organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1460-o1461

Ethyl 3-[2-(3,4-dimeth­­oxy­benz­yl)-1-phenyl­sulfonyl-1H-indol-3-yl]acrylate chloro­form hemisolvate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 4 April 2011; accepted 11 May 2011; online 20 May 2011)

In the title compound, C28H27NO6S·0.5CHCl3, the ethyl acrylate substituent adopts an extented conformation with all torsion angles close to 180°. The chloro­form solvent mol­ecule is disordered across an inversion centre and is therefore half occupied. The mol­ecular packing is controlled by inter­molecular C—H⋯O inter­actions.

Related literature

For general background to indoles, see: Hu et al. (2005[Hu, B., Jetter, J. W., Wrobel, J. E., Antrilli, T. M., Bauer, J. S., Di, L., Polakowski, S., Jain, U. & Crandall, D. L. (2005). Bioorg. Med. Chem. Lett. 15, 3514-3518.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Mathiesen et al. (2005[Mathiesen, J. M., Ulven, T., Martini, L., Gerlach, L. O., Heinemann, A. & Kostenis, E. (2005). Mol. Pharmacol. 68, 393-402.]); Olgen & Nebioglu (2002[Olgen, S. & Nebioglu, D. (2002). Farmaco, 57, 677-683.]). For the sulfonyl moiety, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H27NO6S·0.5CHCl3

  • Mr = 565.25

  • Triclinic, [P \overline 1]

  • a = 10.2154 (3) Å

  • b = 12.0504 (4) Å

  • c = 12.6310 (4) Å

  • α = 70.602 (2)°

  • β = 69.613 (1)°

  • γ = 77.056 (2)°

  • V = 1364.39 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.941

  • 38797 measured reflections

  • 10612 independent reflections

  • 7709 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.189

  • S = 1.04

  • 10612 reflections

  • 364 parameters

  • 27 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O4i 0.93 2.53 3.411 (3) 159
C24—H24B⋯O7ii 0.96 2.51 3.461 (2) 169
C24—H24A⋯O7iii 0.96 2.52 3.367 (3) 147
C30—H30A⋯O3iv 0.96 2.59 3.429 (7) 146
C30—H30A⋯O4iv 0.96 2.55 3.424 (7) 151
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z+1; (iii) -x+1, -y+1, -z; (iv) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carboxylic acid indoles act as inhibitors of plasminogen activator inhibitor-1 (Hu et al., 2005). The benzenesulfonamide group attached to the indole ring exhibit significant biological activities, such as antibacterial etc., (Nieto et al., 2005). Also, the indole derivatives are identified as the molecules which interfere with a G protein-independent signaling pathway of the CRTH2 receptor (Mathiesen et al.,2005). N-substituted indole carboxylic acid esters have been prepared as possible cyclo-oxygenase-2 (COX-2) enzyme inhibitors (Olgen & Nebioglu, 2002).

Fig.1 shows the ORTEP plot of the title compound. The indole moiety is planar with the maximum deviation of -0.033 (2)Å and 0.028 (2)Å for atoms C5 and C7, respectively. The indole ring system is oriented equatorially to the phenyl sulfonyl ring [dihedral angle = 78.18 (6)°]. The O—S—O and N—S—C angles [See Table1] deviate significantly from their ideal value due to the Thrope-Ingold effect (Bassindale, 1984). The dimethoxybenzyl group is also equatorially oriented to the planar indole ring, which can be observed from the dihedral angle [78.04 (4)°].

The ethyl acrylate group substituted at C3 position of the indole ring takes up an extented conformation which is evident from the torsion angle values [C25—C26—C27—O8 =] -179.10 (16)°; [C25—C26—C27- O7 =] 1.8 (3)°; [C26—C27—O8—C28 =] 179.8 (2)°; [C29—C28—O8—C27 =] 179.7 (2)°. The sum of the bond angles around N1[359.37°] shows that atom N1 exhibits sp2 hybridization (Beddoes et al., 1986). The chloroform solvent is disordered across inversion centre with the site occupancies of 0.5 for each.

The molecular packing is controlled by intra and intermolecular C—H···O interactions in addition to van der Waals forces (Table 2). Atom H15 of C15 form an intermolecular hydrogen bonding with atom O4, leading to a C11 linear chains (Bernstein et al., 1995) with C—H···O type of interactions running along a-axis. The intermolecular interaction C24—H24A···O7 leads to R22(13) dimers, which are connected through C24—H24B···O7 interaction as closed loops running along c-axis. Intermolecular bifurcated C—H···O hydrogen bonds involving the two oxygen atoms of the dimethoxybenzyl group and the hydrogen atom of the chloroform, solvent generates R12(5) ring motif (Fig.2).

Related literature top

For general background to indoles, see: Hu et al. (2005); Nieto et al. (2005); Mathiesen et al. (2005); Olgen & Nebioglu (2002). For the sulfonyl moiety, see: Bassindale (1984). For hybridization, see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of (E)-Ethyl 3-(2-(bromomethyl)-1-(phenylsulfonyl)-1H-indol-3-yl) acrylate (0.3 g, 0.66 mmol) in dry DME (10 ml), ZnBr2 (0.3 g, 1.3 mmol), K2CO3 (0.18 g, 1.33 mmol) and veratrole (0.11 g, 0.79 mmol) were added. The reaction mixture was then refluxed for 12hrs under N2 atmosphere. The solvent was removed and the reaction mixture was quenched with ice-water (100 mL) containing 2 mL of conc.HCl. It was then extracted with chloroform (20 mL) and dried (Na2SO4). Removal of the solvent followed by crystallization from methanol afforded the product as pale yellow crystals.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for other H atoms. The chloroform solvent is disordered across inversion centre with the site occupancies of 0.5 for each. The corresponding bond distances involving the disordered atoms C30, Cl1, Cl2 and Cl3 were restrained to 1.74 (1) Å and also their displacement parameters were restrained to an approximate isotropic behaviour.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 30% probability displacement ellipsoids. H atoms omitted for clarity.
[Figure 2] Fig. 2. The packing of the molecules showing intermolecular C—H···O hydrogen bonds (dashed lines).
Ethyl 3-[2-(3,4-dimethoxybenzyl)-1-phenylsulfonyl-1H-indol-3-yl]prop-2-enoate chloroform hemisolvate top
Crystal data top
C28H27NO6S·0.5CHCl3Z = 2
Mr = 565.25F(000) = 590
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2154 (3) ÅCell parameters from 10612 reflections
b = 12.0504 (4) Åθ = 1.8–34.4°
c = 12.6310 (4) ŵ = 0.31 mm1
α = 70.602 (2)°T = 293 K
β = 69.613 (1)°Block, yellow
γ = 77.056 (2)°0.30 × 0.25 × 0.20 mm
V = 1364.39 (7) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
10612 independent reflections
Radiation source: fine-focus sealed tube7709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 34.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1516
Tmin = 0.913, Tmax = 0.941k = 1818
38797 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1059P)2 + 0.3616P]
where P = (Fo2 + 2Fc2)/3
10612 reflections(Δ/σ)max = 0.005
364 parametersΔρmax = 0.73 e Å3
27 restraintsΔρmin = 0.46 e Å3
Crystal data top
C28H27NO6S·0.5CHCl3γ = 77.056 (2)°
Mr = 565.25V = 1364.39 (7) Å3
Triclinic, P1Z = 2
a = 10.2154 (3) ÅMo Kα radiation
b = 12.0504 (4) ŵ = 0.31 mm1
c = 12.6310 (4) ÅT = 293 K
α = 70.602 (2)°0.30 × 0.25 × 0.20 mm
β = 69.613 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
10612 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
7709 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.941Rint = 0.026
38797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05627 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
10612 reflectionsΔρmin = 0.46 e Å3
364 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.72857 (13)0.61852 (12)0.05863 (12)0.0264 (2)
C30.81718 (13)0.63351 (12)0.05351 (12)0.0274 (2)
C40.95289 (13)0.65050 (12)0.05427 (12)0.0263 (2)
C51.07996 (14)0.66763 (13)0.14331 (13)0.0315 (3)
H51.08890.66700.21890.038*
C61.19275 (15)0.68563 (15)0.11662 (15)0.0364 (3)
H61.27840.69740.17500.044*
C71.17913 (15)0.68629 (15)0.00368 (16)0.0379 (3)
H71.25590.70000.01160.045*
C81.05530 (15)0.66722 (15)0.08678 (14)0.0356 (3)
H81.04760.66660.16250.043*
C90.94241 (13)0.64898 (12)0.05935 (12)0.0279 (2)
C100.70544 (17)0.78432 (16)0.26272 (14)0.0377 (3)
C110.5742 (2)0.84292 (17)0.25639 (15)0.0432 (4)
H110.50840.80350.25230.052*
C120.5421 (3)0.9606 (2)0.2561 (2)0.0574 (5)
H120.45411.00060.25230.069*
C130.6404 (3)1.0186 (2)0.2616 (3)0.0744 (8)
H130.61871.09800.26090.089*
C140.7695 (3)0.9599 (3)0.2680 (3)0.0806 (9)
H140.83480.99990.27200.097*
C150.8049 (2)0.8418 (2)0.2685 (2)0.0587 (6)
H150.89310.80220.27270.070*
C160.58220 (13)0.58587 (12)0.10469 (13)0.0292 (3)
H16A0.57270.52530.17920.035*
H16B0.56880.55140.05040.035*
C170.46644 (13)0.68702 (12)0.12265 (12)0.0269 (2)
C180.47327 (14)0.79830 (13)0.04363 (13)0.0312 (3)
H180.55300.81330.02080.037*
C190.36222 (16)0.88845 (13)0.05909 (14)0.0347 (3)
H190.36820.96280.00470.042*
C200.24365 (15)0.86818 (14)0.15431 (15)0.0350 (3)
C210.23710 (14)0.75648 (14)0.23783 (13)0.0326 (3)
C220.34699 (14)0.66710 (13)0.22105 (12)0.0296 (3)
H220.34170.59280.27560.036*
C230.1240 (3)1.0559 (2)0.0848 (3)0.0857 (10)
H23A0.19321.10190.07870.129*
H23B0.03231.10020.10290.129*
H23C0.14401.03850.01150.129*
C240.1089 (2)0.6366 (2)0.42176 (19)0.0577 (5)
H24A0.11400.57290.39030.087*
H24B0.02130.64150.48260.087*
H24C0.18550.62240.45390.087*
C250.79102 (15)0.63214 (13)0.15877 (13)0.0311 (3)
H250.87000.61020.21580.037*
C260.67095 (15)0.65761 (15)0.18607 (13)0.0342 (3)
H260.58640.67510.13160.041*
C270.67332 (16)0.65776 (16)0.30294 (13)0.0358 (3)
C280.5395 (2)0.6890 (3)0.43115 (17)0.0634 (6)
H28A0.57530.61170.44480.076*
H28B0.59760.74650.49270.076*
C290.3931 (3)0.7211 (3)0.4337 (2)0.0673 (7)
H29A0.33560.66550.37100.101*
H29B0.38810.71960.50770.101*
H29C0.35990.79930.42420.101*
N10.80387 (12)0.62707 (11)0.13020 (10)0.0292 (2)
O10.61261 (13)0.58330 (11)0.31986 (10)0.0420 (3)
O20.85541 (15)0.58180 (14)0.31850 (11)0.0509 (3)
O30.12766 (14)0.94873 (12)0.17533 (14)0.0550 (4)
O40.11775 (12)0.74569 (12)0.33019 (12)0.0468 (3)
O70.77576 (14)0.63380 (17)0.37800 (13)0.0608 (4)
O80.54527 (12)0.68657 (14)0.31723 (10)0.0482 (3)
S10.74189 (4)0.63276 (4)0.26998 (3)0.03379 (10)
C301.0269 (8)0.0254 (6)0.4558 (6)0.113 (3)0.50
H30A1.04280.06600.39790.136*0.50
Cl10.9317 (6)0.1115 (4)0.4302 (5)0.199 (2)0.50
Cl20.9683 (8)0.1068 (4)0.5950 (4)0.223 (3)0.50
Cl31.1858 (5)0.0222 (6)0.4566 (6)0.241 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0239 (5)0.0266 (6)0.0284 (6)0.0029 (4)0.0068 (4)0.0083 (5)
C30.0237 (5)0.0287 (6)0.0294 (6)0.0024 (4)0.0067 (4)0.0093 (5)
C40.0233 (5)0.0246 (6)0.0297 (6)0.0015 (4)0.0063 (4)0.0084 (5)
C50.0256 (6)0.0342 (7)0.0311 (6)0.0035 (5)0.0032 (5)0.0102 (5)
C60.0237 (6)0.0394 (8)0.0433 (8)0.0042 (5)0.0032 (5)0.0149 (6)
C70.0250 (6)0.0452 (8)0.0483 (9)0.0049 (5)0.0097 (6)0.0199 (7)
C80.0286 (6)0.0450 (8)0.0383 (8)0.0033 (5)0.0102 (5)0.0186 (6)
C90.0242 (5)0.0283 (6)0.0311 (6)0.0017 (4)0.0072 (4)0.0102 (5)
C100.0395 (7)0.0459 (8)0.0285 (7)0.0127 (6)0.0010 (5)0.0162 (6)
C110.0526 (9)0.0454 (9)0.0356 (8)0.0058 (7)0.0139 (7)0.0158 (7)
C120.0707 (13)0.0472 (11)0.0538 (12)0.0002 (9)0.0168 (10)0.0197 (9)
C130.0876 (18)0.0528 (13)0.0797 (18)0.0212 (12)0.0009 (14)0.0335 (12)
C140.0689 (15)0.0828 (18)0.102 (2)0.0386 (14)0.0080 (14)0.0570 (17)
C150.0406 (9)0.0773 (15)0.0694 (14)0.0203 (9)0.0008 (8)0.0441 (12)
C160.0246 (5)0.0294 (6)0.0327 (6)0.0057 (4)0.0051 (5)0.0095 (5)
C170.0223 (5)0.0303 (6)0.0278 (6)0.0055 (4)0.0055 (4)0.0081 (5)
C180.0268 (6)0.0339 (7)0.0293 (6)0.0069 (5)0.0041 (5)0.0066 (5)
C190.0325 (6)0.0293 (7)0.0364 (7)0.0056 (5)0.0072 (5)0.0038 (5)
C200.0287 (6)0.0310 (7)0.0409 (8)0.0015 (5)0.0059 (5)0.0104 (6)
C210.0250 (6)0.0362 (7)0.0332 (7)0.0061 (5)0.0021 (5)0.0104 (6)
C220.0260 (5)0.0300 (6)0.0296 (6)0.0064 (4)0.0052 (5)0.0055 (5)
C230.0520 (12)0.0391 (11)0.113 (2)0.0090 (9)0.0024 (13)0.0079 (12)
C240.0444 (9)0.0549 (11)0.0452 (10)0.0098 (8)0.0117 (8)0.0017 (8)
C250.0298 (6)0.0364 (7)0.0278 (6)0.0047 (5)0.0068 (5)0.0110 (5)
C260.0302 (6)0.0446 (8)0.0295 (6)0.0017 (5)0.0078 (5)0.0156 (6)
C270.0322 (6)0.0477 (8)0.0293 (7)0.0073 (6)0.0066 (5)0.0141 (6)
C280.0493 (10)0.116 (2)0.0294 (8)0.0157 (11)0.0110 (7)0.0228 (10)
C290.0630 (13)0.103 (2)0.0438 (11)0.0165 (13)0.0262 (10)0.0151 (12)
N10.0253 (5)0.0349 (6)0.0271 (5)0.0041 (4)0.0054 (4)0.0106 (4)
O10.0429 (6)0.0477 (7)0.0297 (5)0.0165 (5)0.0017 (4)0.0060 (5)
O20.0485 (7)0.0687 (9)0.0352 (6)0.0030 (6)0.0203 (5)0.0084 (6)
O30.0369 (6)0.0367 (6)0.0681 (9)0.0056 (5)0.0009 (6)0.0092 (6)
O40.0319 (5)0.0444 (7)0.0440 (7)0.0035 (5)0.0078 (5)0.0077 (5)
O70.0395 (7)0.1053 (13)0.0413 (7)0.0004 (7)0.0046 (5)0.0383 (8)
O80.0346 (6)0.0831 (10)0.0283 (5)0.0080 (6)0.0089 (4)0.0174 (6)
S10.03402 (18)0.0409 (2)0.02481 (17)0.00679 (14)0.00670 (12)0.00787 (14)
C300.145 (6)0.099 (5)0.098 (5)0.038 (4)0.053 (4)0.047 (4)
Cl10.273 (5)0.147 (3)0.235 (5)0.091 (3)0.201 (5)0.071 (3)
Cl20.327 (6)0.129 (3)0.147 (3)0.070 (4)0.001 (4)0.003 (2)
Cl30.162 (3)0.292 (6)0.246 (5)0.010 (4)0.066 (3)0.065 (4)
Geometric parameters (Å, º) top
C2—C31.3669 (19)C23—O31.416 (3)
C2—N11.4146 (17)C23—H23A0.9600
C2—C161.4948 (17)C23—H23B0.9600
C3—C41.4424 (17)C23—H23C0.9600
C3—C251.4503 (19)C24—O41.430 (2)
C4—C51.3932 (18)C24—H24A0.9600
C4—C91.3956 (19)C24—H24B0.9600
C5—C61.385 (2)C24—H24C0.9600
C5—H50.9300C25—C261.332 (2)
C6—C71.387 (2)C25—H250.9300
C6—H60.9300C26—C271.467 (2)
C7—C81.381 (2)C26—H260.9300
C7—H70.9300C27—O71.1969 (19)
C8—C91.3931 (19)C27—O81.3355 (19)
C8—H80.9300C28—O81.451 (2)
C9—N11.4148 (17)C28—C291.467 (3)
C10—C111.384 (3)C28—H28A0.9700
C10—C151.385 (2)C28—H28B0.9700
C10—S11.7581 (18)C29—H29A0.9600
C11—C121.381 (3)C29—H29B0.9600
C11—H110.9300C29—H29C0.9600
C12—C131.377 (4)N1—S11.6749 (12)
C12—H120.9300O1—S11.4211 (12)
C13—C141.366 (4)O2—S11.4225 (13)
C13—H130.9300C30—C30i1.341 (14)
C14—C151.387 (4)C30—Cl2i1.512 (8)
C14—H140.9300C30—Cl1i1.601 (8)
C15—H150.9300C30—Cl21.673 (7)
C16—C171.5121 (19)C30—Cl11.708 (6)
C16—H16A0.9700C30—Cl31.842 (8)
C16—H16B0.9700C30—Cl3i2.065 (10)
C17—C181.380 (2)C30—H30A0.9600
C17—C221.4028 (18)Cl1—Cl2i0.952 (7)
C18—C191.393 (2)Cl1—C30i1.601 (8)
C18—H180.9300Cl1—Cl3i2.054 (8)
C19—C201.377 (2)Cl2—Cl1i0.952 (7)
C19—H190.9300Cl2—C30i1.512 (8)
C20—O31.3613 (19)Cl2—Cl3i1.871 (8)
C20—C211.406 (2)Cl3—Cl2i1.871 (8)
C21—O41.3577 (17)Cl3—Cl1i2.054 (8)
C21—C221.382 (2)Cl3—C30i2.065 (10)
C22—H220.9300
C3—C2—N1108.14 (11)C26—C25—H25115.1
C3—C2—C16127.64 (12)C3—C25—H25115.1
N1—C2—C16123.93 (12)C25—C26—C27119.37 (13)
C2—C3—C4108.30 (12)C25—C26—H26120.3
C2—C3—C25129.64 (12)C27—C26—H26120.3
C4—C3—C25122.05 (12)O7—C27—O8122.46 (15)
C5—C4—C9119.96 (12)O7—C27—C26125.42 (15)
C5—C4—C3132.26 (13)O8—C27—C26112.11 (13)
C9—C4—C3107.78 (11)O8—C28—C29109.08 (17)
C6—C5—C4118.49 (14)O8—C28—H28A109.9
C6—C5—H5120.8C29—C28—H28A109.9
C4—C5—H5120.8O8—C28—H28B109.9
C5—C6—C7120.58 (13)C29—C28—H28B109.9
C5—C6—H6119.7H28A—C28—H28B108.3
C7—C6—H6119.7C28—C29—H29A109.5
C8—C7—C6122.15 (14)C28—C29—H29B109.5
C8—C7—H7118.9H29A—C29—H29B109.5
C6—C7—H7118.9C28—C29—H29C109.5
C7—C8—C9116.95 (14)H29A—C29—H29C109.5
C7—C8—H8121.5H29B—C29—H29C109.5
C9—C8—H8121.5C2—N1—C9108.64 (11)
C8—C9—C4121.85 (13)C2—N1—S1128.29 (9)
C8—C9—N1131.06 (13)C9—N1—S1122.44 (10)
C4—C9—N1107.10 (11)C20—O3—C23116.43 (16)
C11—C10—C15121.11 (18)C21—O4—C24117.78 (14)
C11—C10—S1118.80 (13)C27—O8—C28115.21 (14)
C15—C10—S1120.02 (16)O1—S1—O2120.63 (8)
C12—C11—C10119.32 (19)O1—S1—N1106.73 (7)
C12—C11—H11120.3O2—S1—N1105.65 (7)
C10—C11—H11120.3O1—S1—C10108.29 (8)
C13—C12—C11120.1 (2)O2—S1—C10108.90 (9)
C13—C12—H12120.0N1—S1—C10105.65 (7)
C11—C12—H12120.0C30i—C30—Cl2i71.5 (6)
C14—C13—C12120.2 (2)C30i—C30—Cl1i70.3 (6)
C14—C13—H13119.9Cl2i—C30—Cl1i128.4 (6)
C12—C13—H13119.9C30i—C30—Cl259.0 (5)
C13—C14—C15121.2 (2)Cl2i—C30—Cl2130.5 (5)
C13—C14—H14119.4Cl1i—C30—Cl233.7 (3)
C15—C14—H14119.4C30i—C30—Cl162.0 (5)
C10—C15—C14118.2 (2)Cl2i—C30—Cl133.7 (3)
C10—C15—H15120.9Cl1i—C30—Cl1132.3 (4)
C14—C15—H15120.9Cl2—C30—Cl1112.0 (4)
C2—C16—C17115.26 (11)C30i—C30—Cl379.2 (7)
C2—C16—H16A108.5Cl2i—C30—Cl367.0 (4)
C17—C16—H16A108.5Cl1i—C30—Cl372.9 (4)
C2—C16—H16B108.5Cl2—C30—Cl3101.7 (5)
C17—C16—H16B108.5Cl1—C30—Cl397.4 (4)
H16A—C16—H16B107.5C30i—C30—Cl3i61.2 (6)
C18—C17—C22118.73 (13)Cl2i—C30—Cl3i98.2 (4)
C18—C17—C16121.92 (12)Cl1i—C30—Cl3i92.5 (4)
C22—C17—C16119.34 (12)Cl2—C30—Cl3i59.0 (4)
C17—C18—C19120.84 (13)Cl1—C30—Cl3i65.2 (3)
C17—C18—H18119.6Cl3—C30—Cl3i140.4 (4)
C19—C18—H18119.6C30i—C30—H30A166.2
C20—C19—C18120.44 (14)Cl2i—C30—H30A113.6
C20—C19—H19119.8Cl1i—C30—H30A111.7
C18—C19—H19119.8Cl2—C30—H30A114.6
O3—C20—C19125.06 (15)Cl1—C30—H30A114.5
O3—C20—C21115.52 (13)Cl3—C30—H30A114.6
C19—C20—C21119.42 (13)Cl3i—C30—H30A105.0
O4—C21—C22125.01 (14)Cl2i—Cl1—C30i77.3 (4)
O4—C21—C20115.26 (13)Cl2i—Cl1—C3061.8 (5)
C22—C21—C20119.73 (13)C30i—Cl1—C3047.7 (4)
C21—C22—C17120.79 (13)Cl2i—Cl1—Cl3i126.3 (5)
C21—C22—H22119.6C30i—Cl1—Cl3i59.0 (4)
C17—C22—H22119.6C30—Cl1—Cl3i65.8 (3)
O3—C23—H23A109.5Cl1i—Cl2—C30i84.5 (6)
O3—C23—H23B109.5Cl1i—Cl2—C3069.0 (5)
H23A—C23—H23B109.5C30i—Cl2—C3049.5 (5)
O3—C23—H23C109.5Cl1i—Cl2—Cl3i139.6 (5)
H23A—C23—H23C109.5C30i—Cl2—Cl3i65.0 (4)
H23B—C23—H23C109.5C30—Cl2—Cl3i71.0 (4)
O4—C24—H24A109.5C30—Cl3—Cl2i48.0 (3)
O4—C24—H24B109.5C30—Cl3—Cl1i48.2 (3)
H24A—C24—H24B109.5Cl2i—Cl3—Cl1i91.0 (3)
O4—C24—H24C109.5C30—Cl3—C30i39.6 (4)
H24A—C24—H24C109.5Cl2i—Cl3—C30i50.0 (2)
H24B—C24—H24C109.5Cl1i—Cl3—C30i49.0 (2)
C26—C25—C3129.71 (14)
N1—C2—C3—C40.77 (15)O7—C27—O8—C281.2 (3)
C16—C2—C3—C4173.17 (13)C26—C27—O8—C28179.76 (18)
N1—C2—C3—C25179.76 (14)C29—C28—O8—C27179.7 (2)
C16—C2—C3—C255.8 (2)C2—N1—S1—O121.70 (15)
C2—C3—C4—C5178.86 (15)C9—N1—S1—O1168.44 (11)
C25—C3—C4—C50.2 (2)C2—N1—S1—O2151.24 (13)
C2—C3—C4—C91.78 (15)C9—N1—S1—O238.90 (14)
C25—C3—C4—C9179.13 (13)C2—N1—S1—C1093.43 (13)
C9—C4—C5—C61.5 (2)C9—N1—S1—C1076.43 (13)
C3—C4—C5—C6177.80 (15)C11—C10—S1—O125.83 (15)
C4—C5—C6—C70.1 (2)C15—C10—S1—O1151.37 (15)
C5—C6—C7—C81.2 (3)C11—C10—S1—O2158.70 (13)
C6—C7—C8—C91.0 (2)C15—C10—S1—O218.50 (18)
C7—C8—C9—C40.4 (2)C11—C10—S1—N188.22 (14)
C7—C8—C9—N1179.80 (15)C15—C10—S1—N194.58 (16)
C5—C4—C9—C81.7 (2)C30i—C30—Cl1—Cl2i98.6 (8)
C3—C4—C9—C8177.79 (13)Cl1i—C30—Cl1—Cl2i98.6 (8)
C5—C4—C9—N1178.49 (12)Cl2—C30—Cl1—Cl2i131.0 (6)
C3—C4—C9—N12.06 (15)Cl3—C30—Cl1—Cl2i25.1 (6)
C15—C10—C11—C120.1 (3)Cl3i—C30—Cl1—Cl2i167.8 (7)
S1—C10—C11—C12177.03 (15)Cl2i—C30—Cl1—C30i98.6 (8)
C10—C11—C12—C130.3 (3)Cl1i—C30—Cl1—C30i0.0
C11—C12—C13—C140.4 (4)Cl2—C30—Cl1—C30i32.3 (5)
C12—C13—C14—C150.3 (5)Cl3—C30—Cl1—C30i73.5 (6)
C11—C10—C15—C140.1 (3)Cl3i—C30—Cl1—C30i69.2 (6)
S1—C10—C15—C14177.1 (2)C30i—C30—Cl1—Cl3i69.2 (6)
C13—C14—C15—C100.2 (4)Cl2i—C30—Cl1—Cl3i167.8 (7)
C3—C2—C16—C17103.22 (16)Cl1i—C30—Cl1—Cl3i69.2 (6)
N1—C2—C16—C1783.73 (16)Cl2—C30—Cl1—Cl3i36.8 (5)
C2—C16—C17—C1840.18 (19)Cl3—C30—Cl1—Cl3i142.7 (4)
C2—C16—C17—C22141.19 (13)C30i—C30—Cl2—Cl1i101.1 (8)
C22—C17—C18—C191.8 (2)Cl2i—C30—Cl2—Cl1i101.1 (8)
C16—C17—C18—C19176.82 (13)Cl1—C30—Cl2—Cl1i134.6 (6)
C17—C18—C19—C200.4 (2)Cl3—C30—Cl2—Cl1i31.5 (6)
C18—C19—C20—O3177.63 (16)Cl3i—C30—Cl2—Cl1i174.0 (7)
C18—C19—C20—C211.8 (2)Cl2i—C30—Cl2—C30i0.0
O3—C20—C21—O42.2 (2)Cl1i—C30—Cl2—C30i101.1 (8)
C19—C20—C21—O4178.36 (15)Cl1—C30—Cl2—C30i33.4 (4)
O3—C20—C21—C22176.88 (15)Cl3—C30—Cl2—C30i69.6 (6)
C19—C20—C21—C222.6 (2)Cl3i—C30—Cl2—C30i72.9 (6)
O4—C21—C22—C17179.85 (14)C30i—C30—Cl2—Cl3i72.9 (6)
C20—C21—C22—C171.2 (2)Cl2i—C30—Cl2—Cl3i72.9 (6)
C18—C17—C22—C211.0 (2)Cl1i—C30—Cl2—Cl3i174.0 (7)
C16—C17—C22—C21177.68 (13)Cl1—C30—Cl2—Cl3i39.4 (5)
C2—C3—C25—C2626.6 (3)Cl3—C30—Cl2—Cl3i142.5 (4)
C4—C3—C25—C26154.55 (16)C30i—C30—Cl3—Cl2i74.4 (5)
C3—C25—C26—C27175.66 (15)Cl1i—C30—Cl3—Cl2i146.9 (5)
C25—C26—C27—O71.8 (3)Cl2—C30—Cl3—Cl2i129.3 (5)
C25—C26—C27—O8179.10 (16)Cl1—C30—Cl3—Cl2i14.8 (3)
C3—C2—N1—C90.52 (15)Cl3i—C30—Cl3—Cl2i74.4 (5)
C16—C2—N1—C9174.73 (12)C30i—C30—Cl3—Cl1i72.6 (5)
C3—C2—N1—S1171.49 (10)Cl2i—C30—Cl3—Cl1i146.9 (5)
C16—C2—N1—S114.3 (2)Cl2—C30—Cl3—Cl1i17.7 (3)
C8—C9—N1—C2178.21 (15)Cl1—C30—Cl3—Cl1i132.1 (4)
C4—C9—N1—C21.62 (15)Cl3i—C30—Cl3—Cl1i72.6 (5)
C8—C9—N1—S16.6 (2)Cl2i—C30—Cl3—C30i74.4 (5)
C4—C9—N1—S1173.23 (10)Cl1i—C30—Cl3—C30i72.6 (5)
C19—C20—O3—C237.7 (3)Cl2—C30—Cl3—C30i54.9 (5)
C21—C20—O3—C23171.8 (2)Cl1—C30—Cl3—C30i59.5 (5)
C22—C21—O4—C244.9 (3)Cl3i—C30—Cl3—C30i0.000 (1)
C20—C21—O4—C24176.06 (18)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.382.928 (2)118
C15—H15···O4ii0.932.533.411 (3)159
C16—H16A···O10.972.302.831 (2)114
C24—H24B···O7iii0.962.513.461 (2)169
C24—H24A···O7iv0.962.523.367 (3)147
C25—H25···O70.932.462.821 (2)103
C30—H30A···O3v0.962.593.429 (7)146
C30—H30A···O4v0.962.553.424 (7)151
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z+1; (iv) x+1, y+1, z; (v) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC28H27NO6S·0.5CHCl3
Mr565.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.2154 (3), 12.0504 (4), 12.6310 (4)
α, β, γ (°)70.602 (2), 69.613 (1), 77.056 (2)
V3)1364.39 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.913, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
38797, 10612, 7709
Rint0.026
(sin θ/λ)max1)0.794
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.189, 1.04
No. of reflections10612
No. of parameters364
No. of restraints27
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.382.928 (2)118
C15—H15···O4i0.932.533.411 (3)159
C16—H16A···O10.972.302.831 (2)114
C24—H24B···O7ii0.962.513.461 (2)169
C24—H24A···O7iii0.962.523.367 (3)147
C25—H25···O70.932.462.821 (2)103
C30—H30A···O3iv0.962.593.429 (7)146
C30—H30A···O4iv0.962.553.424 (7)151
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y1, z.
 

Acknowledgements

MT thanks the UGC for financial support in the form of a Research Fellowship in Science for Meritorious Students.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHu, B., Jetter, J. W., Wrobel, J. E., Antrilli, T. M., Bauer, J. S., Di, L., Polakowski, S., Jain, U. & Crandall, D. L. (2005). Bioorg. Med. Chem. Lett. 15, 3514–3518.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMathiesen, J. M., Ulven, T., Martini, L., Gerlach, L. O., Heinemann, A. & Kostenis, E. (2005). Mol. Pharmacol. 68, 393–402.  Web of Science PubMed CAS Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlgen, S. & Nebioglu, D. (2002). Farmaco, 57, 677–683.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1460-o1461
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds