (14)
N90—H902···O20.866 (17)1.927 (17)2.7929 (12)177.7 (16)
N91—H911···O1iv0.88 (2)1.90 (2)2.7622 (13)166.0 (18)
N91—H912···O1v0.87 (2)2.66 (2)3.0669 (15)110.0 (16)
N91—H912···S1vi0.87 (2)2.62 (2)3.3069 (3)136.0 (19)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y, z+1/2; (vi) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaNH4+·C4H3N2O2S
Mr161.19
Crystal system, space groupMonoclinic, P2/c
Temperature (K)200
a, b, c (Å)11.3308 (4), 3.9396 (1), 14.6945 (5)
β (°) 98.644 (1)
V3)648.49 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.53 × 0.19 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.876, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6071, 1604, 1476
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.067, 1.10
No. of reflections1604
No. of parameters116
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.20

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O2i0.832 (17)1.971 (17)2.8025 (12)179.0 (16)
N2—H72···O1ii0.874 (16)1.976 (16)2.8483 (12)175.7 (15)
N90—H901···S1iii0.902 (17)2.426 (16)3.3252 (8)174.8 (14)
N90—H902···O20.866 (17)1.927 (17)2.7929 (12)177.7 (16)
N91—H911···O1iv0.88 (2)1.90 (2)2.7622 (13)166.0 (18)
N91—H912···O1v0.87 (2)2.66 (2)3.0669 (15)110.0 (16)
N91—H912···S1vi0.87 (2)2.62 (2)3.3069 (3)136.0 (19)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y, z+1/2; (vi) x, y+2, z1/2.
 

Acknowledgements

The authors thank Mrs Clair Noble for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalas, M.-R. & Martinez, J. (1967). C. R. Acad. Sci. Ser. C (Chim.), 265, 631.  Google Scholar
First citationChierotti, M. R., Ferrero, L., Garino, N., Gobetto, R., Pellegrino, L., Braga, D., Grepioni, F. & Maini, L. (2010). Chem. Eur. J. 16, 4347–4358.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds