organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2,3-di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 28 April 2011; accepted 29 April 2011; online 7 May 2011)

In the title compound, C14H14ClNO2S, the two aromatic rings are tilted relative to each other by 34.7 (1)°. In the crystal, the mol­ecules form zigzag chains along the c axis via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For hydrogen bonding modes of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]); on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o366.]); Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1252.]) and on the structures of N-(ar­yl)methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Monoclinic, P 21 /n

  • a = 4.9926 (6) Å

  • b = 22.296 (3) Å

  • c = 12.793 (2) Å

  • β = 90.11 (1)°

  • V = 1424.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.40 × 0.12 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.853, Tmax = 0.960

  • 5341 measured reflections

  • 2669 independent reflections

  • 1882 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.116

  • S = 1.07

  • 2669 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.46 2.893 (3) 112
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moiety is a constituent of many biologically important compounds. The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). As a part of studying the substituent effects on the structures of this class of compounds (Gowda et al., 2004, 2007, 2009; Shakuntala et al., 2011), in the present work, the crystal structure of 4-chloro-N-(2,3-dimethylphenyl)-benzenesulfonamide, (I), has been determined (Fig. 1). In the title compound, the amino H atom is trans to one of the O atoms of the SO2 group. Furthermore, the N—H bond is syn to the ortho- and meta-methyl groups of the aromatic ring, in contrast to the anti conformation observed between the N—H bond, and the ortho- and meta-methyl groups in N-(2,3-dimethylphenyl)-benzenesulfonamide (II) (Gowda et al., 2009). The molecule is twisted at the S atom with the C—SO2—NH—C torsion angle of -70.3 (3)°, compared to the values of 71.0 (2)° in (II), and -53.8 (3)° and -63.4 (3)° in the two independent molecules of 4-chloro-N-(phenyl)-benzenesulfonamide (III) (Shakuntala et al., 2011).

The sulfonyl and the anilino benzene rings are tilted relative to each other by 34.7 (1)° in (I), compared to the values of 64.8 (1)° in (II), and 69.1 (1)° and 82.6 (1)° in the two independent molecules of (III).

The packing of molecules in the title compound via intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For hydrogen bonding modes of sulfonamides, see; Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2004); on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009); Shakuntala et al. (2011) and on the structures of N-(aryl)methanesulfonamides, see: Gowda et al. (2007).

Experimental top

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 2,3-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(2,3-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The compound was characterized by recording its infrared and NMR spectra.

Needle like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with N—H = 0.86 Å, the aromatic C—H = 0.93 Å, the methyl C—H = 0.96 Å, and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(2,3-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H14ClNO2SF(000) = 616
Mr = 295.77Dx = 1.380 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1658 reflections
a = 4.9926 (6) Åθ = 3.2–27.9°
b = 22.296 (3) ŵ = 0.41 mm1
c = 12.793 (2) ÅT = 293 K
β = 90.11 (1)°Needle, colourless
V = 1424.1 (3) Å30.40 × 0.12 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2669 independent reflections
Radiation source: fine-focus sealed tube1882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Rotation method data acquisition using ω and ϕ scansθmax = 25.7°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 46
Tmin = 0.853, Tmax = 0.960k = 2726
5341 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.6874P]
where P = (Fo2 + 2Fc2)/3
2669 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H14ClNO2SV = 1424.1 (3) Å3
Mr = 295.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9926 (6) ŵ = 0.41 mm1
b = 22.296 (3) ÅT = 293 K
c = 12.793 (2) Å0.40 × 0.12 × 0.10 mm
β = 90.11 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2669 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1882 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.960Rint = 0.021
5341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
2669 reflectionsΔρmin = 0.40 e Å3
172 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0055 (6)0.22651 (14)0.3463 (2)0.0406 (7)
C20.1101 (6)0.21646 (17)0.2488 (3)0.0536 (9)
H20.24660.24130.22490.064*
C30.0209 (7)0.16946 (18)0.1881 (3)0.0573 (9)
H30.09730.16230.12300.069*
C40.1806 (7)0.13352 (15)0.2240 (3)0.0516 (9)
C50.2940 (7)0.14244 (16)0.3206 (3)0.0544 (9)
H50.42850.11700.34430.065*
C60.2071 (6)0.18932 (15)0.3820 (3)0.0490 (8)
H60.28370.19590.44720.059*
C70.0479 (6)0.37146 (15)0.2783 (2)0.0426 (8)
C80.1300 (6)0.41952 (15)0.2693 (2)0.0425 (7)
C90.1703 (6)0.44421 (16)0.1699 (3)0.0487 (8)
C100.0308 (8)0.42138 (18)0.0854 (3)0.0612 (10)
H100.05790.43790.01950.073*
C110.1469 (8)0.37484 (19)0.0965 (3)0.0656 (11)
H110.23900.36030.03860.079*
C120.1889 (7)0.34977 (17)0.1933 (3)0.0565 (9)
H120.31080.31860.20140.068*
C130.2732 (7)0.44507 (16)0.3628 (3)0.0551 (9)
H13A0.22680.48660.37060.066*
H13B0.46310.44140.35310.066*
H13C0.22110.42340.42440.066*
C140.3601 (8)0.49621 (18)0.1552 (3)0.0665 (11)
H14A0.53600.48490.17830.080*
H14B0.29880.52990.19530.080*
H14C0.36630.50690.08250.080*
N10.0959 (5)0.34539 (12)0.3801 (2)0.0448 (7)
H1N0.22110.35960.41900.054*
O10.0057 (5)0.27818 (11)0.52703 (17)0.0567 (6)
O20.3577 (4)0.30355 (11)0.3984 (2)0.0584 (7)
Cl10.2989 (3)0.07532 (5)0.14708 (8)0.0827 (4)
S10.08490 (15)0.28949 (4)0.42182 (7)0.0439 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0330 (16)0.0457 (19)0.0432 (18)0.0034 (14)0.0016 (13)0.0061 (15)
C20.0417 (18)0.066 (2)0.053 (2)0.0004 (18)0.0105 (16)0.0081 (19)
C30.060 (2)0.069 (3)0.042 (2)0.011 (2)0.0078 (17)0.0032 (19)
C40.064 (2)0.046 (2)0.045 (2)0.0038 (18)0.0099 (17)0.0026 (16)
C50.062 (2)0.047 (2)0.054 (2)0.0121 (18)0.0005 (17)0.0084 (17)
C60.0497 (19)0.052 (2)0.0452 (19)0.0055 (16)0.0075 (15)0.0031 (16)
C70.0295 (16)0.0493 (19)0.0491 (19)0.0046 (14)0.0004 (14)0.0009 (16)
C80.0359 (17)0.0448 (18)0.0467 (19)0.0048 (15)0.0003 (14)0.0028 (15)
C90.0467 (19)0.050 (2)0.049 (2)0.0086 (16)0.0074 (16)0.0002 (16)
C100.071 (2)0.069 (3)0.044 (2)0.014 (2)0.0033 (18)0.0010 (19)
C110.064 (2)0.076 (3)0.057 (2)0.008 (2)0.0156 (19)0.014 (2)
C120.044 (2)0.058 (2)0.067 (2)0.0031 (17)0.0097 (17)0.010 (2)
C130.060 (2)0.049 (2)0.057 (2)0.0072 (17)0.0039 (17)0.0010 (18)
C140.071 (3)0.065 (3)0.063 (2)0.000 (2)0.011 (2)0.013 (2)
N10.0317 (13)0.0481 (16)0.0547 (17)0.0026 (12)0.0102 (12)0.0003 (13)
O10.0572 (14)0.0675 (16)0.0453 (13)0.0098 (12)0.0013 (11)0.0002 (12)
O20.0251 (11)0.0680 (16)0.0821 (18)0.0066 (11)0.0027 (11)0.0055 (14)
Cl10.1197 (10)0.0646 (7)0.0637 (7)0.0041 (6)0.0174 (6)0.0123 (5)
S10.0286 (4)0.0523 (5)0.0510 (5)0.0050 (4)0.0002 (3)0.0027 (4)
Geometric parameters (Å, º) top
C1—C61.382 (4)C9—C101.382 (5)
C1—C21.393 (4)C9—C141.509 (5)
C1—S11.763 (3)C10—C111.373 (5)
C2—C31.378 (5)C10—H100.9300
C2—H20.9300C11—C121.374 (5)
C3—C41.366 (5)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.375 (5)C13—H13A0.9600
C4—Cl11.732 (3)C13—H13B0.9600
C5—C61.377 (5)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C121.382 (4)C14—H14C0.9600
C7—C81.397 (4)N1—S11.628 (3)
C7—N11.447 (4)N1—H1N0.8600
C8—C91.401 (4)O1—S11.426 (2)
C8—C131.505 (4)O2—S11.430 (2)
C6—C1—C2120.1 (3)C9—C10—H10119.3
C6—C1—S1118.9 (2)C10—C11—C12120.1 (4)
C2—C1—S1120.8 (3)C10—C11—H11120.0
C3—C2—C1119.5 (3)C12—C11—H11120.0
C3—C2—H2120.2C11—C12—C7119.2 (3)
C1—C2—H2120.2C11—C12—H12120.4
C4—C3—C2119.6 (3)C7—C12—H12120.4
C4—C3—H3120.2C8—C13—H13A109.5
C2—C3—H3120.2C8—C13—H13B109.5
C3—C4—C5121.5 (3)H13A—C13—H13B109.5
C3—C4—Cl1119.9 (3)C8—C13—H13C109.5
C5—C4—Cl1118.6 (3)H13A—C13—H13C109.5
C4—C5—C6119.5 (3)H13B—C13—H13C109.5
C4—C5—H5120.2C9—C14—H14A109.5
C6—C5—H5120.2C9—C14—H14B109.5
C5—C6—C1119.7 (3)H14A—C14—H14B109.5
C5—C6—H6120.1C9—C14—H14C109.5
C1—C6—H6120.1H14A—C14—H14C109.5
C12—C7—C8121.8 (3)H14B—C14—H14C109.5
C12—C7—N1118.9 (3)C7—N1—S1120.7 (2)
C8—C7—N1119.3 (3)C7—N1—H1N119.7
C7—C8—C9118.0 (3)S1—N1—H1N119.7
C7—C8—C13121.7 (3)O1—S1—O2120.18 (15)
C9—C8—C13120.3 (3)O1—S1—N1106.86 (14)
C10—C9—C8119.5 (3)O2—S1—N1106.92 (14)
C10—C9—C14120.1 (3)O1—S1—C1107.77 (15)
C8—C9—C14120.4 (3)O2—S1—C1107.62 (15)
C11—C10—C9121.5 (4)N1—S1—C1106.81 (14)
C11—C10—H10119.3
C6—C1—C2—C30.4 (5)C8—C9—C10—C110.1 (5)
S1—C1—C2—C3175.1 (3)C14—C9—C10—C11178.8 (3)
C1—C2—C3—C40.3 (5)C9—C10—C11—C120.2 (6)
C2—C3—C4—C51.2 (5)C10—C11—C12—C70.8 (6)
C2—C3—C4—Cl1178.7 (3)C8—C7—C12—C112.1 (5)
C3—C4—C5—C61.3 (5)N1—C7—C12—C11179.2 (3)
Cl1—C4—C5—C6178.5 (3)C12—C7—N1—S191.9 (3)
C4—C5—C6—C10.6 (5)C8—C7—N1—S191.0 (3)
C2—C1—C6—C50.3 (5)C7—N1—S1—O1174.6 (2)
S1—C1—C6—C5175.3 (3)C7—N1—S1—O244.7 (3)
C12—C7—C8—C92.3 (5)C7—N1—S1—C170.3 (3)
N1—C7—C8—C9179.4 (3)C6—C1—S1—O122.9 (3)
C12—C7—C8—C13176.9 (3)C2—C1—S1—O1161.6 (3)
N1—C7—C8—C130.1 (4)C6—C1—S1—O2153.8 (3)
C7—C8—C9—C101.3 (5)C2—C1—S1—O230.6 (3)
C13—C8—C9—C10178.0 (3)C6—C1—S1—N191.7 (3)
C7—C8—C9—C14180.0 (3)C2—C1—S1—N183.9 (3)
C13—C8—C9—C140.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.462.893 (3)112
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.9926 (6), 22.296 (3), 12.793 (2)
β (°) 90.11 (1)
V3)1424.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.40 × 0.12 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.853, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
5341, 2669, 1882
Rint0.021
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.116, 1.07
No. of reflections2669
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.40

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.462.893 (3)112
Symmetry code: (i) x1, y, z.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds