organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3,4-Di­methyl­benzyl­­idene)-2,2-di­phenyl­hydrazine

aCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., Mexico, and cFacultad de Química, Universidad Nacional Autónoma de México, 04510 México DF, Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 10 April 2011; accepted 23 April 2011; online 7 May 2011)

The asymmetric unit of the title compound, C21H20N2, contain two mol­ecules, both of them showing an E configuration of the C=N bond. The dihedral angles between the phenyl rings in the phenyl­hydrazone groups are 86.84 (10) and 84.85 (8)° for the two mol­ecules. Inter­molecular C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For applications of hydrazones, see: Angell et al. (2006[Angell, S. E., Rogers, C. W., Zhang, Y., Wolf, M. O. & Jones, W. E. Jr (2006). Coord. Chem. Rev. 250, 1829-1841.]); Buss et al. (2004[Buss, J. L., Greene, B. T. & Torti, F. M. (2004). Curr. Top. Med. Chem. 4, 1623-1635.]); Melnyk et al. (2006[Melnyk, P., Leroux, V., Serghraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]); Ranford et al. (1998[Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]). For related structures see: Clulow et al. (2008[Clulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049-12062.]); Mendoza et al. (2010[Mendoza, A., Cabrera-Vivas, B. M., Meléndrez-Luevano, R., Ramírez, J. C. & Flores-Alamo, M. (2010). Acta Cryst. E66, o2349.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N2

  • Mr = 300.39

  • Triclinic, [P \overline 1]

  • a = 9.9375 (5) Å

  • b = 10.6322 (5) Å

  • c = 17.5680 (8) Å

  • α = 77.530 (4)°

  • β = 76.480 (4)°

  • γ = 77.074 (4)°

  • V = 1732.60 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.61 × 0.42 × 0.27 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.971, Tmax = 0.984

  • 12246 measured reflections

  • 6288 independent reflections

  • 3202 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 0.85

  • 6288 reflections

  • 420 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C31–C36, C37–C42, C2–C7 and C23–C28 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.81 3.7152 (18) 166
C6—H6⋯Cg1ii 0.93 2.66 3.5506 (19) 160
C9—H9CCg2iii 0.96 2.97 3.7170 (19) 136
C29—H29BCg3iv 0.96 3.00 3.931 (2) 165
C41—H41⋯Cg4i 0.93 2.83 3.590 (2) 139
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+1, -z; (iii) x, y+1, z; (iv) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Many applications are known for hydrazones and their derivatives in the chemical analysis field. Employing these compounds as molecular sensors in determination and quantization of aldehydes and ketones in gas currents allows their use in environmental, biological and industrial applications (Angell, et al. 2006). Hydrazones have been used in the treatment of several diseases as malaria (Melnyk et al., 2006) or genetic disorders (Ranford et al., 1998). Coordination compounds with iron have shown therapeutic attributes in the treatment of cancer (Buss et al., 2004).

The title compound I, C21H20N2, presents an E configuration of the C=N double bond. The asymmetric unit contains two non-planar molecules. The dihedral angles between the C10/C11/C12/C13/C14/C15 ring and C16/C17/C18/C19/C20/C21 ring is 86.84 (10)° for molecule 1 (N1 to C21). The dihedral angle for the phenyl rings C31/C32/C33/C34/C35/C36 and C37/C38/C39/C40/C41/C42 is 84.85 (8)° for molecule 2 (N3 to C42). The dimethyl-phenyl rings are slightly twisted with respect to the C=N group with torsion angles of 2.8 (2)° for N1/C1/C2/C7 and of 1.1 (2)° for N3/C22/C23/C24. The N—N distances [N1—N2 1.3765 (17) Å and N3—N4 1.3701 (16) Å] are shorter than found in free diphenylhydrazine [1.418 (2) Å] (Clulow, et al., 2008). The imine bond distances [N1—C1 1.277 (2) Å and N3—C22 1.2797 (18) Å] are longer than N=C typical bond and shorter [1.287 (2) Å] than related structures with N,N-diphenylhidrazone group (Mendoza et al. 2010). Intermolecular C—H···π interactions are observed.

Related literature top

For applications of hydrazones, see: Angell et al. (2006); Buss et al. (2004); Melnyk et al. (2006); Ranford et al. (1998). For related structures see: Clulow et al. (2008); Mendoza et al. (2010).

Experimental top

N,N-diphenylhydrazine (592 mg, 2.68 mmol) was dissolved in ethanol and acetic acid (0.5 ml) was added slowly into this solution while stirring. 300 mg (2.24 mmol) of 3,4-dimethylbenzaldehyde was added drop by drop into the above solution with strong stirring and the resulting mixture was kept at atmospheric temperature until it became amber transparent solution. After three hours the amber solution turns to be precipitated. The mixture was separated with filtration in vacuum system and the precipitate was washed three times with cold methanol. Recrystallization was performed several times with acetonitrile, to obtain colorless crystals for X-ray analysis. Yield 72% at 25°C, m. p. 95–99°C. UV λmax = 341.24 nm. FT. IR (film): (cm-1): 3033 ν(C—H), 2933 ν(C—H), 1588, 1490 ν(C=N), 1221 ν(C=N—N). 1H NMR (400 MHz (CD3)2CO: (δ p.p.m.): 7.46–7.41 (m, 4H), 7.37 (s, 1H), 7.35–7.32 (dd, 1H), 7.22–7.16 (m, 6H), 7.13 (s, 1H), 7.10–7.08 (d, 1H), 2.23, 2.21 (2 s, 6H). 13C NMR (400 MHz, (CD3)2CO: (δ p.p.m.): 143.83, 136.72, 136.56, 135.72, 133.90, 129.84, 129.77, 127.45, 124.41, 123.78, 122.35, 18.91, 18.81. MS—EI: m/z = 300 M+.

Refinement top

H atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.930 Å (aromatic CH) with Uiso = 1.2Ueq(C), 0.960 Å (methyl CH3) with Uiso = 1.5Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and the atom labelling scheme for I. Displacement ellipsoids are draw at the 50% probability level and H atoms are shown as circles of arbitrary size.
(E)-1-(3,4-Dimethylbenzylidene)-2,2-diphenylhydrazine top
Crystal data top
C21H20N2Z = 4
Mr = 300.39F(000) = 640
Triclinic, P1Dx = 1.152 Mg m3
a = 9.9375 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6322 (5) ÅCell parameters from 3720 reflections
c = 17.5680 (8) Åθ = 3.4–25.2°
α = 77.530 (4)°µ = 0.07 mm1
β = 76.480 (4)°T = 293 K
γ = 77.074 (4)°Prism, colorless
V = 1732.60 (14) Å30.61 × 0.42 × 0.27 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
6288 independent reflections
Graphite monochromator3202 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.027
ω scansθmax = 25.3°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 911
Tmin = 0.971, Tmax = 0.984k = 1012
12246 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.001
6288 reflectionsΔρmax = 0.15 e Å3
420 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0220 (12)
Crystal data top
C21H20N2γ = 77.074 (4)°
Mr = 300.39V = 1732.60 (14) Å3
Triclinic, P1Z = 4
a = 9.9375 (5) ÅMo Kα radiation
b = 10.6322 (5) ŵ = 0.07 mm1
c = 17.5680 (8) ÅT = 293 K
α = 77.530 (4)°0.61 × 0.42 × 0.27 mm
β = 76.480 (4)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini
diffractometer
6288 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
3202 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.984Rint = 0.027
12246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.85Δρmax = 0.15 e Å3
6288 reflectionsΔρmin = 0.11 e Å3
420 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36159 (15)0.39399 (14)0.36518 (8)0.0660 (4)
N20.41791 (15)0.32889 (15)0.43054 (8)0.0756 (4)
C160.32092 (19)0.29285 (16)0.49984 (10)0.0597 (4)
C210.1779 (2)0.33547 (18)0.50422 (11)0.0730 (5)
H210.14430.38880.46070.088*
C200.0850 (2)0.2992 (2)0.57287 (12)0.0858 (6)
H200.01110.32920.57520.103*
C190.1307 (3)0.2199 (2)0.63774 (12)0.0875 (6)
H190.06690.19560.68370.105*
C180.2719 (3)0.17699 (19)0.63365 (11)0.0812 (6)
H180.30430.12260.67720.097*
C170.3673 (2)0.21310 (18)0.56583 (10)0.0730 (5)
H170.46320.18380.56430.088*
C100.56693 (18)0.29103 (18)0.42665 (9)0.0601 (5)
C110.6403 (2)0.37197 (19)0.44503 (11)0.0787 (6)
H110.59360.45240.45890.094*
C120.7826 (3)0.3344 (3)0.44297 (12)0.0907 (6)
H120.83170.38870.45630.109*
C130.8510 (2)0.2186 (3)0.42167 (12)0.0936 (7)
H130.94720.19320.42040.112*
C140.7801 (3)0.1397 (2)0.40227 (13)0.0963 (7)
H140.82810.06040.38730.116*
C150.6372 (2)0.1753 (2)0.40443 (11)0.0806 (6)
H150.58910.12040.39080.097*
C10.44210 (18)0.43109 (16)0.29977 (10)0.0617 (5)
H10.53910.41450.29640.074*
C20.38244 (17)0.49919 (15)0.23059 (9)0.0532 (4)
C70.23891 (17)0.52161 (16)0.23122 (10)0.0606 (5)
H70.17740.49260.27710.073*
C60.18753 (17)0.58661 (16)0.16420 (10)0.0617 (5)
H60.09130.59990.16560.074*
C50.27467 (16)0.63270 (15)0.09501 (9)0.0513 (4)
C40.41897 (16)0.61329 (15)0.09341 (9)0.0518 (4)
C30.46939 (16)0.54615 (16)0.16103 (10)0.0572 (4)
H30.56570.5320.15970.069*
C80.51750 (17)0.66410 (19)0.01989 (10)0.0770 (5)
H8A0.6130.63210.02670.115*
H8B0.49920.75810.01110.115*
H8C0.50320.63450.0250.115*
C90.21465 (17)0.70064 (17)0.02243 (10)0.0686 (5)
H9A0.11430.70690.03460.103*
H9B0.25440.65130.01990.103*
H9C0.23710.78690.00630.103*
N30.19466 (12)0.19292 (13)0.00863 (7)0.0525 (3)
N40.19869 (13)0.19943 (13)0.07059 (7)0.0565 (4)
C310.18030 (15)0.32507 (16)0.11695 (9)0.0477 (4)
C320.13244 (15)0.43680 (16)0.08245 (9)0.0522 (4)
H320.11490.42970.02750.063*
C330.11102 (16)0.55796 (17)0.12972 (10)0.0599 (4)
H330.07810.63220.1060.072*
C340.13712 (17)0.57179 (18)0.21115 (11)0.0657 (5)
H340.12150.65420.24240.079*
C350.18661 (18)0.46180 (19)0.24540 (10)0.0663 (5)
H350.20560.46980.30050.08*
C360.20849 (17)0.33961 (17)0.19914 (9)0.0600 (4)
H360.24260.2660.22330.072*
C370.23353 (16)0.08491 (15)0.10724 (8)0.0492 (4)
C380.12895 (17)0.03792 (17)0.12529 (10)0.0587 (4)
H380.03550.0780.11160.07*
C390.1620 (2)0.06805 (18)0.16345 (10)0.0681 (5)
H390.0910.09880.17630.082*
C400.2989 (2)0.12838 (17)0.18261 (10)0.0704 (5)
H400.32130.20020.20840.084*
C410.4032 (2)0.08287 (19)0.16375 (10)0.0749 (5)
H410.49630.12450.17630.09*
C420.37124 (17)0.02402 (18)0.12631 (10)0.0648 (5)
H420.44250.0550.11390.078*
C220.21859 (15)0.08199 (17)0.05388 (9)0.0532 (4)
H220.23460.00530.03330.064*
C230.22101 (14)0.07456 (16)0.13727 (9)0.0479 (4)
C280.24973 (16)0.04682 (16)0.18511 (9)0.0544 (4)
H280.26250.12190.16330.065*
C270.26025 (16)0.06090 (16)0.26412 (9)0.0572 (4)
C260.23930 (16)0.05158 (17)0.29740 (9)0.0575 (4)
C250.20856 (17)0.17242 (17)0.25014 (10)0.0628 (5)
H250.19290.24770.27220.075*
C240.20038 (16)0.18513 (16)0.17172 (10)0.0591 (5)
H240.1810.26810.14160.071*
C290.2983 (2)0.19570 (18)0.31134 (11)0.0935 (7)
H29A0.3930.20850.31940.14*
H29B0.29110.26060.28270.14*
H29C0.2350.20380.36190.14*
C300.2536 (2)0.0441 (2)0.38198 (10)0.0887 (6)
H30A0.23080.13070.39480.133*
H30B0.34860.00580.38760.133*
H30C0.19040.00890.41730.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0642 (9)0.0726 (10)0.0561 (9)0.0088 (7)0.0201 (8)0.0053 (8)
N20.0601 (10)0.0977 (12)0.0557 (9)0.0060 (8)0.0172 (8)0.0129 (8)
C160.0683 (12)0.0599 (12)0.0512 (11)0.0110 (9)0.0159 (10)0.0064 (9)
C210.0701 (13)0.0872 (15)0.0601 (12)0.0164 (10)0.0175 (10)0.0020 (10)
C200.0763 (13)0.1129 (18)0.0689 (14)0.0269 (12)0.0096 (12)0.0118 (13)
C190.1008 (18)0.1049 (18)0.0549 (13)0.0310 (13)0.0027 (12)0.0107 (12)
C180.1102 (18)0.0804 (15)0.0494 (12)0.0108 (13)0.0185 (12)0.0072 (10)
C170.0839 (13)0.0763 (14)0.0545 (12)0.0046 (10)0.0190 (11)0.0067 (10)
C100.0620 (12)0.0657 (13)0.0489 (10)0.0040 (10)0.0170 (9)0.0029 (9)
C110.0801 (15)0.0813 (15)0.0751 (13)0.0075 (12)0.0145 (11)0.0223 (11)
C120.0837 (17)0.115 (2)0.0818 (15)0.0300 (14)0.0284 (12)0.0101 (14)
C130.0675 (14)0.121 (2)0.0756 (15)0.0010 (15)0.0203 (11)0.0084 (14)
C140.0977 (19)0.0835 (17)0.0968 (17)0.0175 (14)0.0238 (14)0.0222 (13)
C150.0903 (16)0.0723 (15)0.0818 (14)0.0036 (12)0.0299 (12)0.0158 (11)
C10.0564 (11)0.0663 (12)0.0590 (11)0.0090 (9)0.0171 (9)0.0007 (9)
C20.0523 (10)0.0510 (11)0.0562 (10)0.0111 (8)0.0165 (9)0.0005 (8)
C70.0534 (11)0.0666 (12)0.0596 (11)0.0198 (8)0.0100 (9)0.0021 (9)
C60.0472 (10)0.0696 (12)0.0693 (12)0.0165 (8)0.0196 (9)0.0009 (10)
C50.0527 (10)0.0492 (10)0.0564 (10)0.0152 (8)0.0194 (9)0.0025 (8)
C40.0519 (10)0.0519 (11)0.0541 (10)0.0164 (8)0.0148 (8)0.0020 (8)
C30.0451 (9)0.0667 (12)0.0603 (11)0.0117 (8)0.0192 (9)0.0011 (9)
C80.0620 (12)0.1005 (15)0.0667 (12)0.0268 (10)0.0176 (10)0.0070 (11)
C90.0655 (11)0.0738 (13)0.0696 (12)0.0174 (9)0.0294 (9)0.0034 (9)
N30.0526 (8)0.0588 (10)0.0472 (8)0.0148 (6)0.0124 (6)0.0035 (7)
N40.0715 (9)0.0548 (10)0.0448 (8)0.0116 (7)0.0162 (7)0.0065 (7)
C310.0430 (9)0.0545 (11)0.0468 (10)0.0125 (7)0.0134 (7)0.0023 (8)
C320.0488 (10)0.0586 (12)0.0495 (10)0.0082 (8)0.0143 (8)0.0066 (9)
C330.0588 (11)0.0573 (12)0.0652 (12)0.0074 (8)0.0224 (9)0.0065 (9)
C340.0697 (12)0.0599 (13)0.0661 (13)0.0175 (9)0.0227 (10)0.0079 (10)
C350.0762 (13)0.0729 (14)0.0484 (10)0.0223 (10)0.0131 (9)0.0024 (10)
C360.0689 (11)0.0618 (12)0.0499 (11)0.0145 (9)0.0128 (9)0.0071 (9)
C370.0480 (10)0.0512 (10)0.0454 (9)0.0084 (8)0.0091 (8)0.0029 (8)
C380.0478 (10)0.0633 (12)0.0664 (11)0.0100 (8)0.0120 (8)0.0128 (9)
C390.0707 (13)0.0675 (13)0.0717 (12)0.0191 (10)0.0167 (10)0.0142 (10)
C400.0905 (15)0.0592 (13)0.0564 (11)0.0060 (11)0.0071 (11)0.0150 (9)
C410.0582 (12)0.0847 (15)0.0670 (13)0.0043 (10)0.0001 (10)0.0133 (11)
C420.0472 (11)0.0827 (14)0.0636 (12)0.0117 (9)0.0085 (9)0.0132 (10)
C220.0523 (10)0.0564 (12)0.0525 (10)0.0151 (8)0.0115 (8)0.0063 (9)
C230.0423 (9)0.0534 (11)0.0471 (10)0.0100 (7)0.0103 (7)0.0034 (8)
C280.0608 (10)0.0501 (11)0.0550 (11)0.0140 (8)0.0135 (8)0.0085 (8)
C270.0596 (11)0.0573 (12)0.0528 (11)0.0108 (8)0.0156 (8)0.0004 (9)
C260.0565 (10)0.0632 (12)0.0516 (10)0.0047 (8)0.0154 (8)0.0081 (9)
C250.0686 (12)0.0593 (12)0.0596 (12)0.0005 (9)0.0171 (9)0.0163 (9)
C240.0625 (11)0.0524 (11)0.0598 (11)0.0024 (8)0.0192 (9)0.0048 (9)
C290.1421 (19)0.0656 (14)0.0724 (13)0.0160 (12)0.0396 (13)0.0063 (11)
C300.1113 (16)0.0927 (16)0.0646 (12)0.0006 (12)0.0351 (12)0.0180 (11)
Geometric parameters (Å, º) top
N1—C11.2773 (19)N3—C221.2797 (18)
N1—N21.3765 (17)N3—N41.3701 (16)
N2—C161.405 (2)N4—C311.4041 (19)
N2—C101.434 (2)N4—C371.4362 (18)
C16—C211.381 (2)C31—C361.386 (2)
C16—C171.388 (2)C31—C321.389 (2)
C21—C201.376 (2)C32—C331.376 (2)
C21—H210.93C32—H320.93
C20—C191.369 (3)C33—C341.374 (2)
C20—H200.93C33—H330.93
C19—C181.364 (3)C34—C351.371 (2)
C19—H190.93C34—H340.93
C18—C171.379 (2)C35—C361.377 (2)
C18—H180.93C35—H350.93
C17—H170.93C36—H360.93
C10—C151.360 (2)C37—C381.373 (2)
C10—C111.374 (2)C37—C421.374 (2)
C11—C121.374 (3)C38—C391.373 (2)
C11—H110.93C38—H380.93
C12—C131.350 (3)C39—C401.366 (2)
C12—H120.93C39—H390.93
C13—C141.347 (3)C40—C411.368 (2)
C13—H130.93C40—H400.93
C14—C151.379 (3)C41—C421.374 (2)
C14—H140.93C41—H410.93
C15—H150.93C42—H420.93
C1—C21.455 (2)C22—C231.455 (2)
C1—H10.93C22—H220.93
C2—C31.387 (2)C23—C241.390 (2)
C2—C71.390 (2)C23—C281.390 (2)
C7—C61.377 (2)C28—C271.390 (2)
C7—H70.93C28—H280.93
C6—C51.381 (2)C27—C261.396 (2)
C6—H60.93C27—C291.509 (2)
C5—C41.397 (2)C26—C251.384 (2)
C5—C91.506 (2)C26—C301.509 (2)
C4—C31.387 (2)C25—C241.375 (2)
C4—C81.504 (2)C25—H250.93
C3—H30.93C24—H240.93
C8—H8A0.96C29—H29A0.96
C8—H8B0.96C29—H29B0.96
C8—H8C0.96C29—H29C0.96
C9—H9A0.96C30—H30A0.96
C9—H9B0.96C30—H30B0.96
C9—H9C0.96C30—H30C0.96
C1—N1—N2120.22 (14)C22—N3—N4120.47 (13)
N1—N2—C16116.03 (14)N3—N4—C31116.75 (12)
N1—N2—C10122.07 (14)N3—N4—C37122.52 (13)
C16—N2—C10121.73 (13)C31—N4—C37120.46 (12)
C21—C16—C17118.38 (17)C36—C31—C32118.44 (15)
C21—C16—N2121.21 (15)C36—C31—N4120.01 (15)
C17—C16—N2120.41 (16)C32—C31—N4121.54 (14)
C20—C21—C16120.14 (18)C33—C32—C31119.90 (15)
C20—C21—H21119.9C33—C32—H32120
C16—C21—H21119.9C31—C32—H32120
C19—C20—C21121.4 (2)C34—C33—C32121.46 (16)
C19—C20—H20119.3C34—C33—H33119.3
C21—C20—H20119.3C32—C33—H33119.3
C18—C19—C20118.7 (2)C35—C34—C33118.75 (16)
C18—C19—H19120.7C35—C34—H34120.6
C20—C19—H19120.7C33—C34—H34120.6
C19—C18—C17120.99 (18)C34—C35—C36120.70 (16)
C19—C18—H18119.5C34—C35—H35119.7
C17—C18—H18119.5C36—C35—H35119.7
C18—C17—C16120.36 (18)C35—C36—C31120.73 (16)
C18—C17—H17119.8C35—C36—H36119.6
C16—C17—H17119.8C31—C36—H36119.6
C15—C10—C11119.31 (17)C38—C37—C42119.71 (15)
C15—C10—N2120.53 (17)C38—C37—N4119.82 (13)
C11—C10—N2120.16 (17)C42—C37—N4120.44 (14)
C10—C11—C12120.12 (18)C39—C38—C37120.19 (15)
C10—C11—H11119.9C39—C38—H38119.9
C12—C11—H11119.9C37—C38—H38119.9
C13—C12—C11120.0 (2)C40—C39—C38120.10 (17)
C13—C12—H12120C40—C39—H39120
C11—C12—H12120C38—C39—H39120
C14—C13—C12120.2 (2)C39—C40—C41119.84 (17)
C14—C13—H13119.9C39—C40—H40120.1
C12—C13—H13119.9C41—C40—H40120.1
C13—C14—C15120.7 (2)C40—C41—C42120.45 (16)
C13—C14—H14119.7C40—C41—H41119.8
C15—C14—H14119.7C42—C41—H41119.8
C10—C15—C14119.66 (19)C37—C42—C41119.70 (16)
C10—C15—H15120.2C37—C42—H42120.1
C14—C15—H15120.2C41—C42—H42120.1
N1—C1—C2120.15 (16)N3—C22—C23120.75 (15)
N1—C1—H1119.9N3—C22—H22119.6
C2—C1—H1119.9C23—C22—H22119.6
C3—C2—C7117.54 (14)C24—C23—C28117.36 (14)
C3—C2—C1120.02 (15)C24—C23—C22122.72 (15)
C7—C2—C1122.44 (15)C28—C23—C22119.89 (15)
C6—C7—C2120.26 (15)C27—C28—C23122.90 (15)
C6—C7—H7119.9C27—C28—H28118.6
C2—C7—H7119.9C23—C28—H28118.6
C7—C6—C5121.94 (15)C28—C27—C26118.71 (15)
C7—C6—H6119C28—C27—C29119.93 (15)
C5—C6—H6119C26—C27—C29121.33 (15)
C6—C5—C4118.81 (14)C25—C26—C27118.42 (14)
C6—C5—C9120.28 (14)C25—C26—C30119.86 (16)
C4—C5—C9120.90 (14)C27—C26—C30121.70 (16)
C3—C4—C5118.58 (15)C24—C25—C26122.32 (16)
C3—C4—C8120.75 (15)C24—C25—H25118.8
C5—C4—C8120.67 (14)C26—C25—H25118.8
C4—C3—C2122.85 (15)C25—C24—C23120.28 (15)
C4—C3—H3118.6C25—C24—H24119.9
C2—C3—H3118.6C23—C24—H24119.9
C4—C8—H8A109.5C27—C29—H29A109.5
C4—C8—H8B109.5C27—C29—H29B109.5
H8A—C8—H8B109.5H29A—C29—H29B109.5
C4—C8—H8C109.5C27—C29—H29C109.5
H8A—C8—H8C109.5H29A—C29—H29C109.5
H8B—C8—H8C109.5H29B—C29—H29C109.5
C5—C9—H9A109.5C26—C30—H30A109.5
C5—C9—H9B109.5C26—C30—H30B109.5
H9A—C9—H9B109.5H30A—C30—H30B109.5
C5—C9—H9C109.5C26—C30—H30C109.5
H9A—C9—H9C109.5H30A—C30—H30C109.5
H9B—C9—H9C109.5H30B—C30—H30C109.5
C1—N1—N2—C16179.59 (15)C22—N3—N4—C31175.97 (13)
C1—N1—N2—C105.1 (2)C22—N3—N4—C371.9 (2)
N1—N2—C16—C218.0 (2)N3—N4—C31—C36168.14 (13)
C10—N2—C16—C21176.64 (17)C37—N4—C31—C366.0 (2)
N1—N2—C16—C17172.04 (15)N3—N4—C31—C3212.63 (19)
C10—N2—C16—C173.3 (3)C37—N4—C31—C32173.21 (13)
C17—C16—C21—C200.2 (3)C36—C31—C32—C331.5 (2)
N2—C16—C21—C20179.79 (16)N4—C31—C32—C33177.73 (13)
C16—C21—C20—C190.6 (3)C31—C32—C33—C340.6 (2)
C21—C20—C19—C180.3 (3)C32—C33—C34—C350.5 (2)
C20—C19—C18—C170.4 (3)C33—C34—C35—C360.6 (2)
C19—C18—C17—C160.8 (3)C34—C35—C36—C310.3 (2)
C21—C16—C17—C180.5 (3)C32—C31—C36—C351.4 (2)
N2—C16—C17—C18179.52 (15)N4—C31—C36—C35177.86 (14)
N1—N2—C10—C1586.5 (2)N3—N4—C37—C38103.54 (17)
C16—N2—C10—C1588.6 (2)C31—N4—C37—C3882.65 (18)
N1—N2—C10—C1193.2 (2)N3—N4—C37—C4278.19 (18)
C16—N2—C10—C1191.7 (2)C31—N4—C37—C4295.62 (18)
C15—C10—C11—C121.7 (3)C42—C37—C38—C391.1 (2)
N2—C10—C11—C12178.59 (16)N4—C37—C38—C39177.16 (15)
C10—C11—C12—C131.0 (3)C37—C38—C39—C400.9 (3)
C11—C12—C13—C140.1 (3)C38—C39—C40—C410.1 (3)
C12—C13—C14—C150.5 (3)C39—C40—C41—C420.6 (3)
C11—C10—C15—C141.3 (3)C38—C37—C42—C410.4 (2)
N2—C10—C15—C14178.98 (17)N4—C37—C42—C41177.84 (15)
C13—C14—C15—C100.2 (3)C40—C41—C42—C370.5 (3)
N2—N1—C1—C2179.62 (14)N4—N3—C22—C23177.09 (12)
N1—C1—C2—C3176.21 (15)N3—C22—C23—C241.1 (2)
N1—C1—C2—C72.8 (2)N3—C22—C23—C28178.83 (13)
C3—C2—C7—C60.9 (2)C24—C23—C28—C270.9 (2)
C1—C2—C7—C6179.98 (15)C22—C23—C28—C27176.88 (14)
C2—C7—C6—C50.7 (2)C23—C28—C27—C260.9 (2)
C7—C6—C5—C40.4 (2)C23—C28—C27—C29177.19 (15)
C7—C6—C5—C9178.62 (14)C28—C27—C26—C250.2 (2)
C6—C5—C4—C31.2 (2)C29—C27—C26—C25178.17 (16)
C9—C5—C4—C3177.80 (14)C28—C27—C26—C30178.03 (16)
C6—C5—C4—C8178.79 (15)C29—C27—C26—C300.0 (2)
C9—C5—C4—C82.2 (2)C27—C26—C25—C241.1 (2)
C5—C4—C3—C21.0 (2)C30—C26—C25—C24177.13 (16)
C8—C4—C3—C2179.01 (15)C26—C25—C24—C231.0 (2)
C7—C2—C3—C40.1 (2)C28—C23—C24—C250.0 (2)
C1—C2—C3—C4179.15 (14)C22—C23—C24—C25177.75 (14)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C31–C36, C37–C42, C2–C7 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.813.7152 (18)166
C6—H6···Cg1ii0.932.663.5506 (19)160
C9—H9C···Cg2iii0.962.973.7170 (19)136
C29—H29B···Cg3iv0.963.003.931 (2)165
C41—H41···Cg4i0.932.833.590 (2)139
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H20N2
Mr300.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.9375 (5), 10.6322 (5), 17.5680 (8)
α, β, γ (°)77.530 (4), 76.480 (4), 77.074 (4)
V3)1732.60 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.61 × 0.42 × 0.27
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.971, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
12246, 6288, 3202
Rint0.027
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 0.85
No. of reflections6288
No. of parameters420
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.11

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C31–C36, C37–C42, C2–C7 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.813.7152 (18)166
C6—H6···Cg1ii0.932.663.5506 (19)160
C9—H9C···Cg2iii0.962.973.7170 (19)136
C29—H29B···Cg3iv0.963.003.931 (2)165
C41—H41···Cg4i0.932.833.590 (2)139
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y1, z.
 

Acknowledgements

The authors are grateful to VIEP–BUAP for the supporting project CAVB-NAT-I10.

References

First citationAngell, S. E., Rogers, C. W., Zhang, Y., Wolf, M. O. & Jones, W. E. Jr (2006). Coord. Chem. Rev. 250, 1829–1841.  Web of Science CrossRef CAS Google Scholar
First citationBuss, J. L., Greene, B. T. & Torti, F. M. (2004). Curr. Top. Med. Chem. 4, 1623–1635.  Web of Science PubMed CAS Google Scholar
First citationClulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049–12062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMelnyk, P., Leroux, V., Serghraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMendoza, A., Cabrera-Vivas, B. M., Meléndrez-Luevano, R., Ramírez, J. C. & Flores-Alamo, M. (2010). Acta Cryst. E66, o2349.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds