metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-hy­dr­oxy­benzoato-κO)bis­­[3-(4-meth­­oxy­phen­yl)-4-(4-methyl­phen­yl)-5-(2-pyrid­yl)-4H-1,2,4-triazole-κ2N1,N5]copper(II) dihydrate

aSchool of Chemistry and Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn

(Received 14 April 2011; accepted 28 April 2011; online 7 May 2011)

In the title complex, [Cu(C7H5O3)2(C21H18N4O)2]·2H2O, the CuII atom is located on a centre of inversion and exists in a tetra­gonally distorted octahedral geometry with a CuN4O2 chromophore. The intra­molecular O—H⋯O hydrogen bond is highly strained due to the mol­ecular geometry and, as a result, is much shorter than expected. Inter­molecular C—H⋯O and C—H⋯O inter­actions are also observed.

Related literature

For general background to the coordination chemistry of 1,2,4-triazole derivatives, see: Koningsbruggen et al. (1997[Koningsbruggen, P. J., Hassnoot, J. G., Kooijman, H., Reedijk, J. & Spek, A. L. (1997). Inorg. Chem. 36, 2487-2489.]); Garcia et al. (1999[Garcia, Y., Kahn, O., Rabardel, L., Chansou, B., Salmon, L. & Tuchagues, J. P. (1999). Inorg. Chem. 38, 4663-4670.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Matsukizono et al. (2008[Matsukizono, H., Kuroiwa, K. & Kimizuka, N. (2008). Chem. Lett. 37, 446-447.]); Suksrichavalit et al. (2009[Suksrichavalit, T., Prachayasittikul, S., Nantasenamat, C., Isarankurai-Na-Ayudhyal, C. & Prachayasittikul, V. (2009). Eur. J. Inorg. Chem. 44, 3259-3265.]); Rubio et al. (2011[Rubio, M., Hernández, R., Nogales, A., Roig, A. & López, D. (2011). Eur. Polym. J. 47, 52-60.]). For their biological activity, see: Tozkoparan et al. (2000[Tozkoparan, B., Gokhan, N., Aktay, G., Yesilada, E. & Ertana, M. (2000). Eur. J. Med. Chem. 35, 743-750.]); Grénman et al. (2003)[Grénman, H., Salmi, T., Mäki-Arvela, J., Eränen, K., Tirronen, E. & Pehkonen, A. (2003). Org. Process Res. Dev. 7, 942-950.]; Alagarsamy et al. (2008[Alagarsamy, V., Rupeshkumar, M., Kavitha, K., Meena, S., Shankar, D., Siddiqui, A. A. & Rajesh, R. (2008). Eur. J. Med. Chem. 43, 2331-2337.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H5O3)2(C21H18N4O)2]·2H2O

  • Mr = 1058.58

  • Triclinic, [P \overline 1]

  • a = 8.5933 (12) Å

  • b = 10.6467 (15) Å

  • c = 14.578 (2) Å

  • α = 103.556 (2)°

  • β = 91.501 (2)°

  • γ = 101.843 (2)°

  • V = 1265.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.14 × 0.13 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.933, Tmax = 0.942

  • 9025 measured reflections

  • 4413 independent reflections

  • 3891 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.08

  • 4413 reflections

  • 349 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1F⋯O2i 0.87 (4) 2.02 (4) 2.885 (3) 175 (4)
O1W—H1E⋯O2 0.78 (4) 2.08 (4) 2.865 (3) 174 (4)
O4—H4⋯O3 0.82 1.79 2.522 (3) 147
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As the 1,2,4-triazole ring posesses strong electron donors, the coordination chemistry of 1,2,4-triazoles as a ligand is widely studied (Koningsbruggen et al., 1997; Garcia et al., 1999; Klingele & Brooker 2003; Matsukizono et al., 2008; Suksrichavalit et al., 2009; Rubio et al., 2011). And some 1,2,4-triazole compounds have biological activities (Tozkoparan et al., 2000; Grénman et al., 2003; Alagarsamy et al., 2008; Isloor et al., 2009). We report here the crystal structure analysis of the title compound. The title copper(II) is surrounded by four N atoms [1.9774 (16)–2.0497 (16) Å] of the two 3-(4-methoxyphenyl)-4-(4-methylphenyl)-5-(2-pyridyl)-4H-1,2,4- triazoles in a plane, and two O atoms of the two carboxylate groups interact weakly at axial positions with the copper(II) atom at 2.4322 (16) Å.

There is an intramolecular hydrogen bond of O4-H4···O3, it is highly strained because of the fixed geometry of the molecule. As a result it is much shorter than would otherwise be expected for a bond with this angle.

Related literature top

For general background to the coordination chemistry of 1,2,4-triazole derivatives, see: Koningsbruggen et al. (1997); Garcia et al. (1999); Klingele & Brooker (2003); Matsukizono et al. (2008); Suksrichavalit et al. (2009); Rubio et al. (2011). For their biological activity, see: Tozkoparan et al. (2000); Grénman et al. (2003); Alagarsamy et al. (2008); Isloor et al. (2009).

Experimental top

The title compound was prepared by reaction of 3-(4-methoxyphenyl)-4-(4-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole with copper(II) salicylate in ethanol and water. To a warm solution of 0.684 grams of 3-(4-methoxyphenyl)-4-(4-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole (2mmol) in 20 ml ethanol, 0.338 grams of copper(II) salicylate (1mmol) in 10 ml water was added. The filtrate was left to stand at room temperature for several days. The blue product was collected, and single crystals suitable for X-ray diffraction were selected.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) or N—H = 0.85 Å, with Uĩso~(H) = 1.2 or 1.5 times U~eq~(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic labelling and the directions of the cell axes. Displacement ellipsoids are shown at 30% probability level.
Bis(2-hydroxybenzoato-κO)bis[3-(4-methoxyphenyl)-4-(4-methylphenyl)- 5-(2-pyridyl)-4H-1,2,4-triazole-κ2N1,N5]copper(II) dihydrate top
Crystal data top
[Cu(C7H5O3)2(C21H18N4O)2]·2H2OZ = 1
Mr = 1058.58F(000) = 551
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5933 (12) ÅCell parameters from 9999 reflections
b = 10.6467 (15) Åθ = 2.4–25.7°
c = 14.578 (2) ŵ = 0.50 mm1
α = 103.556 (2)°T = 296 K
β = 91.501 (2)°Rhombic, blue
γ = 101.843 (2)°0.14 × 0.13 × 0.12 mm
V = 1265.1 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4413 independent reflections
Radiation source: fine-focus sealed tube3891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.933, Tmax = 0.942k = 1212
9025 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.3303P]
where P = (Fo2 + 2Fc2)/3
4413 reflections(Δ/σ)max < 0.001
349 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(C7H5O3)2(C21H18N4O)2]·2H2Oγ = 101.843 (2)°
Mr = 1058.58V = 1265.1 (3) Å3
Triclinic, P1Z = 1
a = 8.5933 (12) ÅMo Kα radiation
b = 10.6467 (15) ŵ = 0.50 mm1
c = 14.578 (2) ÅT = 296 K
α = 103.556 (2)°0.14 × 0.13 × 0.12 mm
β = 91.501 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4413 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3891 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.942Rint = 0.024
9025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.51 e Å3
4413 reflectionsΔρmin = 0.33 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00001.00001.00000.03718 (13)
N10.01756 (19)0.84131 (16)0.90177 (11)0.0371 (4)
O30.10103 (18)0.91416 (16)1.12470 (12)0.0527 (4)
N30.15216 (19)0.73762 (16)0.79657 (11)0.0358 (4)
C80.2813 (2)0.70780 (19)0.73920 (13)0.0352 (4)
N40.22652 (19)1.06205 (16)0.96344 (11)0.0361 (4)
O20.0191 (2)0.70109 (16)1.08112 (12)0.0595 (4)
C100.4232 (3)0.7231 (2)0.60350 (15)0.0441 (5)
H100.43410.74920.54700.053*
N20.0804 (2)0.72205 (16)0.85894 (12)0.0394 (4)
C20.0031 (2)0.6597 (2)0.79623 (14)0.0374 (5)
C200.1732 (3)0.4437 (2)0.77843 (15)0.0444 (5)
H200.19910.47510.83990.053*
O10.2764 (2)0.14805 (16)0.58065 (12)0.0675 (5)
C130.3854 (3)0.6414 (2)0.76912 (15)0.0434 (5)
H130.37140.61200.82420.052*
C220.0056 (3)0.8111 (2)1.13733 (16)0.0449 (5)
C150.0608 (2)0.5241 (2)0.73933 (14)0.0390 (5)
C30.2794 (2)0.97083 (19)0.89747 (13)0.0343 (4)
C90.2979 (3)0.7490 (2)0.65663 (15)0.0415 (5)
H90.22590.79360.63700.050*
C10.1555 (2)0.85032 (19)0.86417 (13)0.0351 (4)
C120.5121 (3)0.6189 (2)0.71555 (16)0.0503 (6)
H120.58480.57570.73610.060*
C230.0796 (3)0.8294 (2)1.22638 (15)0.0449 (5)
C60.4775 (3)1.2099 (2)0.97157 (16)0.0483 (5)
H60.54231.29330.99650.058*
O40.0620 (3)1.05550 (18)1.28368 (14)0.0759 (6)
H40.10181.03591.23320.114*
C160.0206 (3)0.4745 (2)0.64802 (15)0.0492 (5)
H160.05580.52680.62080.059*
C70.3238 (3)1.1798 (2)0.99837 (15)0.0440 (5)
H70.28711.24381.04210.053*
C110.5333 (3)0.6588 (2)0.63257 (16)0.0449 (5)
C40.4326 (2)0.9949 (2)0.86936 (15)0.0439 (5)
H4A0.46760.93050.82500.053*
C170.0932 (3)0.3490 (2)0.59781 (16)0.0543 (6)
H170.06520.31640.53700.065*
C260.2262 (5)0.8563 (4)1.3948 (2)0.0911 (11)
H260.27340.86401.45200.109*
C180.2082 (3)0.2706 (2)0.63742 (16)0.0486 (6)
C190.2477 (3)0.3182 (2)0.72827 (16)0.0477 (5)
H190.32400.26580.75540.057*
C50.5333 (3)1.1165 (2)0.90825 (16)0.0479 (5)
H50.63771.13430.89140.058*
C250.1175 (4)0.9602 (3)1.38054 (19)0.0770 (9)
H250.09211.03901.42730.092*
C140.6730 (3)0.6345 (3)0.5758 (2)0.0704 (8)
H14A0.64680.63080.51070.106*
H14B0.69710.55200.58060.106*
H14C0.76410.70510.59990.106*
C280.1937 (3)0.7267 (3)1.24335 (19)0.0616 (7)
H280.22070.64701.19760.074*
C240.0433 (3)0.9495 (2)1.29565 (17)0.0553 (6)
C270.2678 (4)0.7400 (4)1.3262 (2)0.0855 (10)
H270.34570.67051.33580.103*
C210.3755 (4)0.0575 (3)0.6233 (2)0.0760 (8)
H21A0.31610.04410.67560.114*
H21B0.41180.02550.57760.114*
H21C0.46570.09250.64570.114*
O1W0.1915 (2)0.5712 (2)0.96350 (16)0.0732 (6)
H1F0.145 (5)0.488 (4)0.949 (3)0.110*
H1E0.139 (5)0.611 (4)0.997 (3)0.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0287 (2)0.0316 (2)0.0425 (2)0.00245 (14)0.01006 (14)0.00540 (14)
N10.0317 (9)0.0324 (9)0.0411 (9)0.0041 (7)0.0062 (7)0.0007 (7)
O30.0432 (9)0.0530 (10)0.0612 (10)0.0065 (8)0.0084 (7)0.0154 (8)
N30.0334 (9)0.0335 (9)0.0365 (9)0.0084 (7)0.0071 (7)0.0004 (7)
C80.0343 (11)0.0315 (10)0.0358 (10)0.0084 (8)0.0057 (8)0.0012 (8)
N40.0301 (9)0.0340 (9)0.0387 (9)0.0050 (7)0.0063 (7)0.0003 (7)
O20.0772 (12)0.0476 (10)0.0523 (10)0.0165 (9)0.0166 (9)0.0059 (8)
C100.0509 (13)0.0424 (12)0.0369 (11)0.0074 (10)0.0097 (9)0.0072 (9)
N20.0352 (9)0.0310 (9)0.0440 (9)0.0040 (7)0.0061 (7)0.0039 (7)
C20.0359 (11)0.0367 (11)0.0369 (10)0.0093 (9)0.0028 (8)0.0022 (9)
C200.0480 (13)0.0402 (12)0.0412 (11)0.0122 (10)0.0038 (10)0.0001 (9)
O10.0879 (14)0.0356 (9)0.0608 (11)0.0029 (9)0.0042 (9)0.0085 (8)
C130.0474 (13)0.0474 (13)0.0386 (11)0.0174 (10)0.0067 (9)0.0103 (9)
C220.0436 (12)0.0467 (13)0.0473 (12)0.0179 (11)0.0044 (10)0.0097 (10)
C150.0392 (11)0.0346 (11)0.0392 (11)0.0105 (9)0.0003 (9)0.0004 (9)
C30.0324 (10)0.0351 (11)0.0334 (10)0.0084 (8)0.0052 (8)0.0033 (8)
C90.0442 (12)0.0388 (12)0.0428 (11)0.0145 (10)0.0033 (9)0.0079 (9)
C10.0333 (11)0.0344 (11)0.0353 (10)0.0097 (9)0.0061 (8)0.0018 (8)
C120.0464 (13)0.0582 (15)0.0534 (13)0.0273 (11)0.0085 (10)0.0130 (11)
C230.0452 (13)0.0469 (13)0.0460 (12)0.0195 (10)0.0053 (10)0.0097 (10)
C60.0369 (12)0.0461 (13)0.0499 (13)0.0046 (10)0.0061 (10)0.0006 (10)
O40.1034 (17)0.0521 (11)0.0617 (12)0.0080 (11)0.0054 (11)0.0021 (9)
C160.0552 (14)0.0407 (13)0.0436 (12)0.0049 (11)0.0054 (10)0.0008 (10)
C70.0360 (11)0.0392 (12)0.0455 (12)0.0016 (9)0.0072 (9)0.0062 (9)
C110.0407 (12)0.0425 (12)0.0477 (12)0.0100 (10)0.0113 (9)0.0020 (10)
C40.0363 (11)0.0467 (13)0.0461 (12)0.0113 (10)0.0129 (9)0.0033 (10)
C170.0666 (16)0.0466 (14)0.0408 (12)0.0103 (12)0.0038 (11)0.0053 (10)
C260.123 (3)0.103 (3)0.074 (2)0.065 (2)0.052 (2)0.036 (2)
C180.0582 (14)0.0337 (12)0.0475 (13)0.0103 (10)0.0077 (11)0.0017 (9)
C190.0515 (14)0.0364 (12)0.0508 (13)0.0048 (10)0.0031 (10)0.0060 (10)
C50.0304 (11)0.0586 (14)0.0489 (13)0.0026 (10)0.0098 (9)0.0072 (11)
C250.121 (3)0.072 (2)0.0498 (15)0.056 (2)0.0108 (16)0.0066 (14)
C140.0575 (17)0.081 (2)0.0727 (18)0.0231 (15)0.0279 (14)0.0104 (15)
C280.0634 (16)0.0577 (16)0.0648 (16)0.0147 (13)0.0189 (13)0.0144 (13)
C240.0698 (17)0.0512 (15)0.0499 (14)0.0265 (13)0.0001 (12)0.0112 (11)
C270.091 (2)0.089 (2)0.086 (2)0.0244 (19)0.0436 (19)0.0328 (19)
C210.082 (2)0.0402 (15)0.090 (2)0.0022 (14)0.0050 (17)0.0015 (14)
O1W0.0569 (12)0.0694 (13)0.0760 (13)0.0073 (10)0.0246 (10)0.0002 (11)
Geometric parameters (Å, º) top
Cu1—N11.9773 (16)C23—C241.402 (3)
Cu1—N42.0497 (16)C6—C51.364 (3)
Cu1—O32.4322 (16)C6—C71.383 (3)
N1—C11.314 (2)C6—H60.9300
N1—N21.368 (2)O4—C241.344 (3)
O3—C221.282 (3)O4—H40.8200
N3—C11.357 (2)C16—C171.374 (3)
N3—C21.375 (3)C16—H160.9300
N3—C81.449 (2)C7—H70.9300
C8—C131.369 (3)C11—C141.508 (3)
C8—C91.376 (3)C4—C51.384 (3)
N4—C71.334 (3)C4—H4A0.9300
N4—C31.357 (2)C17—C181.387 (3)
O2—C221.236 (3)C17—H170.9300
C10—C91.378 (3)C26—C251.354 (5)
C10—C111.387 (3)C26—C271.372 (5)
C10—H100.9300C26—H260.9300
N2—C21.318 (3)C18—C191.380 (3)
C2—C151.471 (3)C19—H190.9300
C20—C191.378 (3)C5—H50.9300
C20—C151.381 (3)C25—C241.398 (4)
C20—H200.9300C25—H250.9300
O1—C181.373 (3)C14—H14A0.9600
O1—C211.419 (3)C14—H14B0.9600
C13—C121.384 (3)C14—H14C0.9600
C13—H130.9300C28—C271.372 (4)
C22—C231.500 (3)C28—H280.9300
C15—C161.392 (3)C27—H270.9300
C3—C41.381 (3)C21—H21A0.9600
C3—C11.461 (3)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C12—C111.378 (3)O1W—H1F0.87 (4)
C12—H120.9300O1W—H1E0.78 (4)
C23—C281.385 (3)
N1—Cu1—N480.33 (6)C24—O4—H4109.5
N1—Cu1—O391.91 (6)C17—C16—C15120.4 (2)
N4—Cu1—O391.28 (6)C17—C16—H16119.8
C1—N1—N2109.27 (16)C15—C16—H16119.8
C1—N1—Cu1114.35 (13)N4—C7—C6122.09 (19)
N2—N1—Cu1136.33 (13)N4—C7—H7119.0
C22—O3—Cu1112.82 (13)C6—C7—H7119.0
C1—N3—C2105.25 (16)C12—C11—C10118.0 (2)
C1—N3—C8126.29 (16)C12—C11—C14120.9 (2)
C2—N3—C8128.45 (16)C10—C11—C14121.1 (2)
C13—C8—C9121.51 (19)C3—C4—C5118.87 (19)
C13—C8—N3119.36 (18)C3—C4—H4A120.6
C9—C8—N3119.12 (17)C5—C4—H4A120.6
C7—N4—C3118.56 (17)C16—C17—C18120.2 (2)
C7—N4—Cu1126.69 (14)C16—C17—H17119.9
C3—N4—Cu1114.75 (13)C18—C17—H17119.9
C9—C10—C11121.3 (2)C25—C26—C27120.9 (3)
C9—C10—H10119.3C25—C26—H26119.5
C11—C10—H10119.3C27—C26—H26119.5
C2—N2—N1106.23 (17)O1—C18—C19124.4 (2)
N2—C2—N3110.19 (17)O1—C18—C17115.7 (2)
N2—C2—C15121.90 (19)C19—C18—C17119.8 (2)
N3—C2—C15127.87 (18)C20—C19—C18119.5 (2)
C19—C20—C15121.4 (2)C20—C19—H19120.2
C19—C20—H20119.3C18—C19—H19120.2
C15—C20—H20119.3C6—C5—C4119.2 (2)
C18—O1—C21117.3 (2)C6—C5—H5120.4
C8—C13—C12118.6 (2)C4—C5—H5120.4
C8—C13—H13120.7C26—C25—C24120.2 (3)
C12—C13—H13120.7C26—C25—H25119.9
O2—C22—O3124.0 (2)C24—C25—H25119.9
O2—C22—C23119.7 (2)C11—C14—H14A109.5
O3—C22—C23116.2 (2)C11—C14—H14B109.5
C20—C15—C16118.57 (19)H14A—C14—H14B109.5
C20—C15—C2117.05 (18)C11—C14—H14C109.5
C16—C15—C2124.3 (2)H14A—C14—H14C109.5
N4—C3—C4121.70 (19)H14B—C14—H14C109.5
N4—C3—C1111.19 (17)C27—C28—C23121.4 (3)
C4—C3—C1127.11 (18)C27—C28—H28119.3
C8—C9—C10118.85 (19)C23—C28—H28119.3
C8—C9—H9120.6O4—C24—C25118.4 (3)
C10—C9—H9120.6O4—C24—C23122.1 (2)
N1—C1—N3109.03 (17)C25—C24—C23119.5 (3)
N1—C1—C3119.30 (17)C28—C27—C26119.6 (3)
N3—C1—C3131.67 (17)C28—C27—H27120.2
C11—C12—C13121.7 (2)C26—C27—H27120.2
C11—C12—H12119.1O1—C21—H21A109.5
C13—C12—H12119.1O1—C21—H21B109.5
C28—C23—C24118.2 (2)H21A—C21—H21B109.5
C28—C23—C22120.7 (2)O1—C21—H21C109.5
C24—C23—C22121.1 (2)H21A—C21—H21C109.5
C5—C6—C7119.5 (2)H21B—C21—H21C109.5
C5—C6—H6120.3H1F—O1W—H1E109 (4)
C7—C6—H6120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1F···O2i0.87 (4)2.02 (4)2.885 (3)175 (4)
O1W—H1E···O20.78 (4)2.08 (4)2.865 (3)174 (4)
O4—H4···O30.821.792.522 (3)147
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C7H5O3)2(C21H18N4O)2]·2H2O
Mr1058.58
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5933 (12), 10.6467 (15), 14.578 (2)
α, β, γ (°)103.556 (2), 91.501 (2), 101.843 (2)
V3)1265.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.14 × 0.13 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.933, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
9025, 4413, 3891
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.08
No. of reflections4413
No. of parameters349
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1F···O2i0.87 (4)2.02 (4)2.885 (3)175 (4)
O1W—H1E···O20.78 (4)2.08 (4)2.865 (3)174 (4)
O4—H4···O30.821.792.522 (3)147
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

We are grateful to Jingye Pharmochemical Pilot Plant for financial assistance though project 8507040052.

References

First citationAlagarsamy, V., Rupeshkumar, M., Kavitha, K., Meena, S., Shankar, D., Siddiqui, A. A. & Rajesh, R. (2008). Eur. J. Med. Chem. 43, 2331–2337.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcia, Y., Kahn, O., Rabardel, L., Chansou, B., Salmon, L. & Tuchagues, J. P. (1999). Inorg. Chem. 38, 4663–4670.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrénman, H., Salmi, T., Mäki-Arvela, J., Eränen, K., Tirronen, E. & Pehkonen, A. (2003). Org. Process Res. Dev. 7, 942–950.  Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationKoningsbruggen, P. J., Hassnoot, J. G., Kooijman, H., Reedijk, J. & Spek, A. L. (1997). Inorg. Chem. 36, 2487–2489.  CSD CrossRef PubMed Web of Science Google Scholar
First citationMatsukizono, H., Kuroiwa, K. & Kimizuka, N. (2008). Chem. Lett. 37, 446–447.  Web of Science CrossRef CAS Google Scholar
First citationRubio, M., Hernández, R., Nogales, A., Roig, A. & López, D. (2011). Eur. Polym. J. 47, 52–60.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuksrichavalit, T., Prachayasittikul, S., Nantasenamat, C., Isarankurai-Na-Ayudhyal, C. & Prachayasittikul, V. (2009). Eur. J. Inorg. Chem. 44, 3259–3265.  CAS Google Scholar
First citationTozkoparan, B., Gokhan, N., Aktay, G., Yesilada, E. & Ertana, M. (2000). Eur. J. Med. Chem. 35, 743–750.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds