organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(3,4-Dimeth­­oxy­phen­yl)-3,4,5,6,7,9-hexa­hydroxanthene-1,8(2H)-dione

aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 May 2011; accepted 11 May 2011; online 20 May 2011)

In the title compound, C21H22O5, the mean planes of the pyran and dimeth­oxy­phenyl rings are nearly perpendicular to one another, with the dihedral angle between them being 88.21 (8)°. The pyran ring adopts a boat conformation whereas the two fused cyclo­hexane rings adopt envelope conformations. In the crystal, mol­ecules are linked into a three-dimensional network by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For condensation reactions between carbonyl compounds with active methyl­ene compounds, see: Chalais et al. (1985[Chalais, S., Laszlo, P. & Mathy, A. (1985). Tetrahedron Lett. 26, 4453.]); Prajapati & Sanduh (1993[Prajapati, D. & Sanduh, J. S. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 739-740.]); Texier-Boullet & Foucaud (1982[Texier-Boullet, F. & Foucaud, A. (1982). Tetrahedron Lett. 23, 4927.]); Jone (1967[Jone, G. (1967). Organic Reactions, Vol. 15, pp. 204-599. Wiley: New York: Wiley.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22O5

  • Mr = 354.39

  • Monoclinic, P 21 /c

  • a = 8.7733 (3) Å

  • b = 15.2246 (5) Å

  • c = 14.6646 (4) Å

  • β = 116.891 (2)°

  • V = 1746.95 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.58 × 0.30 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.983

  • 19254 measured reflections

  • 5118 independent reflections

  • 4066 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.130

  • S = 1.05

  • 5118 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O4i 0.99 2.41 3.3647 (18) 161
C5—H5A⋯O5ii 0.99 2.56 3.2366 (17) 126
C9—H9A⋯O2ii 0.99 2.55 3.3210 (17) 135
C10—H10B⋯O5iii 0.99 2.50 3.4822 (19) 173
C21—H21C⋯O2iv 0.98 2.57 3.1069 (18) 114
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The most important synthetic method for the preparation of substituted alkenes is the condensation reaction between carbonyl compounds with active methylene compounds. Xonotlite, cadmium iodide aluminium oxide and other Lewis acids and bases have been previously used for such type of reactions (Chalais et al., 1985; Prajapati & Sanduh, 1993; Texier-Boullet & Foucaud, 1982; Jone, 1967). In this paper we are reporting the synthesis of title compound (Fig. 1) by simple heating of 1,3-cyclohexanedione with veratraldehyde in acetic acid without the use of any catalyst. The structure is supported by spectral analysis like IR, 1H NMR, 13C NMR and finally confirmed by x-ray crystallography.

In the title compound, the mean plane of pyran ring and the dimethoxyphenyl ring are nearly perpendicular to each other with the dihedral angle between them being 88.21 (8)°. The dimethoxyphenyl ring is planar with the torsion angle of C20–O4–C18–C19 = -5.34 (18)° and C21–O5–C17–C16 = -5.67 (18)°. The two cyclohexane rings adopt envelope conformations [puckering amplitude Q = 0.4284 (16) Å, θ = 124.3 (2)°, ϕ = 359.0 (3)°; Q = 0.4899 (15) Å, θ = 57.91 (18)°, ϕ = 132.8 (2)°, whereas the pyran ring adopt a boat conformation [Q = 0.2125 (13) Å, θ = 77.9 (4)°, ϕ = 187.0 (4)°] (Cremer & Pople, 1975). In the crystal structure, the molecules are linked into a three-dimensional network (Fig. 2) by intermolecular C3—H3A···O4, C5—H5A···O5, C9—H9A···O2, C10—H10B···O5 and C21—H21C···O2 hydrogen bonds (Table 1).

Related literature top

For condensation reactions between carbonyl compounds with active methylene compounds, see: Chalais et al. (1985); Prajapati & Sanduh (1993); Texier-Boullet & Foucaud (1982); Jone (1967). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of 1,3-cyclohexanedione (1.12 g m, 10 mmol) and veratraldehyde (1.66 g m, 10 mmol) was heated in 25 ml of glacial acetic acid for three hours. Completion of the reaction was monitored by TLC. The reaction mixture was dried on rotary evaporator under reduced pressure. The crude mixture thus obtained was successively treated with chloroform and ethanol. The ethanol fraction on crystallization furnished cream colored crystals of title compound (yield 90%, m. pt. 216°C). IR (KBr) νmax: 2966, 2933, 2868, 2833, 1664, 1620, 1513, 1441, 1358, 1261, 1240, 1171, 1132, 1025, 956, 906, 859, 807, 726 cm-1. 1H NMR (300 MHz, DMSO-d6): δ1.75–1.88 (m, 2H), 1.94–2.06 (m, 2H), 2.20–2.38 (m, 42H), 2.48–2.68 (m, 4H), 4.21 (s, 1H), 6.78–6.96 (3H, m). 13C NMR (75 MHz, DMSO-d6): δ 21.6, 26.9, 30.2, 36.6, 56.8, 112.6, 114.4, 115.8, 123.2, 136.4, 146.2, 148.4, 198.2. IR spectrum was taken on Shimadzu IR-408 Perkin Elmer 1800 (FTIR). 1H NMR was recorded on Bruker Avance 300 MHz with TMS as an internal standard and 75 MHz for 13C NMR. Spectrum was recorded in DMSO-d6. The melting point was taken on Thermo Fisher digital melting point apparatus of IA9000 series and is uncorrected.

Refinement top

All hydrogen atoms were positioned geomatrically [C–H = 0.95–1.00 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed down a axis, showing molecules linked into a three-dimensional network. Hydrogen bonds are shown as dashed lines.
9-(3,4-Dimethoxyphenyl)-3,4,5,6,7,9-hexahydroxanthene-1,8(2H)-dione top
Crystal data top
C21H22O5F(000) = 752
Mr = 354.39Dx = 1.347 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6186 reflections
a = 8.7733 (3) Åθ = 2.6–30.0°
b = 15.2246 (5) ŵ = 0.10 mm1
c = 14.6646 (4) ÅT = 100 K
β = 116.891 (2)°Block, yellow
V = 1746.95 (10) Å30.58 × 0.30 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5118 independent reflections
Radiation source: fine-focus sealed tube4066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 129
Tmin = 0.947, Tmax = 0.983k = 2118
19254 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.471P]
where P = (Fo2 + 2Fc2)/3
5118 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H22O5V = 1746.95 (10) Å3
Mr = 354.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7733 (3) ŵ = 0.10 mm1
b = 15.2246 (5) ÅT = 100 K
c = 14.6646 (4) Å0.58 × 0.30 × 0.18 mm
β = 116.891 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5118 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4066 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.983Rint = 0.042
19254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
5118 reflectionsΔρmin = 0.28 e Å3
237 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23678 (10)0.45054 (6)0.11930 (7)0.0253 (2)
O20.11008 (12)0.63020 (7)0.40709 (7)0.0307 (2)
O30.34649 (11)0.44914 (7)0.36290 (7)0.0293 (2)
O40.46323 (11)0.77498 (6)0.38751 (7)0.0252 (2)
O50.31222 (11)0.84133 (6)0.20530 (7)0.0254 (2)
C10.16143 (15)0.54404 (8)0.26377 (9)0.0212 (2)
C20.21561 (16)0.59572 (9)0.32848 (10)0.0240 (3)
C30.40468 (17)0.60323 (10)0.29722 (11)0.0296 (3)
H3A0.42780.66190.31730.035*
H3B0.43590.55880.33520.035*
C40.51736 (17)0.59051 (10)0.18363 (11)0.0317 (3)
H4A0.50690.64240.14610.038*
H4B0.63810.58590.17060.038*
C50.46837 (16)0.50797 (10)0.14364 (10)0.0269 (3)
H5A0.50660.45530.16720.032*
H5B0.52680.50830.06800.032*
C60.27955 (15)0.50362 (9)0.18052 (9)0.0220 (2)
C70.06793 (15)0.42479 (9)0.15659 (9)0.0219 (2)
C80.04677 (16)0.35533 (9)0.09158 (10)0.0259 (3)
H8A0.11710.37000.01850.031*
H8B0.08710.29840.10510.031*
C90.14076 (16)0.34741 (9)0.11409 (10)0.0260 (3)
H9A0.15670.29420.08050.031*
H9B0.17390.39910.08620.031*
C100.25342 (16)0.34178 (9)0.22886 (10)0.0263 (3)
H10A0.22530.28760.25550.032*
H10B0.37460.33810.24270.032*
C110.22973 (15)0.42044 (8)0.28392 (10)0.0225 (2)
C120.05790 (14)0.45987 (8)0.24136 (9)0.0205 (2)
C130.02759 (14)0.53739 (8)0.29541 (9)0.0199 (2)
H13A0.08920.52680.37080.024*
C140.09637 (14)0.62177 (8)0.27121 (9)0.0200 (2)
C150.01165 (15)0.66138 (9)0.17626 (10)0.0229 (3)
H15A0.09310.63720.12690.028*
C160.07768 (15)0.73634 (8)0.15190 (9)0.0225 (3)
H16A0.01750.76310.08670.027*
C170.23114 (15)0.77157 (8)0.22307 (9)0.0213 (2)
C180.31465 (14)0.73401 (8)0.32119 (9)0.0206 (2)
C190.24887 (14)0.65911 (8)0.34429 (9)0.0210 (2)
H19A0.30750.63300.41000.025*
C200.54591 (18)0.74117 (11)0.48942 (10)0.0346 (3)
H20A0.64720.77670.53040.052*
H20B0.58040.68020.48790.052*
H20C0.46680.74350.51980.052*
C210.23844 (18)0.87415 (10)0.10281 (10)0.0292 (3)
H21A0.21850.82530.05520.044*
H21B0.31670.91650.09590.044*
H21C0.12960.90310.08710.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0120 (4)0.0367 (5)0.0227 (4)0.0006 (4)0.0037 (3)0.0034 (4)
O20.0227 (5)0.0359 (5)0.0304 (5)0.0013 (4)0.0094 (4)0.0061 (4)
O30.0163 (4)0.0326 (5)0.0286 (5)0.0025 (4)0.0011 (4)0.0044 (4)
O40.0158 (4)0.0308 (5)0.0219 (4)0.0054 (4)0.0021 (3)0.0042 (4)
O50.0195 (4)0.0279 (5)0.0243 (4)0.0053 (4)0.0060 (4)0.0001 (4)
C10.0141 (5)0.0245 (6)0.0237 (6)0.0015 (4)0.0072 (4)0.0024 (5)
C20.0185 (5)0.0238 (6)0.0290 (6)0.0017 (5)0.0102 (5)0.0021 (5)
C30.0197 (6)0.0320 (7)0.0388 (7)0.0028 (5)0.0148 (6)0.0020 (6)
C40.0181 (6)0.0386 (8)0.0367 (7)0.0058 (5)0.0108 (5)0.0064 (6)
C50.0129 (5)0.0376 (7)0.0253 (6)0.0017 (5)0.0044 (5)0.0022 (5)
C60.0139 (5)0.0278 (6)0.0230 (6)0.0015 (5)0.0071 (4)0.0023 (5)
C70.0129 (5)0.0268 (6)0.0240 (6)0.0001 (4)0.0065 (4)0.0013 (5)
C80.0187 (6)0.0313 (7)0.0256 (6)0.0031 (5)0.0082 (5)0.0054 (5)
C90.0188 (6)0.0306 (7)0.0284 (6)0.0010 (5)0.0106 (5)0.0045 (5)
C100.0181 (6)0.0266 (6)0.0308 (7)0.0027 (5)0.0081 (5)0.0016 (5)
C110.0151 (5)0.0238 (6)0.0254 (6)0.0002 (4)0.0065 (5)0.0014 (5)
C120.0138 (5)0.0229 (6)0.0222 (5)0.0005 (4)0.0059 (4)0.0007 (4)
C130.0121 (5)0.0243 (6)0.0199 (5)0.0004 (4)0.0043 (4)0.0000 (4)
C140.0125 (5)0.0241 (6)0.0217 (5)0.0013 (4)0.0063 (4)0.0020 (4)
C150.0126 (5)0.0263 (6)0.0233 (6)0.0005 (4)0.0023 (4)0.0013 (5)
C160.0159 (5)0.0261 (6)0.0204 (5)0.0017 (5)0.0039 (4)0.0007 (5)
C170.0161 (5)0.0227 (6)0.0240 (6)0.0001 (4)0.0081 (5)0.0030 (5)
C180.0112 (5)0.0256 (6)0.0214 (5)0.0005 (4)0.0044 (4)0.0055 (5)
C190.0136 (5)0.0270 (6)0.0191 (5)0.0018 (4)0.0045 (4)0.0023 (4)
C200.0244 (7)0.0513 (9)0.0197 (6)0.0129 (6)0.0027 (5)0.0044 (6)
C210.0289 (7)0.0315 (7)0.0244 (6)0.0070 (6)0.0095 (5)0.0010 (5)
Geometric parameters (Å, º) top
O1—C61.3800 (15)C9—C101.5205 (19)
O1—C71.3836 (14)C9—H9A0.9900
O2—C21.2231 (16)C9—H9B0.9900
O3—C111.2283 (15)C10—C111.5103 (18)
O4—C181.3738 (14)C10—H10A0.9900
O4—C201.4297 (16)C10—H10B0.9900
O5—C171.3674 (15)C11—C121.4736 (16)
O5—C211.4309 (16)C12—C131.5108 (17)
C1—C61.3411 (17)C13—C141.5277 (17)
C1—C21.4676 (17)C13—H13A1.0000
C1—C131.5099 (16)C14—C151.3852 (17)
C2—C31.5122 (17)C14—C191.4017 (16)
C3—C41.517 (2)C15—C161.3975 (18)
C3—H3A0.9900C15—H15A0.9500
C3—H3B0.9900C16—C171.3851 (16)
C4—C51.528 (2)C16—H16A0.9500
C4—H4A0.9900C17—C181.4074 (17)
C4—H4B0.9900C18—C191.3874 (18)
C5—C61.4935 (17)C19—H19A0.9500
C5—H5A0.9900C20—H20A0.9800
C5—H5B0.9900C20—H20B0.9800
C7—C121.3446 (17)C20—H20C0.9800
C7—C81.4906 (18)C21—H21A0.9800
C8—C91.5294 (17)C21—H21B0.9800
C8—H8A0.9900C21—H21C0.9800
C8—H8B0.9900
C6—O1—C7117.80 (9)C9—C10—H10A109.3
C18—O4—C20116.55 (10)C11—C10—H10B109.3
C17—O5—C21116.37 (10)C9—C10—H10B109.3
C6—C1—C2119.46 (11)H10A—C10—H10B107.9
C6—C1—C13122.55 (11)O3—C11—C12120.76 (12)
C2—C1—C13117.98 (11)O3—C11—C10121.91 (11)
O2—C2—C1120.73 (11)C12—C11—C10117.29 (11)
O2—C2—C3120.81 (12)C7—C12—C11118.98 (11)
C1—C2—C3118.43 (11)C7—C12—C13121.98 (10)
C2—C3—C4113.83 (11)C11—C12—C13119.03 (10)
C2—C3—H3A108.8C1—C13—C12108.70 (10)
C4—C3—H3A108.8C1—C13—C14111.50 (10)
C2—C3—H3B108.8C12—C13—C14110.69 (9)
C4—C3—H3B108.8C1—C13—H13A108.6
H3A—C3—H3B107.7C12—C13—H13A108.6
C3—C4—C5111.70 (11)C14—C13—H13A108.6
C3—C4—H4A109.3C15—C14—C19118.98 (11)
C5—C4—H4A109.3C15—C14—C13120.72 (10)
C3—C4—H4B109.3C19—C14—C13120.28 (11)
C5—C4—H4B109.3C14—C15—C16121.10 (11)
H4A—C4—H4B107.9C14—C15—H15A119.4
C6—C5—C4110.85 (11)C16—C15—H15A119.4
C6—C5—H5A109.5C17—C16—C15119.84 (11)
C4—C5—H5A109.5C17—C16—H16A120.1
C6—C5—H5B109.5C15—C16—H16A120.1
C4—C5—H5B109.5O5—C17—C16124.70 (11)
H5A—C5—H5B108.1O5—C17—C18115.81 (10)
C1—C6—O1122.37 (10)C16—C17—C18119.48 (11)
C1—C6—C5125.67 (12)O4—C18—C19124.51 (11)
O1—C6—C5111.95 (11)O4—C18—C17115.33 (11)
C12—C7—O1122.51 (11)C19—C18—C17120.13 (11)
C12—C7—C8125.84 (11)C18—C19—C14120.35 (11)
O1—C7—C8111.66 (10)C18—C19—H19A119.8
C7—C8—C9110.54 (10)C14—C19—H19A119.8
C7—C8—H8A109.5O4—C20—H20A109.5
C9—C8—H8A109.5O4—C20—H20B109.5
C7—C8—H8B109.5H20A—C20—H20B109.5
C9—C8—H8B109.5O4—C20—H20C109.5
H8A—C8—H8B108.1H20A—C20—H20C109.5
C10—C9—C8109.91 (11)H20B—C20—H20C109.5
C10—C9—H9A109.7O5—C21—H21A109.5
C8—C9—H9A109.7O5—C21—H21B109.5
C10—C9—H9B109.7H21A—C21—H21B109.5
C8—C9—H9B109.7O5—C21—H21C109.5
H9A—C9—H9B108.2H21A—C21—H21C109.5
C11—C10—C9111.68 (11)H21B—C21—H21C109.5
C11—C10—H10A109.3
C6—C1—C2—O2176.94 (12)C10—C11—C12—C13178.63 (11)
C13—C1—C2—O21.98 (19)C6—C1—C13—C1217.44 (16)
C6—C1—C2—C31.40 (18)C2—C1—C13—C12161.44 (11)
C13—C1—C2—C3179.68 (11)C6—C1—C13—C14104.85 (14)
O2—C2—C3—C4156.87 (13)C2—C1—C13—C1476.26 (14)
C1—C2—C3—C424.78 (18)C7—C12—C13—C119.86 (16)
C2—C3—C4—C549.18 (16)C11—C12—C13—C1158.95 (11)
C3—C4—C5—C647.29 (15)C7—C12—C13—C14102.92 (13)
C2—C1—C6—O1176.73 (11)C11—C12—C13—C1478.27 (13)
C13—C1—C6—O12.14 (19)C1—C13—C14—C1547.46 (15)
C2—C1—C6—C52.0 (2)C12—C13—C14—C1573.68 (13)
C13—C1—C6—C5179.18 (12)C1—C13—C14—C19134.08 (11)
C7—O1—C6—C113.08 (18)C12—C13—C14—C19104.78 (12)
C7—O1—C6—C5165.77 (11)C19—C14—C15—C161.38 (18)
C4—C5—C6—C123.06 (18)C13—C14—C15—C16177.10 (11)
C4—C5—C6—O1158.14 (11)C14—C15—C16—C170.62 (19)
C6—O1—C7—C1210.48 (18)C21—O5—C17—C165.67 (18)
C6—O1—C7—C8169.57 (11)C21—O5—C17—C18173.51 (11)
C12—C7—C8—C916.76 (18)C15—C16—C17—O5175.93 (11)
O1—C7—C8—C9163.19 (11)C15—C16—C17—C183.22 (18)
C7—C8—C9—C1048.72 (15)C20—O4—C18—C195.34 (18)
C8—C9—C10—C1157.64 (15)C20—O4—C18—C17176.71 (11)
C9—C10—C11—O3148.95 (12)O5—C17—C18—O42.67 (16)
C9—C10—C11—C1233.42 (16)C16—C17—C18—O4178.10 (11)
O1—C7—C12—C11171.57 (11)O5—C17—C18—C19175.38 (10)
C8—C7—C12—C118.48 (19)C16—C17—C18—C193.84 (18)
O1—C7—C12—C137.24 (19)O4—C18—C19—C14179.71 (11)
C8—C7—C12—C13172.71 (12)C17—C18—C19—C141.85 (18)
O3—C11—C12—C7177.87 (12)C15—C14—C19—C180.75 (17)
C10—C11—C12—C70.21 (17)C13—C14—C19—C18177.73 (10)
O3—C11—C12—C130.98 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O4i0.992.413.3647 (18)161
C5—H5A···O5ii0.992.563.2366 (17)126
C9—H9A···O2ii0.992.553.3210 (17)135
C10—H10B···O5iii0.992.503.4822 (19)173
C21—H21C···O2iv0.982.573.1069 (18)114
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H22O5
Mr354.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.7733 (3), 15.2246 (5), 14.6646 (4)
β (°) 116.891 (2)
V3)1746.95 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.30 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.947, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
19254, 5118, 4066
Rint0.042
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.05
No. of reflections5118
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O4i0.992.413.3647 (18)161
C5—H5A···O5ii0.992.563.2366 (17)126
C9—H9A···O2ii0.992.553.3210 (17)135
C10—H10B···O5iii0.992.503.4822 (19)173
C21—H21C···O2iv0.982.573.1069 (18)114
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SHM, RH and RMG would like to acknowledge Universiti Sains Malaysia (USM) for the University Grant 1001/PTEKIND/8140152. HKF and CSY thank USM for the Research University Grant 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChalais, S., Laszlo, P. & Mathy, A. (1985). Tetrahedron Lett. 26, 4453.  CrossRef Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJone, G. (1967). Organic Reactions, Vol. 15, pp. 204–599. Wiley: New York: Wiley.  Google Scholar
First citationPrajapati, D. & Sanduh, J. S. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 739–740.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTexier-Boullet, F. & Foucaud, A. (1982). Tetrahedron Lett. 23, 4927.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds