organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2,6-di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 4 May 2011; accepted 6 May 2011; online 14 May 2011)

In the title compound, C14H14ClNO2S, the amido H atom orients itself away from both the ortho-methyl groups in the adjacent aromatic ring. The mol­ecule is twisted at the S atom with an C—SO2—NH—C torsion angle of −69.9 (2)°. The two aromatic rings are tilted relative to each other by 31.9 (1)°. In the crystal, the mol­ecules are packed into zigzag chains along the b axis via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our study of the effect of substituents on the structures of N-(ar­yl)methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]), on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1691.]); Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1252.]) and on the oxidative strengths of N-chloro,N-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Orthorhombic, P 21 21 21

  • a = 7.3816 (4) Å

  • b = 10.2916 (7) Å

  • c = 18.312 (1) Å

  • V = 1391.13 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.40 × 0.28 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.850, Tmax = 0.906

  • 5356 measured reflections

  • 2767 independent reflections

  • 2255 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.079

  • S = 1.02

  • 2767 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1113 Friedel pairs

  • Flack parameter: 0.43 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (2) 2.28 (2) 3.083 (3) 166 (3)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moieties are the constituents of many biologically important compounds. The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). As a part of studying the substituent effects on the structures and other aspects of this class of compounds (Gowda et al., 2003, 2007, 2008; Shakuntala et al., 2011), in the present work, the crystal structure of 4-chloro-N-(2,6-dimethylphenyl)-benzenesulfonamide (I) has been determined (Fig.1). In the structure, the amido H atom orients itself away from both the ortho-methyl groups in the adjacent aromatic ring. The molecule is twisted at the S atom with the C—SO2—NH—C torsion angle of -69.9 (2)°, compared to the values of -53.8 (3)° (molecule 1) and -63.4 (3)° (molecule 2) in 4-chloro-N-(phenyl)-benzenesulfonamide (II) (Shakuntala et al., 2011) and -78.7 (2)° in N-(2,6-dimethylphenyl)-benzenesulfonamide (III) (Gowda et al., 2008)

The sulfonyl and anilino benzene rings in (I) are tilted relative to each other by 31.9 (1)°, compared to the values of 69.1 (1)° in molecule 1 and 82.6 (1)° in molecule 2 of (II), and 44.9 (1)° in (III).

The packing of molecules in (I) into zigzag chains through N—H···O(S) hydrogen bonding (Table 1) is shown in Fig.2.

Related literature top

For hydrogen bonding modes of sulfonamides, see; Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)methanesulfonamides, see: Gowda et al. (2007), on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2008); Shakuntala et al. (2011) and on the oxidative strengths of N-chloro,N-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 2,6-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(2,6-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The compound was characterized by recording its infrared and NMR spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(2,6-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H14ClNO2SF(000) = 616
Mr = 295.77Dx = 1.412 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1775 reflections
a = 7.3816 (4) Åθ = 2.8–28.0°
b = 10.2916 (7) ŵ = 0.42 mm1
c = 18.312 (1) ÅT = 293 K
V = 1391.13 (14) Å3Prism, colourless
Z = 40.40 × 0.28 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2767 independent reflections
Radiation source: fine-focus sealed tube2255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 96
Tmin = 0.850, Tmax = 0.906k = 1210
5356 measured reflectionsl = 2217
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.3144P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2767 reflectionsΔρmax = 0.19 e Å3
177 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1113 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.43 (7)
Crystal data top
C14H14ClNO2SV = 1391.13 (14) Å3
Mr = 295.77Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3816 (4) ŵ = 0.42 mm1
b = 10.2916 (7) ÅT = 293 K
c = 18.312 (1) Å0.40 × 0.28 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2767 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2255 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.906Rint = 0.022
5356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.19 e Å3
S = 1.02Δρmin = 0.25 e Å3
2767 reflectionsAbsolute structure: Flack (1983), 1113 Friedel pairs
177 parametersAbsolute structure parameter: 0.43 (7)
1 restraint
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42735 (14)0.03948 (8)0.04544 (5)0.0851 (3)
S10.96404 (8)0.20494 (6)0.19969 (4)0.04077 (16)
O10.9231 (3)0.33512 (15)0.22176 (9)0.0502 (5)
O21.1425 (2)0.1712 (2)0.17729 (11)0.0606 (6)
N10.9167 (3)0.11125 (19)0.26858 (12)0.0389 (5)
H1N0.950 (3)0.0356 (17)0.2645 (14)0.047*
C10.8156 (3)0.1660 (2)0.12743 (13)0.0375 (6)
C20.8780 (4)0.0962 (2)0.06798 (14)0.0479 (7)
H21.00000.07450.06420.057*
C30.7573 (4)0.0591 (3)0.01437 (15)0.0568 (8)
H30.79740.01190.02580.068*
C40.5788 (4)0.0917 (3)0.02047 (14)0.0513 (7)
C50.5165 (4)0.1648 (3)0.07828 (15)0.0524 (7)
H50.39490.18800.08110.063*
C60.6357 (3)0.2032 (3)0.13178 (14)0.0450 (6)
H60.59580.25390.17060.054*
C70.7516 (3)0.1254 (2)0.30961 (13)0.0357 (5)
C80.6035 (3)0.0460 (2)0.29430 (14)0.0424 (6)
C90.4451 (4)0.0670 (3)0.33397 (15)0.0560 (7)
H90.34330.01660.32440.067*
C100.4376 (4)0.1614 (3)0.38707 (17)0.0620 (8)
H100.33020.17520.41240.074*
C110.5853 (4)0.2345 (3)0.40283 (14)0.0555 (8)
H110.57820.29650.43970.067*
C120.7464 (4)0.2189 (3)0.36519 (13)0.0433 (6)
C130.6103 (4)0.0616 (3)0.23877 (15)0.0573 (7)
H13A0.68060.03400.19750.069*
H13B0.48960.08230.22320.069*
H13C0.66520.13710.26020.069*
C140.9069 (4)0.2998 (3)0.38620 (16)0.0642 (8)
H14A1.01620.25500.37300.077*
H14B0.90550.31450.43800.077*
H14C0.90170.38160.36110.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1151 (8)0.0671 (5)0.0730 (6)0.0104 (5)0.0493 (5)0.0049 (4)
S10.0373 (3)0.0394 (3)0.0457 (3)0.0063 (3)0.0044 (3)0.0015 (3)
O10.0686 (12)0.0340 (9)0.0480 (10)0.0116 (9)0.0022 (9)0.0000 (8)
O20.0365 (10)0.0769 (15)0.0684 (13)0.0049 (9)0.0078 (8)0.0039 (11)
N10.0376 (12)0.0320 (11)0.0470 (12)0.0027 (9)0.0007 (9)0.0018 (10)
C10.0416 (14)0.0321 (13)0.0389 (13)0.0015 (11)0.0030 (11)0.0013 (11)
C20.0529 (16)0.0410 (15)0.0498 (16)0.0081 (12)0.0069 (13)0.0040 (13)
C30.084 (2)0.0459 (17)0.0407 (15)0.0074 (17)0.0016 (15)0.0071 (13)
C40.067 (2)0.0398 (15)0.0468 (16)0.0057 (14)0.0123 (14)0.0078 (13)
C50.0452 (15)0.0573 (17)0.0548 (16)0.0013 (13)0.0048 (13)0.0073 (14)
C60.0449 (15)0.0453 (15)0.0446 (14)0.0040 (13)0.0062 (12)0.0026 (13)
C70.0363 (12)0.0346 (13)0.0360 (13)0.0003 (10)0.0034 (10)0.0064 (11)
C80.0429 (13)0.0386 (14)0.0456 (14)0.0053 (11)0.0042 (12)0.0092 (12)
C90.0406 (15)0.0624 (19)0.0651 (17)0.0106 (15)0.0001 (14)0.0153 (16)
C100.0554 (18)0.0652 (19)0.0655 (19)0.0109 (16)0.0184 (15)0.0144 (16)
C110.075 (2)0.0508 (17)0.0405 (15)0.0094 (15)0.0100 (14)0.0007 (13)
C120.0569 (16)0.0379 (14)0.0353 (13)0.0015 (13)0.0050 (12)0.0054 (11)
C130.0647 (18)0.0464 (17)0.0607 (17)0.0199 (14)0.0066 (15)0.0008 (14)
C140.080 (2)0.0604 (19)0.0521 (16)0.0142 (18)0.0114 (15)0.0103 (16)
Geometric parameters (Å, º) top
Cl1—C41.731 (3)C7—C81.393 (3)
S1—O21.4228 (18)C7—C121.401 (3)
S1—O11.4316 (17)C8—C91.393 (4)
S1—N11.626 (2)C8—C131.504 (3)
S1—C11.764 (2)C9—C101.375 (4)
N1—C71.440 (3)C9—H90.9300
N1—H1N0.818 (16)C10—C111.356 (4)
C1—C21.383 (3)C10—H100.9300
C1—C61.385 (3)C11—C121.383 (4)
C2—C31.380 (4)C11—H110.9300
C2—H20.9300C12—C141.498 (4)
C3—C41.364 (4)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.378 (4)C13—H13C0.9600
C5—C61.375 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
O2—S1—O1120.37 (12)C12—C7—N1118.2 (2)
O2—S1—N1106.12 (12)C7—C8—C9117.5 (2)
O1—S1—N1106.90 (10)C7—C8—C13122.8 (2)
O2—S1—C1107.66 (12)C9—C8—C13119.7 (2)
O1—S1—C1107.05 (11)C10—C9—C8120.8 (3)
N1—S1—C1108.29 (11)C10—C9—H9119.6
C7—N1—S1121.78 (16)C8—C9—H9119.6
C7—N1—H1N113.2 (19)C11—C10—C9120.7 (3)
S1—N1—H1N115.5 (19)C11—C10—H10119.7
C2—C1—C6120.6 (2)C9—C10—H10119.7
C2—C1—S1120.11 (19)C10—C11—C12121.4 (3)
C6—C1—S1119.31 (19)C10—C11—H11119.3
C3—C2—C1119.3 (3)C12—C11—H11119.3
C3—C2—H2120.4C11—C12—C7117.7 (2)
C1—C2—H2120.4C11—C12—C14119.1 (2)
C4—C3—C2119.8 (3)C7—C12—C14123.1 (2)
C4—C3—H3120.1C8—C13—H13A109.5
C2—C3—H3120.1C8—C13—H13B109.5
C3—C4—C5121.3 (3)H13A—C13—H13B109.5
C3—C4—Cl1119.4 (2)C8—C13—H13C109.5
C5—C4—Cl1119.3 (2)H13A—C13—H13C109.5
C6—C5—C4119.4 (3)H13B—C13—H13C109.5
C6—C5—H5120.3C12—C14—H14A109.5
C4—C5—H5120.3C12—C14—H14B109.5
C5—C6—C1119.6 (2)H14A—C14—H14B109.5
C5—C6—H6120.2C12—C14—H14C109.5
C1—C6—H6120.2H14A—C14—H14C109.5
C8—C7—C12121.8 (2)H14B—C14—H14C109.5
C8—C7—N1120.0 (2)
O2—S1—N1—C7174.71 (18)S1—C1—C6—C5175.2 (2)
O1—S1—N1—C745.1 (2)S1—N1—C7—C897.6 (2)
C1—S1—N1—C769.9 (2)S1—N1—C7—C1283.4 (3)
O2—S1—C1—C29.0 (2)C12—C7—C8—C93.2 (4)
O1—S1—C1—C2139.75 (19)N1—C7—C8—C9177.8 (2)
N1—S1—C1—C2105.3 (2)C12—C7—C8—C13175.3 (2)
O2—S1—C1—C6172.5 (2)N1—C7—C8—C133.7 (4)
O1—S1—C1—C641.8 (2)C7—C8—C9—C101.1 (4)
N1—S1—C1—C673.1 (2)C13—C8—C9—C10177.4 (2)
C6—C1—C2—C32.8 (4)C8—C9—C10—C111.2 (4)
S1—C1—C2—C3175.7 (2)C9—C10—C11—C121.5 (4)
C1—C2—C3—C40.2 (4)C10—C11—C12—C70.5 (4)
C2—C3—C4—C52.0 (4)C10—C11—C12—C14178.4 (3)
C2—C3—C4—Cl1177.7 (2)C8—C7—C12—C112.9 (4)
C3—C4—C5—C61.5 (4)N1—C7—C12—C11178.1 (2)
Cl1—C4—C5—C6178.1 (2)C8—C7—C12—C14175.9 (2)
C4—C5—C6—C11.1 (4)N1—C7—C12—C143.1 (4)
C2—C1—C6—C53.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (2)2.28 (2)3.083 (3)166 (3)
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.3816 (4), 10.2916 (7), 18.312 (1)
V3)1391.13 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.28 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.850, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
5356, 2767, 2255
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.079, 1.02
No. of reflections2767
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.25
Absolute structureFlack (1983), 1113 Friedel pairs
Absolute structure parameter0.43 (7)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.818 (16)2.282 (17)3.083 (3)166 (3)
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds