metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m669-m670

Poly[(μ3-benzene-1,3,5-tri­carboxyl­ato-κ3O1:O3:O5)(μ2-2-methyl­imidazolato-κ2N:N′)tris­­(2-methyl­imidazole-κN)dizinc(II)]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: stock@ac.uni-kiel.de

(Received 21 April 2011; accepted 26 April 2011; online 7 May 2011)

Hydro­thermal reaction involving zinc nitrate hexa­hydrate, tris­odium benzene-1,3,5-tricarboxyl­ate (Na3BTC) and 2-methyl­imidazole (2-MeImH) yielded the title compound, [Zn2(C9H3O6)(C4H5N2)(C4H6N2)3]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH mol­ecules and (2-MeIm) ions, as well as by O atoms from (BTC)3− ions. This results in two different distorted tetra­hedra, viz. ZnN3O and ZnN2O2. These tetra­hedra are inter­connected via (BTC)3− ions and N:N′-bridging (2-MeIm) ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxyl­ate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

Related literature

For metal-organic frameworks, see: Li et al. (1999[Li, H., Eddadoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Stock (2010[Stock, N. (2010). Microporous Mesoporous Mater. 129, 287-295.]); Maniam et al. (2010[Maniam, P., Näther, C. & Stock, N. (2010). Eur. J. Inorg. Chem. pp. 3866-3874.]). For related structures, see: Cheng et al. (2001[Cheng, D., Khan, M. A. & Houser, R. P. (2001). Inorg. Chem. 40, 6858-6859.]); Zheng et al. (2010[Zheng, S., Wu, T., Zhang, J., Chow, M., Nieto, R. A., Feng, P. & Bu, X. (2010). Angew. Chem. Int. Ed. 49, 5362-5366.]); Huang et al. (2006[Huang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 1557-1559.]); Martins et al. (2010[Martins, G. A. V., Byrne, P. J., Allan, P., Tea, S. J., Slawin, A. M. Z., Li, Y. & Morris, R. E. (2010). Dalton Trans. 39, 1758-1762.]); Park et al. (2006[Park, K. S., Ni, Z., Coté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186-10191.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C9H3O6)(C4H5N2)(C4H6N2)3]

  • Mr = 665.28

  • Orthorhombic, P b c n

  • a = 18.9722 (6) Å

  • b = 18.2247 (4) Å

  • c = 16.5585 (4) Å

  • V = 5725.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 293 K

  • 0.16 × 0.09 × 0.07 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.684, Tmax = 0.814

  • 38494 measured reflections

  • 7732 independent reflections

  • 6222 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.143

  • S = 1.13

  • 7732 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O4 1.942 (3)
Zn2—O6 1.968 (3)
Zn2—O1i 1.976 (2)
Zn1—N2Hii 1.971 (3)
Zn1—N1F 1.998 (3)
Zn1—N1G 2.015 (4)
Zn2—N1H 1.992 (3)
Zn2—N1E 2.027 (3)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2E—H2EN⋯O3iii 0.86 2.06 2.912 (5) 169
N2F—H2FN⋯O2iv 0.86 1.84 2.693 (5) 172
N2G—H2GN⋯O5v 0.86 1.94 2.798 (5) 175
Symmetry codes: (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x+1, y, -z-{\script{1\over 2}}]; (v) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal-organic frameworks (MOF) are being investigated intensively, mainly for their high specific surface areas (Li et al., 1999; Kitagawa et al., 2004). In our workgroup, we are interested in using organic ligands containing multiple functional groups as the linkers for the MOFs. We employ high-throughput (HT) methods, which allow the rapid and systematic investigation of compound formation fields (Stock, 2010; Maniam et al., 2010). HT-screening of various first row transition metal ions with trisodium benzene-1,3,5-tricarboxylate (Na3BTC) and 2-methylimidazole (2-MeImH) has yielded the colorless block crystals of (I). The asymmetric unit of compound (I) consists of two crystallographically independent Zn2+ ions, one fully deprotonated (BTC)3-, one 2-methylimidazolate (2-MeIm)- ion and three 2-MeImH ligands (Fig. 1). The Zn2+ ions are tetrahedrally coordinated by oxygen atoms originating from (BTC)3- and nitrogen atoms from (2-MeIm)- and 2-MeImH. The Zn···O bond distances lie between 1.942 (3)–1.976 (2) Å which are slightly shorter than Zn···N bonds of 1.971 (3)–2.027 (3) Å. The bond angles in ZnN3O tetrahedra ranges between 100.42 (14)–116.61 (16)° while in ZnN2O2, the bond angles of 96.73 (13)–122.12 (11)° are observed (Tab. 1 & Tab. 2). It was also observed that Zn-(2-MeIm)-—Zn angle lies at 146.8 (1)° which is close to 145° angles in zeolitic imidazolate frameworks and zeolite structures (Park et al.., 2006). The C=O and C—O bonds in the carboxylate groups can be clearly distinguished from each other by their bond lengths of 1.229 (5)–1.236 (5) Å and 1.266 (4)–1.275 (4) Å, respectively. Weak hydrogen bonds in the 2.6 < d(O···H—N) < 3.0 Å range are observed between the O atoms of the carboxylate ions and N—H groups of the 2-MeImH ligands (Fig. 2).

By considering the ZnN3O and ZnN2O2 tetrahedra bridged by the (2-MeIm)- as a Zn-(2-MeIm)-Zn dimer, this dimer is connected to three terminal 2-MeImH ligands and three (BTC)3- ions. Each (BTC)3- ion is then further connected to two Zn-(2-MeIm)-Zn dimers (Fig. 3) and layers in the bc plane are formed. Through extensive O···H—N hydrogen bonding, the layers are interconnected along the a-axis to form a dense three-dimensional crystal structure (Fig. 4, Tab. 2).

Related literature top

For metal-organic frameworks, see: Li et al. (1999); Kitagawa et al. (2004); Stock (2010); Maniam et al. (2010). For related structures, see: Cheng et al. (2001); Zheng et al. (2010); Huang et al. (2006); Martins et al. (2010); Park et al. (2006)

Experimental top

All reagents were of analytical grade (Aldrich and Fluka) and were used without further purification. High-throughput (HT) experiments in 300 ml Teflon-lined reactors yielded the crystals of compound (I). The reaction mixture consisted of zinc(II) nitrate hexahydrate (5.9 mg, 0.02 mmol), Na3(BTC) (2.76 mg, 0.01 mmol), 2-methylimidazole (4.11 mg, 0.05 mmol) and deionized water (200 ml). The mixture was heated in a 300 µl Teflon-lined high-throughput reactor at 423 K for 48 h (Stock, 2010). The mixture was cooled to room temperature over a period of 12 h and colourless plate-like crystals were obtained.

Refinement top

All H atoms were located in difference Fourier maps. Idealized values for the bond lengths (C—H = 0.93 Å and N—H = 0.86 Å) and angles were used and the H-atom parameters were refined using a riding model. The highest peak of 0.47 e Å-3 in the residual electron density map is located 0.82 Å from N1H and the deepest hole of 0.54 e Å-3 is located 0.69 Å from Zn1.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. The tetrahedral coordination environment of the Zn1 and Zn2 ions. Green broken lines indicate the weak hydrogen bonds between the carboxylate groups of the (BTC)3- ions and H—N groups of the 2-MeImH ligands. [Symmetry codes: (i) -x + 3/2, y + 1/2, z; (ii) x, -y, z + 1/2; (iii) x, -y, z - 1/2; (iv) -x + 3/2, y - 1/2, z; (v) x + 1/2, -y + 1/2, -z; (vi) -x + 1, y, -z - 1/2; (vii) -x + 1, y, -z + 1/2; (viii) x - 1/2, -y + 1/2, -z.]
[Figure 3] Fig. 3. Ball-and-stick representation for (I) showing the interconnection of Zn-(2-MeIm)-Zn dimers (marked as differently colored polyhedra) by (BTC)3- ions and thus forming a layered arrangement in the b,c plane. Zn: purple, O: grey, N: blue, C: black and H: green. Hydrogen atoms of (BTC)3- are omitted for clarity.
[Figure 4] Fig. 4. Layer packing diagram of compound (I). All atoms of one layer are presented by the same colour. H-bonds (see Fig. 2) between the layers are depicted by black broken lines.
Poly[(µ3-benzene-1,3,5-tricarboxylato- κ3O1:O3:O5)(µ2-2-methylimidazolato- κ2N:N')tris(2-methylimidazole-κN)dizinc(II)] top
Crystal data top
[Zn2(C9H3O6)(C4H5N2)(C4H6N2)3]F(000) = 2720
Mr = 665.28Dx = 1.544 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 40409 reflections
a = 18.9722 (6) Åθ = 1.6–29.7°
b = 18.2247 (4) ŵ = 1.73 mm1
c = 16.5585 (4) ÅT = 293 K
V = 5725.3 (3) Å3Block, colourless
Z = 80.16 × 0.09 × 0.07 mm
Data collection top
Stoe IPDS-1
diffractometer
7732 independent reflections
Radiation source: fine-focus sealed tube6222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ scansθmax = 29.3°, θmin = 1.6°
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
h = 2626
Tmin = 0.684, Tmax = 0.814k = 2423
38494 measured reflectionsl = 1622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0602P)2 + 8.9412P]
where P = (Fo2 + 2Fc2)/3
7732 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Zn2(C9H3O6)(C4H5N2)(C4H6N2)3]V = 5725.3 (3) Å3
Mr = 665.28Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 18.9722 (6) ŵ = 1.73 mm1
b = 18.2247 (4) ÅT = 293 K
c = 16.5585 (4) Å0.16 × 0.09 × 0.07 mm
Data collection top
Stoe IPDS-1
diffractometer
7732 independent reflections
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
6222 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.814Rint = 0.050
38494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.13Δρmax = 0.47 e Å3
7732 reflectionsΔρmin = 0.54 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.45797 (2)0.21003 (2)0.06434 (3)0.03012 (11)
Zn20.86974 (2)0.02837 (2)0.16875 (2)0.02691 (11)
O10.82544 (13)0.04108 (16)0.22416 (15)0.0317 (6)
O20.75851 (19)0.1297 (2)0.27156 (19)0.0542 (9)
O30.54340 (16)0.20240 (19)0.1090 (2)0.0482 (8)
O40.53500 (14)0.15579 (16)0.01530 (17)0.0372 (6)
O50.73489 (17)0.0422 (2)0.14383 (17)0.0461 (8)
O60.81368 (14)0.01665 (16)0.06956 (16)0.0367 (6)
C10.73604 (17)0.0869 (2)0.1391 (2)0.0262 (6)
C20.67256 (19)0.1251 (2)0.1327 (2)0.0301 (7)
H2A0.65480.15000.17730.036*
C30.63563 (18)0.1261 (2)0.0602 (2)0.0299 (7)
C40.66398 (18)0.0910 (2)0.0066 (2)0.0301 (7)
H4A0.63970.09210.05540.036*
C50.72805 (18)0.0544 (2)0.0019 (2)0.0271 (7)
C60.76310 (18)0.0509 (2)0.0720 (2)0.0276 (7)
H6A0.80480.02430.07630.033*
C70.77524 (18)0.0865 (2)0.2179 (2)0.0289 (7)
C80.56601 (18)0.1652 (2)0.0522 (2)0.0302 (7)
C90.76020 (19)0.0245 (2)0.0779 (2)0.0296 (7)
C1E0.9480 (2)0.1157 (3)0.1420 (3)0.0398 (9)
C2E0.9061 (3)0.1880 (3)0.2364 (3)0.0512 (11)
H2E0.89660.22900.26800.061*
C3E0.8810 (2)0.1201 (3)0.2469 (3)0.0423 (9)
H3E0.85050.10580.28790.051*
C4E0.9881 (3)0.0916 (3)0.0703 (3)0.0579 (13)
H4E11.01370.13250.04840.070*
H4E20.95610.07300.03040.070*
H4E31.02060.05370.08560.070*
N1E0.90718 (18)0.07433 (19)0.1879 (2)0.0352 (7)
N2E0.9484 (2)0.1849 (2)0.1696 (3)0.0471 (9)
H2EN0.97130.22100.14890.057*
C1F0.3558 (2)0.1785 (2)0.0669 (3)0.0396 (9)
C2F0.3373 (2)0.2885 (3)0.0222 (3)0.0427 (10)
H2F0.34120.33140.00790.051*
C3F0.2905 (2)0.2767 (3)0.0822 (3)0.0495 (11)
H3F0.25650.30930.10100.059*
C4F0.3840 (3)0.1032 (3)0.0801 (4)0.0613 (15)
H4F10.35850.08000.12320.074*
H4F20.37870.07490.03150.074*
H4F30.43300.10600.09410.074*
N1F0.37830 (16)0.22648 (19)0.0125 (2)0.0353 (7)
N2F0.30319 (19)0.2075 (2)0.1096 (3)0.0479 (9)
H2FN0.28090.18610.14820.057*
C1G0.3665 (3)0.1373 (3)0.1915 (4)0.0604 (14)
C2G0.4502 (3)0.0661 (3)0.1528 (4)0.0667 (16)
H2G0.48990.04850.12600.080*
C3G0.4119 (4)0.0282 (4)0.2072 (4)0.0738 (17)
H3G0.41940.01980.22410.089*
C4G0.3175 (5)0.2000 (5)0.1996 (7)0.131 (4)
H4G10.28180.18830.23860.157*
H4G20.29580.20980.14840.157*
H4G30.34310.24260.21720.157*
N1G0.4217 (2)0.1347 (2)0.1431 (2)0.0444 (8)
N2G0.3604 (3)0.0740 (3)0.2321 (3)0.0631 (13)
H2GN0.32900.06430.26800.076*
C1H0.94630 (18)0.1645 (2)0.1130 (2)0.0328 (8)
C2H1.01834 (19)0.0828 (2)0.1579 (2)0.0338 (8)
H2H1.03690.03930.17820.041*
C3H1.05531 (18)0.1437 (2)0.1393 (3)0.0359 (8)
H3H1.10380.14930.14520.043*
C4H0.8800 (2)0.2001 (3)0.0853 (4)0.0578 (15)
H4H10.89000.24900.06710.069*
H4H20.86010.17210.04180.069*
H4H30.84700.20200.12930.069*
N1H0.94875 (15)0.09609 (18)0.14179 (19)0.0302 (6)
N2H1.01007 (16)0.19593 (18)0.1103 (2)0.0324 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02406 (18)0.0339 (2)0.0324 (2)0.00044 (16)0.00318 (16)0.00303 (18)
Zn20.02578 (18)0.0330 (2)0.02195 (18)0.00254 (16)0.00150 (15)0.00171 (16)
O10.0277 (11)0.0457 (15)0.0218 (11)0.0058 (10)0.0038 (9)0.0020 (11)
O20.064 (2)0.067 (2)0.0317 (15)0.0266 (17)0.0106 (14)0.0175 (16)
O30.0392 (15)0.059 (2)0.0460 (17)0.0201 (14)0.0056 (14)0.0122 (16)
O40.0305 (13)0.0449 (15)0.0361 (15)0.0112 (11)0.0091 (11)0.0009 (12)
O50.0490 (17)0.066 (2)0.0232 (12)0.0188 (15)0.0029 (12)0.0022 (14)
O60.0354 (13)0.0493 (17)0.0254 (12)0.0162 (12)0.0044 (10)0.0017 (12)
C10.0248 (15)0.0310 (17)0.0228 (15)0.0002 (13)0.0014 (12)0.0024 (13)
C20.0306 (16)0.0342 (18)0.0253 (16)0.0060 (14)0.0006 (13)0.0027 (15)
C30.0293 (16)0.0323 (17)0.0281 (17)0.0038 (13)0.0033 (14)0.0000 (14)
C40.0268 (15)0.0383 (19)0.0252 (16)0.0017 (14)0.0035 (13)0.0017 (15)
C50.0274 (15)0.0325 (17)0.0215 (15)0.0023 (13)0.0009 (12)0.0003 (13)
C60.0255 (15)0.0323 (17)0.0250 (16)0.0041 (12)0.0006 (12)0.0012 (14)
C70.0283 (15)0.0357 (18)0.0228 (15)0.0002 (13)0.0002 (12)0.0002 (14)
C80.0256 (15)0.0348 (18)0.0300 (18)0.0031 (13)0.0010 (13)0.0009 (15)
C90.0301 (16)0.0369 (18)0.0217 (15)0.0030 (14)0.0010 (12)0.0014 (14)
C1E0.037 (2)0.044 (2)0.038 (2)0.0042 (17)0.0001 (16)0.0052 (18)
C2E0.058 (3)0.041 (2)0.054 (3)0.005 (2)0.004 (2)0.009 (2)
C3E0.042 (2)0.044 (2)0.041 (2)0.0027 (17)0.0055 (17)0.0072 (19)
C4E0.061 (3)0.065 (3)0.048 (3)0.002 (3)0.019 (2)0.014 (3)
N1E0.0395 (17)0.0330 (17)0.0330 (17)0.0053 (13)0.0025 (13)0.0001 (13)
N2E0.049 (2)0.0393 (19)0.053 (2)0.0128 (16)0.0061 (18)0.0047 (18)
C1F0.0324 (18)0.042 (2)0.045 (2)0.0075 (16)0.0023 (16)0.0096 (19)
C2F0.0330 (18)0.043 (2)0.052 (3)0.0046 (16)0.0054 (17)0.016 (2)
C3F0.037 (2)0.057 (3)0.055 (3)0.0069 (19)0.0136 (19)0.014 (2)
C4F0.058 (3)0.040 (3)0.086 (4)0.003 (2)0.010 (3)0.021 (3)
N1F0.0261 (14)0.0379 (17)0.0420 (18)0.0006 (12)0.0046 (13)0.0075 (14)
N2F0.0368 (17)0.057 (2)0.049 (2)0.0025 (16)0.0129 (16)0.0165 (19)
C1G0.066 (3)0.054 (3)0.061 (3)0.016 (2)0.034 (3)0.003 (3)
C2G0.063 (3)0.061 (3)0.076 (4)0.006 (3)0.016 (3)0.024 (3)
C3G0.080 (4)0.067 (4)0.074 (4)0.005 (3)0.008 (3)0.028 (3)
C4G0.130 (7)0.093 (6)0.169 (10)0.021 (5)0.116 (7)0.016 (6)
N1G0.0441 (19)0.049 (2)0.0405 (19)0.0053 (16)0.0117 (16)0.0037 (17)
N2G0.072 (3)0.070 (3)0.047 (2)0.027 (2)0.020 (2)0.004 (2)
C1H0.0244 (16)0.039 (2)0.0348 (19)0.0002 (14)0.0025 (14)0.0037 (16)
C2H0.0288 (16)0.041 (2)0.0317 (19)0.0012 (15)0.0039 (14)0.0053 (16)
C3H0.0219 (15)0.048 (2)0.038 (2)0.0040 (14)0.0044 (14)0.0122 (18)
C4H0.0225 (18)0.058 (3)0.092 (4)0.0010 (18)0.000 (2)0.024 (3)
N1H0.0244 (13)0.0361 (16)0.0302 (15)0.0039 (12)0.0007 (11)0.0044 (13)
N2H0.0257 (14)0.0363 (17)0.0350 (16)0.0034 (12)0.0002 (12)0.0051 (14)
Geometric parameters (Å, º) top
Zn1—O41.942 (3)N2E—H2EN0.8600
Zn2—O61.968 (3)C1F—N1F1.325 (5)
Zn2—O1i1.976 (2)C1F—N2F1.333 (6)
Zn1—N2Hii1.971 (3)C1F—C4F1.490 (7)
Zn1—N1F1.998 (3)C2F—C3F1.349 (6)
Zn1—N1G2.015 (4)C2F—N1F1.381 (5)
Zn2—N1H1.992 (3)C2F—H2F0.9300
Zn2—N1E2.027 (3)C3F—N2F1.361 (6)
O1—C71.265 (4)C3F—H3F0.9300
O2—C71.228 (5)C4F—H4F10.9600
O3—C81.236 (5)C4F—H4F20.9600
O4—C81.274 (5)C4F—H4F30.9600
O5—C91.236 (5)N2F—H2FN0.8600
O6—C91.269 (4)C1G—N1G1.319 (6)
C1—C61.388 (5)C1G—N2G1.340 (7)
C1—C21.395 (5)C1G—C4G1.480 (10)
C1—C71.503 (5)C2G—C3G1.348 (8)
C2—C31.390 (5)C2G—N1G1.372 (7)
C2—H2A0.9300C2G—H2G0.9300
C3—C41.386 (5)C3G—N2G1.349 (8)
C3—C81.507 (5)C3G—H3G0.9300
C4—C51.389 (5)C4G—H4G10.9600
C4—H4A0.9300C4G—H4G20.9600
C5—C61.394 (5)C4G—H4G30.9600
C5—C91.501 (5)N2G—H2GN0.8600
C6—H6A0.9300C1H—N1H1.336 (5)
C1E—N1E1.321 (5)C1H—N2H1.339 (4)
C1E—N2E1.340 (6)C1H—C4H1.488 (5)
C1E—C4E1.477 (7)C2H—C3H1.348 (6)
C2E—C3E1.338 (7)C2H—N1H1.369 (4)
C2E—N2E1.368 (7)C2H—H2H0.9300
C2E—H2E0.9300C3H—N2H1.368 (5)
C3E—N1E1.377 (5)C3H—H3H0.9300
C3E—H3E0.9300C4H—H4H10.9600
C4E—H4E10.9600C4H—H4H20.9600
C4E—H4E20.9600C4H—H4H30.9600
C4E—H4E30.9600
O4—Zn1—N2Hii111.87 (13)N1F—C1F—N2F109.9 (4)
O4—Zn1—N1F112.28 (13)N1F—C1F—C4F126.3 (4)
N2Hii—Zn1—N1F110.38 (14)N2F—C1F—C4F123.8 (4)
O4—Zn1—N1G100.42 (14)C3F—C2F—N1F109.0 (4)
N2Hii—Zn1—N1G116.61 (16)C3F—C2F—H2F125.5
N1F—Zn1—N1G104.81 (15)N1F—C2F—H2F125.5
O6—Zn2—O1i122.12 (11)C2F—C3F—N2F106.1 (4)
O6—Zn2—N1H106.66 (12)C2F—C3F—H3F127.0
O1i—Zn2—N1H116.64 (13)N2F—C3F—H3F127.0
O6—Zn2—N1E102.68 (13)C1F—C4F—H4F1109.5
O1i—Zn2—N1E96.73 (13)C1F—C4F—H4F2109.5
N1H—Zn2—N1E110.08 (13)H4F1—C4F—H4F2109.5
C7—O1—Zn2iii118.0 (2)C1F—C4F—H4F3109.5
C8—O4—Zn1130.2 (3)H4F1—C4F—H4F3109.5
C9—O6—Zn2113.9 (2)H4F2—C4F—H4F3109.5
C6—C1—C2119.6 (3)C1F—N1F—C2F106.2 (3)
C6—C1—C7120.7 (3)C1F—N1F—Zn1125.3 (3)
C2—C1—C7119.7 (3)C2F—N1F—Zn1128.5 (3)
C3—C2—C1120.5 (3)C1F—N2F—C3F108.8 (4)
C3—C2—H2A119.8C1F—N2F—H2FN125.6
C1—C2—H2A119.8C3F—N2F—H2FN125.6
C4—C3—C2119.2 (3)N1G—C1G—N2G110.0 (5)
C4—C3—C8119.2 (3)N1G—C1G—C4G125.6 (5)
C2—C3—C8121.6 (3)N2G—C1G—C4G124.4 (5)
C3—C4—C5121.1 (3)C3G—C2G—N1G109.4 (6)
C3—C4—H4A119.5C3G—C2G—H2G125.3
C5—C4—H4A119.5N1G—C2G—H2G125.3
C4—C5—C6119.3 (3)N2G—C3G—C2G106.1 (6)
C4—C5—C9118.9 (3)N2G—C3G—H3G126.9
C6—C5—C9121.7 (3)C2G—C3G—H3G126.9
C1—C6—C5120.3 (3)C1G—C4G—H4G1109.5
C1—C6—H6A119.9C1G—C4G—H4G2109.5
C5—C6—H6A119.9H4G1—C4G—H4G2109.5
O2—C7—O1123.7 (3)C1G—C4G—H4G3109.5
O2—C7—C1119.8 (3)H4G1—C4G—H4G3109.5
O1—C7—C1116.5 (3)H4G2—C4G—H4G3109.5
O3—C8—O4125.5 (3)C1G—N1G—C2G105.9 (4)
O3—C8—C3119.8 (3)C1G—N1G—Zn1129.8 (4)
O4—C8—C3114.7 (3)C2G—N1G—Zn1124.2 (3)
O5—C9—O6124.1 (3)C1G—N2G—C3G108.5 (4)
O5—C9—C5119.2 (3)C1G—N2G—H2GN125.8
O6—C9—C5116.7 (3)C3G—N2G—H2GN125.8
N1E—C1E—N2E110.2 (4)N1H—C1H—N2H112.3 (3)
N1E—C1E—C4E126.4 (4)N1H—C1H—C4H123.1 (3)
N2E—C1E—C4E123.4 (4)N2H—C1H—C4H124.6 (4)
C3E—C2E—N2E105.9 (4)C3H—C2H—N1H108.2 (3)
C3E—C2E—H2E127.0C3H—C2H—H2H125.9
N2E—C2E—H2E127.0N1H—C2H—H2H125.9
C2E—C3E—N1E109.9 (4)C2H—C3H—N2H109.1 (3)
C2E—C3E—H3E125.1C2H—C3H—H3H125.5
N1E—C3E—H3E125.1N2H—C3H—H3H125.5
C1E—C4E—H4E1109.5C1H—C4H—H4H1109.5
C1E—C4E—H4E2109.5C1H—C4H—H4H2109.5
H4E1—C4E—H4E2109.5H4H1—C4H—H4H2109.5
C1E—C4E—H4E3109.5C1H—C4H—H4H3109.5
H4E1—C4E—H4E3109.5H4H1—C4H—H4H3109.5
H4E2—C4E—H4E3109.5H4H2—C4H—H4H3109.5
C1E—N1E—C3E105.8 (4)C1H—N1H—C2H105.6 (3)
C1E—N1E—Zn2130.0 (3)C1H—N1H—Zn2129.2 (2)
C3E—N1E—Zn2122.9 (3)C2H—N1H—Zn2124.9 (3)
C1E—N2E—C2E108.2 (4)C1H—N2H—C3H104.9 (3)
C1E—N2E—H2EN125.9C1H—N2H—Zn1iv131.5 (3)
C2E—N2E—H2EN125.9C3H—N2H—Zn1iv123.2 (2)
N2Hii—Zn1—O4—C876.9 (4)N1F—C2F—C3F—N2F0.3 (6)
N1F—Zn1—O4—C847.9 (4)N2F—C1F—N1F—C2F0.0 (5)
N1G—Zn1—O4—C8158.8 (4)C4F—C1F—N1F—C2F179.9 (5)
O1i—Zn2—O6—C941.1 (3)N2F—C1F—N1F—Zn1178.4 (3)
N1H—Zn2—O6—C9178.8 (3)C4F—C1F—N1F—Zn11.5 (7)
N1E—Zn2—O6—C965.4 (3)C3F—C2F—N1F—C1F0.2 (5)
C6—C1—C2—C31.3 (6)C3F—C2F—N1F—Zn1178.5 (3)
C7—C1—C2—C3180.0 (3)O4—Zn1—N1F—C1F37.9 (4)
C1—C2—C3—C42.5 (6)N2Hii—Zn1—N1F—C1F163.5 (3)
C1—C2—C3—C8178.4 (3)N1G—Zn1—N1F—C1F70.2 (4)
C2—C3—C4—C50.7 (6)O4—Zn1—N1F—C2F140.1 (4)
C8—C3—C4—C5179.9 (3)N2Hii—Zn1—N1F—C2F14.6 (4)
C3—C4—C5—C62.2 (6)N1G—Zn1—N1F—C2F111.8 (4)
C3—C4—C5—C9173.4 (4)N1F—C1F—N2F—C3F0.2 (6)
C2—C1—C6—C51.7 (5)C4F—C1F—N2F—C3F179.9 (5)
C7—C1—C6—C5177.0 (3)C2F—C3F—N2F—C1F0.3 (6)
C4—C5—C6—C13.4 (5)N1G—C2G—C3G—N2G1.1 (8)
C9—C5—C6—C1172.1 (3)N2G—C1G—N1G—C2G1.3 (7)
Zn2iii—O1—C7—O29.8 (5)C4G—C1G—N1G—C2G177.9 (8)
Zn2iii—O1—C7—C1171.5 (2)N2G—C1G—N1G—Zn1178.2 (4)
C6—C1—C7—O2165.6 (4)C4G—C1G—N1G—Zn11.0 (11)
C2—C1—C7—O213.0 (6)C3G—C2G—N1G—C1G0.1 (8)
C6—C1—C7—O113.2 (5)C3G—C2G—N1G—Zn1177.2 (5)
C2—C1—C7—O1168.2 (3)O4—Zn1—N1G—C1G175.7 (5)
Zn1—O4—C8—O316.3 (6)N2Hii—Zn1—N1G—C1G63.3 (5)
Zn1—O4—C8—C3164.1 (3)N1F—Zn1—N1G—C1G59.1 (5)
C4—C3—C8—O3173.2 (4)O4—Zn1—N1G—C2G0.7 (5)
C2—C3—C8—O35.9 (6)N2Hii—Zn1—N1G—C2G120.3 (5)
C4—C3—C8—O47.2 (5)N1F—Zn1—N1G—C2G117.3 (5)
C2—C3—C8—O4173.7 (4)N1G—C1G—N2G—C3G2.0 (7)
Zn2—O6—C9—O516.2 (5)C4G—C1G—N2G—C3G177.2 (8)
Zn2—O6—C9—C5161.9 (3)C2G—C3G—N2G—C1G1.9 (8)
C4—C5—C9—O510.7 (6)N1H—C2H—C3H—N2H0.7 (5)
C6—C5—C9—O5164.7 (4)N2H—C1H—N1H—C2H0.4 (5)
C4—C5—C9—O6171.0 (3)C4H—C1H—N1H—C2H178.0 (4)
C6—C5—C9—O613.5 (5)N2H—C1H—N1H—Zn2173.3 (3)
N2E—C2E—C3E—N1E0.2 (6)C4H—C1H—N1H—Zn28.2 (6)
N2E—C1E—N1E—C3E0.1 (5)C3H—C2H—N1H—C1H0.7 (4)
C4E—C1E—N1E—C3E179.9 (5)C3H—C2H—N1H—Zn2173.4 (3)
N2E—C1E—N1E—Zn2167.5 (3)O6—Zn2—N1H—C1H57.7 (4)
C4E—C1E—N1E—Zn212.4 (7)O1i—Zn2—N1H—C1H82.7 (4)
C2E—C3E—N1E—C1E0.1 (5)N1E—Zn2—N1H—C1H168.4 (3)
C2E—C3E—N1E—Zn2168.8 (3)O6—Zn2—N1H—C2H129.6 (3)
O6—Zn2—N1E—C1E60.7 (4)O1i—Zn2—N1H—C2H89.9 (3)
O1i—Zn2—N1E—C1E174.2 (4)N1E—Zn2—N1H—C2H18.9 (4)
N1H—Zn2—N1E—C1E52.6 (4)N1H—C1H—N2H—C3H0.0 (5)
O6—Zn2—N1E—C3E105.0 (3)C4H—C1H—N2H—C3H178.4 (5)
O1i—Zn2—N1E—C3E20.1 (4)N1H—C1H—N2H—Zn1iv172.7 (3)
N1H—Zn2—N1E—C3E141.7 (3)C4H—C1H—N2H—Zn1iv5.7 (7)
N1E—C1E—N2E—C2E0.2 (5)C2H—C3H—N2H—C1H0.4 (5)
C4E—C1E—N2E—C2E179.9 (5)C2H—C3H—N2H—Zn1iv173.0 (3)
C3E—C2E—N2E—C1E0.2 (5)
Symmetry codes: (i) x, y, z+1/2; (ii) x+3/2, y+1/2, z; (iii) x, y, z1/2; (iv) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2E—H2EN···O3v0.862.062.912 (5)169
N2F—H2FN···O2vi0.861.842.693 (5)172
N2G—H2GN···O5vii0.861.942.798 (5)175
Symmetry codes: (v) x+1/2, y+1/2, z; (vi) x+1, y, z1/2; (vii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C9H3O6)(C4H5N2)(C4H6N2)3]
Mr665.28
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)18.9722 (6), 18.2247 (4), 16.5585 (4)
V3)5725.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.16 × 0.09 × 0.07
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
Tmin, Tmax0.684, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
38494, 7732, 6222
Rint0.050
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.143, 1.13
No. of reflections7732
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.54

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), XCIF in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O41.942 (3)Zn2—N1E2.027 (3)
Zn2—O61.968 (3)O1—C71.265 (4)
Zn2—O1i1.976 (2)O2—C71.228 (5)
Zn1—N2Hii1.971 (3)O3—C81.236 (5)
Zn1—N1F1.998 (3)O4—C81.274 (5)
Zn1—N1G2.015 (4)O5—C91.236 (5)
Zn2—N1H1.992 (3)O6—C91.269 (4)
O4—Zn1—N2Hii111.87 (13)O6—Zn2—O1i122.12 (11)
O4—Zn1—N1F112.28 (13)O6—Zn2—N1H106.66 (12)
N2Hii—Zn1—N1F110.38 (14)O1i—Zn2—N1H116.64 (13)
O4—Zn1—N1G100.42 (14)O6—Zn2—N1E102.68 (13)
N2Hii—Zn1—N1G116.61 (16)O1i—Zn2—N1E96.73 (13)
N1F—Zn1—N1G104.81 (15)N1H—Zn2—N1E110.08 (13)
Symmetry codes: (i) x, y, z+1/2; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2E—H2EN···O3iii0.862.062.912 (5)169
N2F—H2FN···O2iv0.861.842.693 (5)172
N2G—H2GN···O5v0.861.942.798 (5)175
Symmetry codes: (iii) x+1/2, y+1/2, z; (iv) x+1, y, z1/2; (v) x+1, y, z+1/2.
 

Acknowledgements

The authors thank Dr Christian Näther and Inke Jess (University of Kiel) for the acquisition of the single-crystal data. This work was supported by the State of Schleswig–Holstein, Germany and the German Research Foundation (DFG; SPP-1362).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCheng, D., Khan, M. A. & Houser, R. P. (2001). Inorg. Chem. 40, 6858–6859.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. (2006). Angew. Chem. Int. Ed. 45, 1557–1559.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, H., Eddadoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationManiam, P., Näther, C. & Stock, N. (2010). Eur. J. Inorg. Chem. pp. 3866–3874.  Web of Science CSD CrossRef Google Scholar
First citationMartins, G. A. V., Byrne, P. J., Allan, P., Tea, S. J., Slawin, A. M. Z., Li, Y. & Morris, R. E. (2010). Dalton Trans. 39, 1758–1762.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPark, K. S., Ni, Z., Coté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, N. (2010). Microporous Mesoporous Mater. 129, 287–295.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZheng, S., Wu, T., Zhang, J., Chow, M., Nieto, R. A., Feng, P. & Bu, X. (2010). Angew. Chem. Int. Ed. 49, 5362–5366.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m669-m670
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds