metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­methyl­ammonium) tetra­chlorido­di­methyl­stannate(IV)

aLaboratoire de Chimie, Universite Chekh Anta Diop, Dakar, Senegal, and bService commun d'analyse par diffraction des rayons X, Universite de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, CS 93837, F-29238 BREST Cedex 3, France
*Correspondence e-mail: cakdiop@ucad.sn

(Received 1 March 2011; accepted 11 April 2011; online 7 May 2011)

Regular crystals of the title compound, (C2H8N)2[Sn(CH3)2Cl4], were obtained by reacting SnMe2Cl2 with (CH3)2NH·HCl in ethanol in a 1:1 ratio. The Sn atom lies on a center of symmetry and is six-coordinated. It has a distorted octahedral SnC2Cl4 environment with the Cl atoms in cis positions. The Cl atoms are connected to dimethyl­ammonium cations through N—H⋯Cl hydrogen bonds, forming an infinite chain extending parallel to [010].

Related literature

For background to organotin(IV) chemistry, see: Gielen et al. (1996[Gielen, M. (1996). Coord. Chem. Rev. 151, 41-51.]); Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]); Crowe et al. (1994[Crowe, A. J. (1994). Metal Complexes in Cancer Chemotherapy, edited by S. P. Friccker. London: Chapman and Hall. ]); Diasse-Sarr et al. (1997)[Diasse-Sarr, A., Diop, L., Mahon, M. F. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223-229.]; Diop et al. (2002,[Diop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327-328.] 2003)[Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.]. For related compounds, see: Valle et al. (1985[Valle, G., Plazzogna, G. & Ettore, R. (1985). J. Chem. Soc. Dalton Trans. pp. 1271-1274.]); Casas et al. (1996[Casas, J., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165-172.]); Diop et al. (2011[Diop, T., Diop, L., Molloy, K. C. K. & Kocioc-Köhn, G. (2011). Acta Cryst. E67, m203-m204.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)2[SnCH3)2Cl4]

  • Mr = 382.75

  • Triclinic, [P \overline 1]

  • a = 6.6162 (9) Å

  • b = 7.3703 (11) Å

  • c = 8.4555 (12) Å

  • α = 109.625 (14)°

  • β = 98.345 (12)°

  • γ = 92.812 (12)°

  • V = 382.13 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 297 K

  • 0.5 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.352, Tmax = 0.652

  • 3329 measured reflections

  • 1871 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 1.06

  • 1871 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1E⋯Cl1 0.9 2.31 3.201 (2) 169
N1—H1D⋯Cl2i 0.9 2.37 3.229 (2) 160
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1999)[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As some compounds belonging to organotin family have been screened and found to be very more active than cis platin towards some kinds of cancer, many groups have been involved in the seek of new organotin compounds (Gielen, 1996; Crowe, 1994). In another hand the various applications of compounds of this family have been outlined (Evans & Karpel, 1985). In our group we have yet published some papers in this field (Diop et al. 2002; Diop et al. 2003; Diasse-Sarr et al. 1997). In this paper we have initiated the study of the interactions between (CH3)3NH.Cl and SnMe2Cl2 which has yielded [(CH3)2NH2+]2[SnMe2Cl42-], X-ray structure determination of which has been carried out.

In the [SnMe2Cl4]2- anion the tin atom, which lies on a center of symmetry, is coordinated to the two methyl groups and four Cl atoms (Fig 1) in an octahedral geometry with trans methyl groups.

The Sn—C bond distances (2.116Å) are practically equal to those found in other octahedral dimethyltin(IV) diaquo-dichloro complexes SnMe2(H2O)2Cl2 (2.112 Å) reported by Valle et al. (1985) and longer than those in [Hthiamine][SnMe2(H2O)2Cl2]Cl (2.092 Å and 2.084 Å) reported by Casas et al. (1996).

The Cl—Sn—Cl and Cl—Sn—CH3 angles being very near to 90° indicates an almost perfect octahedron. The interactions between [(CH3)NH2+] and anion are hydrogen bonds type. The C—N—C angles of the cation is close to 109°, in agreement with the expected sp3 hybridation. The interactions between [(CH3)NH2+] and anion imply hydrogen bonds.

Related literature top

For background to organotin(IV) chemistry, see: Gielen et al. (1996); Evans & Karpel (1985); Crowe et al. (1994); Diasse-Sarr et al. (1997); Diop et al. (2002, 2003). For related compounds, see: Valle et al. (1985); Casas et al. (1996); Diop et al. (2011).

Experimental top

The title compound has been obtained as white crystalline solid by reacting dimethylammonium chloride (Merck) with dimethyltin dichloride (Aldrich) in ethanol (1/1 ratio, mp: 190°). After a slow solvent evaporation colourless crystals suitable for X-ray work were obtained. All the chemicals were used without any further purification.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular packing around one anion implying hydrogen bonds (dashed lines) with the atom numbering used and 50% probability displacement elipsoids. Symmetry operations : ['] -x, -y, -z; [''] x, y+1,z, ['''] -x, -y, -z.
Bis(dimethylammonium) tetrachloridodimethylstannate(IV) top
Crystal data top
(C2H8N)2[SnCH3)2Cl4]Z = 1
Mr = 382.75F(000) = 190
Triclinic, P1Dx = 1.663 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6162 (9) ÅCell parameters from 3675 reflections
b = 7.3703 (11) Åθ = 2.9–31.3°
c = 8.4555 (12) ŵ = 2.34 mm1
α = 109.625 (14)°T = 297 K
β = 98.345 (12)°Fragment of rounded block, colourless
γ = 92.812 (12)°0.5 × 0.3 × 0.2 mm
V = 382.13 (9) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
1871 independent reflections
Radiation source: sealed X-ray tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.3622 pixels mm-1θmax = 28.3°, θmin = 4.1°
4 stepped ω–scans over 115 deg. with kappa –79 deg. (chi –58.3 deg.), phi 0, 90, 180, 270 deg. step 1 deg., exposure time 45 s detector distance 50 mm detector angle 30 deg.h = 87
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2009)
k = 99
Tmin = 0.352, Tmax = 0.652l = 1111
3329 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.2233P]
where P = (Fo2 + 2Fc2)/3
1871 reflections(Δ/σ)max < 0.001
64 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
(C2H8N)2[SnCH3)2Cl4]γ = 92.812 (12)°
Mr = 382.75V = 382.13 (9) Å3
Triclinic, P1Z = 1
a = 6.6162 (9) ÅMo Kα radiation
b = 7.3703 (11) ŵ = 2.34 mm1
c = 8.4555 (12) ÅT = 297 K
α = 109.625 (14)°0.5 × 0.3 × 0.2 mm
β = 98.345 (12)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
1871 independent reflections
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2009)
1839 reflections with I > 2σ(I)
Tmin = 0.352, Tmax = 0.652Rint = 0.018
3329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
1871 reflectionsΔρmin = 0.43 e Å3
64 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2689 (4)0.3818 (4)0.5967 (3)0.0404 (5)
H1A0.29020.25020.58470.061*
H1B0.13660.38490.53430.061*
H1C0.2750.45660.7150.061*
Cl10.25609 (10)0.40746 (9)0.20155 (7)0.04289 (14)
Cl20.64584 (8)0.16207 (8)0.39707 (7)0.03603 (12)
Sn10.50.50.50.02900 (8)
C20.2993 (5)0.8184 (6)0.0309 (4)0.0621 (8)
H2A0.42720.7640.01660.093*
H2B0.30730.94230.01670.093*
H2C0.19050.73330.05270.093*
C30.0570 (4)0.9131 (4)0.2302 (4)0.0479 (6)
H3A0.03310.91740.34060.072*
H3B0.04930.82740.14420.072*
H3C0.05631.04070.22390.072*
N10.2581 (3)0.8422 (3)0.2023 (3)0.0381 (4)
H1D0.35760.92630.280.046*
H1E0.26220.72760.21830.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0393 (11)0.0380 (11)0.0450 (12)0.0035 (9)0.0167 (10)0.0128 (10)
Cl10.0486 (3)0.0369 (3)0.0360 (3)0.0001 (2)0.0059 (2)0.0094 (2)
Cl20.0387 (3)0.0282 (2)0.0402 (3)0.00715 (19)0.0087 (2)0.0093 (2)
Sn10.03107 (11)0.02496 (11)0.03074 (11)0.00012 (7)0.00626 (7)0.00940 (8)
C20.0604 (18)0.078 (2)0.0417 (14)0.0007 (16)0.0195 (13)0.0098 (14)
C30.0387 (12)0.0550 (15)0.0478 (14)0.0036 (11)0.0083 (10)0.0151 (12)
N10.0382 (10)0.0390 (10)0.0351 (9)0.0007 (8)0.0029 (7)0.0120 (8)
Geometric parameters (Å, º) top
C1—Sn12.116 (2)C2—H2A0.96
C1—H1A0.96C2—H2B0.96
C1—H1B0.96C2—H2C0.96
C1—H1C0.96C3—N11.475 (3)
Cl1—Sn12.6441 (7)C3—H3A0.96
Cl2—Sn12.6297 (7)C3—H3B0.96
Sn1—C1i2.116 (2)C3—H3C0.96
Sn1—Cl2i2.6297 (7)N1—H1D0.9
Sn1—Cl1i2.6441 (7)N1—H1E0.9
C2—N11.468 (4)
Sn1—C1—H1A109.5Cl1i—Sn1—Cl1180
Sn1—C1—H1B109.5N1—C2—H2A109.5
H1A—C1—H1B109.5N1—C2—H2B109.5
Sn1—C1—H1C109.5H2A—C2—H2B109.5
H1A—C1—H1C109.5N1—C2—H2C109.5
H1B—C1—H1C109.5H2A—C2—H2C109.5
C1i—Sn1—C1180.00 (13)H2B—C2—H2C109.5
C1i—Sn1—Cl2i90.42 (7)N1—C3—H3A109.5
C1—Sn1—Cl2i89.58 (7)N1—C3—H3B109.5
C1i—Sn1—Cl289.58 (7)H3A—C3—H3B109.5
C1—Sn1—Cl290.42 (7)N1—C3—H3C109.5
Cl2i—Sn1—Cl2180H3A—C3—H3C109.5
C1i—Sn1—Cl1i90.43 (8)H3B—C3—H3C109.5
C1—Sn1—Cl1i89.57 (8)C2—N1—C3112.7 (2)
Cl2i—Sn1—Cl1i89.90 (2)C2—N1—H1D109.1
Cl2—Sn1—Cl1i90.10 (2)C3—N1—H1D109.1
C1i—Sn1—Cl189.57 (8)C2—N1—H1E109.1
C1—Sn1—Cl190.43 (8)C3—N1—H1E109.1
Cl2i—Sn1—Cl190.10 (2)H1D—N1—H1E107.8
Cl2—Sn1—Cl189.90 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···Cl10.92.313.201 (2)169
N1—H1D···Cl2ii0.92.373.229 (2)160
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C2H8N)2[SnCH3)2Cl4]
Mr382.75
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)6.6162 (9), 7.3703 (11), 8.4555 (12)
α, β, γ (°)109.625 (14), 98.345 (12), 92.812 (12)
V3)382.13 (9)
Z1
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis CCD; Oxford Diffraction, 2009)
Tmin, Tmax0.352, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
3329, 1871, 1839
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.06
No. of reflections1871
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.43

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···Cl10.92.313.201 (2)169
N1—H1D···Cl2i0.92.373.229 (2)160
Symmetry code: (i) x, y+1, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasas, J., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165–172.  CSD CrossRef CAS Web of Science Google Scholar
First citationCrowe, A. J. (1994). Metal Complexes in Cancer Chemotherapy, edited by S. P. Friccker. London: Chapman and Hall.  Google Scholar
First citationDiasse-Sarr, A., Diop, L., Mahon, M. F. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223–229.  CAS Google Scholar
First citationDiop, T., Diop, L., Molloy, K. C. K. & Kocioc-Köhn, G. (2011). Acta Cryst. E67, m203–m204.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDiop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327–328.  CAS Google Scholar
First citationDiop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGielen, M. (1996). Coord. Chem. Rev. 151, 41–51.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Plazzogna, G. & Ettore, R. (1985). J. Chem. Soc. Dalton Trans. pp. 1271–1274.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds