metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­­(4-chloro­benz­yl)bis­­(nicotinato-κ2O,O′)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 April 2011; accepted 26 April 2011; online 7 May 2011)

In the title mol­ecule, [Sn(C7H6Cl)2(C6H4NO2)2(H2O)], the O atoms of the two chelating nicotinate groups and the O atom of the coordinated water mol­ecule comprise the penta­gonal plane of the trans-C2SnO5 penta­gonal–bipyramid [C—Sn—C = 178.62 (11) °] surrounding the SnIV atom. In the crystal, adjacent mol­ecules are linked by O—H⋯N hydrogen bonds, generating a chain running along the body diagonal of the triclinic unit cell.

Related literature

For the direct synthesis of the organotin chloride reactant, see: Sisido et al. (1961[Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.]). For the dinuclear bromo analog, see: Keng et al. (2010[Keng, C. T., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m1008.]). For a review of the crystal structures of organotin carboxyl­ates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.], 1994[Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C7H6Cl)2(C6H4NO2)2(H2O)]

  • Mr = 632.05

  • Triclinic, [P \overline 1]

  • a = 9.0219 (1) Å

  • b = 10.5929 (1) Å

  • c = 14.5866 (2) Å

  • α = 79.6490 (5)°

  • β = 87.6290 (5)°

  • γ = 66.5051 (4)°

  • V = 1256.93 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.665, Tmax = 0.742

  • 11404 measured reflections

  • 5673 independent reflections

  • 5416 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.133

  • S = 1.07

  • 5673 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 2.51 e Å−3

  • Δρmin = −1.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯N1i 0.84 1.93 2.721 (3) 158
O1w—H2⋯N2ii 0.84 2.01 2.754 (3) 146
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Nicotinic acid affords a large number of compounds with organotins. For the diorganotin system in particular, the nicotinate ion can behave as an O,O'-chelate, but when two ions bind to a diorganotin cation, there is some space in the coordination polyhedron to admit a small ligand such as a water molecule (Tiekink, 1991; 1994). The bromo analog of the title compound (Scheme I) exists as a dinuclear compound as the N atom engages in coordination (Keng et al., 2010). The O atoms of the two chelating nicotinate groups and the O atom of the coordinated water molecule comprise the pentagonal plane of the trans-C2SnO5 pentagonal-bipyramid [C–Sn–C 178.6 (1) °] surrounding the SnIV atom in title compound (Fig. 1). The N atom does not engage in binding to an adjacent metal center. Instead, both N atoms serve as hydrogen bond acceptors (Table 1). Adjacent molecules are linked by O–H···N hydrogen bonds to generate a chain along [1 - 1 1].

Related literature top

For the direct synthesis of the organotin chloride reactant, see: Sisido et al. (1961). For the dinuclear bromo analog, see: Keng et al. (2010). For a review of the crystal structures of organotin carboxylates, see: Tiekink (1991, 1994).

Experimental top

Di(4-chlorobenzyl)tin oxide was prepared by the base hydrolysis of di(4-chlorobenzyl)tin dichloride with 10% sodium hydroxide. The diorganotin dichloride was synthesized by the direct reaction of 4-chlorobenzyl chloride and metallic tin according to a literature procedure (Sisido et al., 1961). The diorganotin oxide (0.39 g, 1 mmol) and nicotinic acid (0.25 g, 2 mmol) were heated in ethanol (100 ml) for an hour until the oxide dissolved. The solution was filtered; slow evaporation of the filtrate gave colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 times Ueq(C,O).

The final difference Fourier map had a peak in the vicinity of Sn1 as well as a hole in the vicinity of the same atom. The peaks/holes affected the the weighting scheme, which had a somewhat large value as the first parameter but a small value for the second parameter. The weighting scheme could be marginally improved by lowering the 2θ limit to 50 °.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Sn(H2O)(C7H6Cl)2(C6H4NO2)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram.
Aquabis(4-chlorobenzyl)bis(nicotinato-κ2O,O')tin(IV) top
Crystal data top
[Sn(C7H6Cl)2(C6H4NO2)2(H2O)]Z = 2
Mr = 632.05F(000) = 632
Triclinic, P1Dx = 1.670 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0219 (1) ÅCell parameters from 9937 reflections
b = 10.5929 (1) Åθ = 2.5–28.4°
c = 14.5866 (2) ŵ = 1.27 mm1
α = 79.6490 (5)°T = 100 K
β = 87.6290 (5)°Block, colorless
γ = 66.5051 (4)°0.35 × 0.30 × 0.25 mm
V = 1256.93 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
5673 independent reflections
Radiation source: fine-focus sealed tube5416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.665, Tmax = 0.742k = 1313
11404 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1028P)2 + 1.3179P]
where P = (Fo2 + 2Fc2)/3
5673 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 2.51 e Å3
0 restraintsΔρmin = 1.97 e Å3
Crystal data top
[Sn(C7H6Cl)2(C6H4NO2)2(H2O)]γ = 66.5051 (4)°
Mr = 632.05V = 1256.93 (3) Å3
Triclinic, P1Z = 2
a = 9.0219 (1) ÅMo Kα radiation
b = 10.5929 (1) ŵ = 1.27 mm1
c = 14.5866 (2) ÅT = 100 K
α = 79.6490 (5)°0.35 × 0.30 × 0.25 mm
β = 87.6290 (5)°
Data collection top
Bruker SMART APEX
diffractometer
5673 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5416 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.742Rint = 0.022
11404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.07Δρmax = 2.51 e Å3
5673 reflectionsΔρmin = 1.97 e Å3
326 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.63205 (2)0.308637 (17)0.300723 (11)0.01463 (11)
Cl10.23192 (13)0.32379 (11)0.10807 (6)0.0365 (2)
Cl21.16041 (10)0.23720 (10)0.67438 (6)0.02660 (19)
O10.5519 (3)0.3053 (2)0.45081 (15)0.0183 (4)
O20.7813 (3)0.1357 (2)0.42515 (15)0.0172 (4)
O30.3946 (3)0.5014 (2)0.27412 (15)0.0198 (4)
O40.5422 (3)0.4480 (2)0.15155 (15)0.0170 (4)
O1W0.8289 (3)0.1801 (2)0.21474 (15)0.0202 (4)
H10.91730.14540.24520.030*
H20.83640.23140.16530.030*
N10.8693 (3)0.0102 (3)0.71325 (18)0.0180 (5)
N20.1562 (3)0.7425 (3)0.02511 (18)0.0191 (5)
C10.5052 (4)0.1792 (4)0.2843 (2)0.0213 (6)
H1A0.58140.07990.29900.026*
H1B0.41820.19410.32990.026*
C20.4330 (4)0.2070 (3)0.1894 (2)0.0195 (6)
C30.5243 (4)0.1420 (4)0.1180 (2)0.0225 (6)
H30.63080.07300.13230.027*
C40.4630 (4)0.1761 (4)0.0277 (2)0.0268 (7)
H40.52760.13230.01990.032*
C50.3059 (5)0.2749 (4)0.0068 (2)0.0251 (7)
C60.2098 (4)0.3362 (4)0.0761 (3)0.0247 (7)
H60.10120.40090.06190.030*
C70.2735 (4)0.3024 (3)0.1670 (2)0.0207 (6)
H70.20740.34480.21460.025*
C80.7636 (4)0.4347 (3)0.3155 (2)0.0204 (6)
H8A0.83470.43270.26180.025*
H8B0.68530.53270.31260.025*
C90.8648 (4)0.3911 (3)0.4032 (2)0.0176 (6)
C101.0255 (4)0.2947 (3)0.4075 (2)0.0188 (6)
H101.07310.26110.35260.023*
C111.1167 (4)0.2473 (3)0.4901 (2)0.0205 (6)
H111.22550.18080.49230.025*
C121.0476 (4)0.2978 (3)0.5691 (2)0.0180 (6)
C130.8903 (4)0.3960 (3)0.5674 (2)0.0190 (6)
H130.84520.43160.62210.023*
C140.7993 (4)0.4417 (3)0.4843 (2)0.0184 (6)
H140.69070.50840.48260.022*
C150.4151 (4)0.5225 (3)0.1867 (2)0.0162 (5)
C160.2813 (3)0.6374 (3)0.1270 (2)0.0150 (5)
C170.1543 (4)0.7338 (3)0.1676 (2)0.0180 (6)
H170.15380.73050.23320.022*
C180.0282 (4)0.8350 (3)0.1102 (2)0.0208 (6)
H180.05970.90350.13530.025*
C190.0336 (4)0.8336 (3)0.0151 (2)0.0197 (6)
H190.05450.90100.02370.024*
C200.2787 (4)0.6464 (3)0.0306 (2)0.0192 (6)
H200.36730.58180.00320.023*
C210.6771 (3)0.1968 (3)0.48055 (19)0.0141 (5)
C220.6982 (4)0.1403 (3)0.5829 (2)0.0155 (5)
C230.5673 (4)0.1831 (3)0.6405 (2)0.0191 (6)
H230.46500.25060.61570.023*
C240.5882 (4)0.1257 (4)0.7348 (2)0.0193 (6)
H240.50060.15190.77560.023*
C250.7402 (4)0.0293 (3)0.7676 (2)0.0191 (6)
H250.75430.01120.83190.023*
C260.8467 (4)0.0453 (3)0.6216 (2)0.0166 (5)
H260.93630.01810.58220.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01514 (15)0.01586 (15)0.00806 (15)0.00249 (10)0.00275 (9)0.00174 (9)
Cl10.0496 (5)0.0521 (6)0.0153 (4)0.0313 (5)0.0098 (4)0.0043 (4)
Cl20.0204 (4)0.0416 (5)0.0149 (4)0.0118 (3)0.0048 (3)0.0020 (3)
O10.0197 (10)0.0194 (10)0.0089 (10)0.0026 (8)0.0024 (7)0.0030 (8)
O20.0180 (10)0.0174 (10)0.0124 (10)0.0041 (8)0.0009 (8)0.0004 (8)
O30.0190 (10)0.0217 (10)0.0101 (10)0.0008 (8)0.0013 (8)0.0017 (8)
O40.0175 (10)0.0173 (10)0.0122 (10)0.0039 (8)0.0021 (8)0.0005 (8)
O1W0.0174 (10)0.0237 (11)0.0095 (9)0.0003 (8)0.0043 (8)0.0028 (8)
N10.0192 (12)0.0180 (11)0.0116 (12)0.0035 (9)0.0051 (9)0.0022 (9)
N20.0208 (12)0.0206 (12)0.0119 (12)0.0060 (10)0.0045 (9)0.0029 (10)
C10.0223 (15)0.0242 (15)0.0148 (15)0.0090 (13)0.0055 (12)0.0038 (12)
C20.0222 (15)0.0215 (14)0.0161 (15)0.0115 (12)0.0025 (11)0.0009 (11)
C30.0233 (15)0.0241 (15)0.0204 (16)0.0100 (12)0.0018 (12)0.0027 (12)
C40.0326 (17)0.0342 (18)0.0211 (16)0.0198 (15)0.0022 (13)0.0078 (14)
C50.0357 (18)0.0303 (17)0.0152 (15)0.0216 (15)0.0060 (13)0.0025 (13)
C60.0237 (15)0.0241 (15)0.0233 (17)0.0096 (13)0.0088 (13)0.0054 (13)
C70.0215 (14)0.0224 (14)0.0169 (15)0.0089 (12)0.0023 (11)0.0008 (12)
C80.0264 (16)0.0196 (14)0.0111 (14)0.0074 (12)0.0052 (12)0.0047 (11)
C90.0229 (14)0.0177 (13)0.0127 (14)0.0097 (12)0.0026 (11)0.0008 (11)
C100.0213 (14)0.0202 (14)0.0146 (14)0.0084 (12)0.0018 (11)0.0027 (11)
C110.0186 (14)0.0212 (14)0.0208 (15)0.0069 (11)0.0009 (11)0.0035 (12)
C120.0189 (14)0.0222 (14)0.0122 (14)0.0091 (12)0.0035 (11)0.0020 (11)
C130.0226 (15)0.0202 (14)0.0151 (14)0.0097 (12)0.0010 (11)0.0027 (11)
C140.0209 (14)0.0168 (13)0.0146 (14)0.0060 (11)0.0023 (11)0.0012 (11)
C150.0193 (13)0.0154 (13)0.0121 (13)0.0063 (11)0.0026 (10)0.0013 (10)
C160.0156 (13)0.0168 (13)0.0103 (13)0.0058 (11)0.0030 (10)0.0030 (10)
C170.0197 (13)0.0180 (13)0.0115 (13)0.0043 (11)0.0017 (10)0.0022 (11)
C180.0193 (14)0.0182 (13)0.0172 (15)0.0014 (11)0.0005 (11)0.0014 (11)
C190.0178 (13)0.0182 (13)0.0165 (15)0.0030 (11)0.0071 (11)0.0051 (11)
C200.0215 (14)0.0199 (14)0.0117 (14)0.0048 (11)0.0014 (11)0.0004 (11)
C210.0151 (12)0.0152 (12)0.0081 (13)0.0044 (10)0.0031 (10)0.0043 (10)
C220.0196 (13)0.0168 (13)0.0091 (13)0.0072 (11)0.0017 (10)0.0005 (10)
C230.0178 (13)0.0201 (14)0.0138 (14)0.0039 (11)0.0019 (10)0.0022 (11)
C240.0210 (15)0.0252 (15)0.0093 (14)0.0080 (12)0.0018 (11)0.0002 (11)
C250.0225 (14)0.0216 (14)0.0106 (13)0.0081 (12)0.0037 (11)0.0028 (11)
C260.0183 (13)0.0154 (12)0.0135 (13)0.0047 (11)0.0012 (10)0.0003 (10)
Geometric parameters (Å, º) top
Sn1—C82.151 (3)C7—H70.9500
Sn1—C12.153 (3)C8—C91.494 (4)
Sn1—O1W2.254 (2)C8—H8A0.9900
Sn1—O12.276 (2)C8—H8B0.9900
Sn1—O32.281 (2)C9—C141.398 (4)
Sn1—O22.346 (2)C9—C101.397 (4)
Sn1—O42.368 (2)C10—C111.385 (4)
Sn1—C212.653 (3)C10—H100.9500
Sn1—C152.666 (3)C11—C121.378 (4)
Cl1—C51.739 (3)C11—H110.9500
Cl2—C121.749 (3)C12—C131.383 (4)
O1—C211.269 (4)C13—C141.390 (4)
O2—C211.264 (4)C13—H130.9500
O3—C151.273 (4)C14—H140.9500
O4—C151.255 (4)C15—C161.494 (4)
O1W—H10.8400C16—C171.391 (4)
O1W—H20.8400C16—C201.393 (4)
N1—C251.347 (4)C17—C181.389 (4)
N1—C261.349 (4)C17—H170.9500
N2—C191.340 (4)C18—C191.388 (4)
N2—C201.341 (4)C18—H180.9500
C1—C21.483 (4)C19—H190.9500
C1—H1A0.9900C20—H200.9500
C1—H1B0.9900C21—C221.496 (4)
C2—C71.400 (4)C22—C261.382 (4)
C2—C31.404 (5)C22—C231.391 (4)
C3—C41.380 (5)C23—C241.387 (4)
C3—H30.9500C23—H230.9500
C4—C51.392 (5)C24—C251.384 (4)
C4—H40.9500C24—H240.9500
C5—C61.381 (5)C25—H250.9500
C6—C71.395 (5)C26—H260.9500
C6—H60.9500
C8—Sn1—C1178.62 (11)C2—C7—H7119.4
C8—Sn1—O1W90.93 (11)C9—C8—Sn1115.3 (2)
C1—Sn1—O1W87.70 (11)C9—C8—H8A108.5
C8—Sn1—O192.45 (10)Sn1—C8—H8A108.5
C1—Sn1—O188.51 (11)C9—C8—H8B108.5
O1W—Sn1—O1140.24 (8)Sn1—C8—H8B108.5
C8—Sn1—O391.45 (11)H8A—C8—H8B107.5
C1—Sn1—O389.65 (11)C14—C9—C10118.2 (3)
O1W—Sn1—O3137.17 (8)C14—C9—C8120.8 (3)
O1—Sn1—O382.34 (8)C10—C9—C8121.0 (3)
C8—Sn1—O291.61 (10)C11—C10—C9121.2 (3)
C1—Sn1—O288.10 (10)C11—C10—H10119.4
O1W—Sn1—O283.33 (8)C9—C10—H10119.4
O1—Sn1—O256.98 (8)C12—C11—C10119.1 (3)
O3—Sn1—O2139.30 (8)C12—C11—H11120.5
C8—Sn1—O487.44 (10)C10—C11—H11120.5
C1—Sn1—O492.48 (10)C11—C12—C13121.5 (3)
O1W—Sn1—O480.87 (8)C11—C12—Cl2119.6 (2)
O1—Sn1—O4138.86 (8)C13—C12—Cl2118.8 (2)
O3—Sn1—O456.55 (8)C12—C13—C14118.9 (3)
O2—Sn1—O4164.15 (8)C12—C13—H13120.6
C8—Sn1—C2191.62 (10)C14—C13—H13120.6
C1—Sn1—C2188.76 (11)C13—C14—C9121.1 (3)
O1W—Sn1—C21111.77 (8)C13—C14—H14119.5
O1—Sn1—C2128.55 (8)C9—C14—H14119.5
O3—Sn1—C21110.90 (8)O4—C15—O3121.3 (3)
O2—Sn1—C2128.44 (8)O4—C15—C16121.0 (3)
O4—Sn1—C21167.35 (9)O3—C15—C16117.7 (3)
C8—Sn1—C1590.37 (10)O4—C15—Sn162.65 (16)
C1—Sn1—C1590.20 (11)O3—C15—Sn158.73 (15)
O1W—Sn1—C15108.75 (8)C16—C15—Sn1174.4 (2)
O1—Sn1—C15110.83 (8)C17—C16—C20119.1 (3)
O3—Sn1—C1528.49 (8)C17—C16—C15120.2 (3)
O2—Sn1—C15167.73 (9)C20—C16—C15120.6 (3)
O4—Sn1—C1528.09 (9)C18—C17—C16118.5 (3)
C21—Sn1—C15139.38 (9)C18—C17—H17120.8
C21—O1—Sn192.46 (17)C16—C17—H17120.8
C21—O2—Sn189.38 (17)C19—C18—C17118.4 (3)
C15—O3—Sn192.78 (18)C19—C18—H18120.8
C15—O4—Sn189.26 (18)C17—C18—H18120.8
Sn1—O1W—H1109.5N2—C19—C18123.8 (3)
Sn1—O1W—H2109.5N2—C19—H19118.1
H1—O1W—H2109.5C18—C19—H19118.1
C25—N1—C26117.6 (3)N2—C20—C16122.7 (3)
C19—N2—C20117.5 (3)N2—C20—H20118.7
C2—C1—Sn1113.9 (2)C16—C20—H20118.7
C2—C1—H1A108.8O2—C21—O1121.1 (3)
Sn1—C1—H1A108.8O2—C21—C22120.1 (3)
C2—C1—H1B108.8O1—C21—C22118.7 (3)
Sn1—C1—H1B108.8O2—C21—Sn162.18 (15)
H1A—C1—H1B107.7O1—C21—Sn158.99 (14)
C7—C2—C3117.6 (3)C22—C21—Sn1177.4 (2)
C7—C2—C1121.3 (3)C26—C22—C23119.1 (3)
C3—C2—C1121.0 (3)C26—C22—C21120.9 (3)
C4—C3—C2121.5 (3)C23—C22—C21120.0 (3)
C4—C3—H3119.2C24—C23—C22119.0 (3)
C2—C3—H3119.2C24—C23—H23120.5
C3—C4—C5119.5 (3)C22—C23—H23120.5
C3—C4—H4120.3C25—C24—C23118.2 (3)
C5—C4—H4120.3C25—C24—H24120.9
C6—C5—C4120.6 (3)C23—C24—H24120.9
C6—C5—Cl1120.0 (3)N1—C25—C24123.5 (3)
C4—C5—Cl1119.5 (3)N1—C25—H25118.2
C5—C6—C7119.5 (3)C24—C25—H25118.2
C5—C6—H6120.3N1—C26—C22122.5 (3)
C7—C6—H6120.3N1—C26—H26118.8
C6—C7—C2121.2 (3)C22—C26—H26118.8
C6—C7—H7119.4
C8—Sn1—O1—C2188.89 (19)C12—C13—C14—C90.7 (5)
C1—Sn1—O1—C2190.13 (19)C10—C9—C14—C131.0 (4)
O1W—Sn1—O1—C215.5 (2)C8—C9—C14—C13176.6 (3)
O3—Sn1—O1—C21179.97 (18)Sn1—O4—C15—O33.8 (3)
O2—Sn1—O1—C211.43 (16)Sn1—O4—C15—C16175.1 (2)
O4—Sn1—O1—C21177.81 (15)Sn1—O3—C15—O43.9 (3)
C15—Sn1—O1—C21179.78 (17)Sn1—O3—C15—C16175.0 (2)
C8—Sn1—O2—C2190.45 (19)C8—Sn1—C15—O483.86 (19)
C1—Sn1—O2—C2190.90 (19)C1—Sn1—C15—O494.88 (19)
O1W—Sn1—O2—C21178.80 (18)O1W—Sn1—C15—O47.25 (19)
O1—Sn1—O2—C211.44 (16)O1—Sn1—C15—O4176.63 (16)
O3—Sn1—O2—C213.7 (2)O3—Sn1—C15—O4176.2 (3)
O4—Sn1—O2—C21176.7 (2)O2—Sn1—C15—O4176.8 (3)
C15—Sn1—O2—C218.7 (5)C21—Sn1—C15—O4176.79 (15)
C8—Sn1—O3—C1588.09 (19)C8—Sn1—C15—O392.37 (19)
C1—Sn1—O3—C1591.08 (19)C1—Sn1—C15—O388.88 (19)
O1W—Sn1—O3—C154.9 (2)O1W—Sn1—C15—O3176.52 (17)
O1—Sn1—O3—C15179.63 (18)O1—Sn1—C15—O30.40 (19)
O2—Sn1—O3—C15177.75 (15)O2—Sn1—C15—O36.9 (5)
O4—Sn1—O3—C152.13 (16)O4—Sn1—C15—O3176.2 (3)
C21—Sn1—O3—C15179.61 (17)C21—Sn1—C15—O30.6 (2)
C8—Sn1—O4—C1595.59 (19)O4—C15—C16—C17169.0 (3)
C1—Sn1—O4—C1585.78 (19)O3—C15—C16—C1712.1 (4)
O1W—Sn1—O4—C15173.05 (18)O4—C15—C16—C2013.6 (4)
O1—Sn1—O4—C154.8 (2)O3—C15—C16—C20165.4 (3)
O3—Sn1—O4—C152.15 (16)C20—C16—C17—C180.6 (4)
O2—Sn1—O4—C15177.5 (2)C15—C16—C17—C18176.9 (3)
C21—Sn1—O4—C159.6 (4)C16—C17—C18—C191.1 (4)
O1W—Sn1—C1—C273.1 (2)C20—N2—C19—C181.0 (5)
O1—Sn1—C1—C2146.5 (2)C17—C18—C19—N22.0 (5)
O3—Sn1—C1—C264.2 (2)C19—N2—C20—C160.9 (5)
O2—Sn1—C1—C2156.5 (2)C17—C16—C20—N21.7 (4)
O4—Sn1—C1—C27.7 (2)C15—C16—C20—N2175.8 (3)
C21—Sn1—C1—C2175.1 (2)Sn1—O2—C21—O12.5 (3)
C15—Sn1—C1—C235.7 (2)Sn1—O2—C21—C22178.6 (2)
Sn1—C1—C2—C792.4 (3)Sn1—O1—C21—O22.6 (3)
Sn1—C1—C2—C385.4 (3)Sn1—O1—C21—C22178.5 (2)
C7—C2—C3—C43.5 (5)C8—Sn1—C21—O290.37 (18)
C1—C2—C3—C4174.3 (3)C1—Sn1—C21—O288.30 (19)
C2—C3—C4—C51.4 (5)O1W—Sn1—C21—O21.28 (19)
C3—C4—C5—C61.7 (5)O1—Sn1—C21—O2177.5 (3)
C3—C4—C5—Cl1177.0 (3)O3—Sn1—C21—O2177.45 (16)
C4—C5—C6—C72.5 (5)O4—Sn1—C21—O2175.9 (3)
Cl1—C5—C6—C7176.2 (2)C15—Sn1—C21—O2177.16 (15)
C5—C6—C7—C20.2 (5)C8—Sn1—C21—O192.15 (19)
C3—C2—C7—C62.7 (5)C1—Sn1—C21—O189.18 (19)
C1—C2—C7—C6175.1 (3)O1W—Sn1—C21—O1176.20 (16)
O1W—Sn1—C8—C995.9 (2)O3—Sn1—C21—O10.03 (19)
O1—Sn1—C8—C944.4 (2)O2—Sn1—C21—O1177.5 (3)
O3—Sn1—C8—C9126.8 (2)O4—Sn1—C21—O16.6 (5)
O2—Sn1—C8—C912.6 (2)C15—Sn1—C21—O10.3 (2)
O4—Sn1—C8—C9176.8 (2)O2—C21—C22—C2616.9 (4)
C21—Sn1—C8—C915.9 (2)O1—C21—C22—C26164.2 (3)
C15—Sn1—C8—C9155.3 (2)O2—C21—C22—C23163.0 (3)
Sn1—C8—C9—C1487.8 (3)O1—C21—C22—C2315.9 (4)
Sn1—C8—C9—C1089.7 (3)C26—C22—C23—C242.1 (4)
C14—C9—C10—C111.7 (4)C21—C22—C23—C24177.8 (3)
C8—C9—C10—C11175.9 (3)C22—C23—C24—C250.9 (5)
C9—C10—C11—C120.8 (5)C26—N1—C25—C241.7 (5)
C10—C11—C12—C130.9 (5)C23—C24—C25—N11.0 (5)
C10—C11—C12—Cl2179.2 (2)C25—N1—C26—C220.4 (4)
C11—C12—C13—C141.6 (5)C23—C22—C26—N11.4 (4)
Cl2—C12—C13—C14178.5 (2)C21—C22—C26—N1178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···N1i0.841.932.721 (3)158
O1w—H2···N2ii0.842.012.754 (3)146
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(C7H6Cl)2(C6H4NO2)2(H2O)]
Mr632.05
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.0219 (1), 10.5929 (1), 14.5866 (2)
α, β, γ (°)79.6490 (5), 87.6290 (5), 66.5051 (4)
V3)1256.93 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.665, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
11404, 5673, 5416
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.133, 1.07
No. of reflections5673
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.51, 1.97

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···N1i0.841.932.721 (3)158
O1w—H2···N2ii0.842.012.754 (3)146
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKeng, C. T., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m1008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541.  CrossRef Web of Science Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationTiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71–116.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds