organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-(3-chloro­phen­yl)-6-hy­dr­oxy-6-methyl-4-(methyl­amino)­cyclo­hex-3-ene-1,3-di­carboxyl­ate

aDepartment of Image Science and Engineering, Pukyong National University, Busan, 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 2 May 2011; accepted 6 May 2011; online 14 May 2011)

In the title compound, C18H22ClNO5, the cyclo­hexene ring adopts a distorted half-chair conformation. The mol­ecular structure is stabilized by pairs of intra­molecular N—H⋯O and O—H⋯O inter­actions, generating S(6) motifs. In the crystal, the mol­ecules are linked by inter­molecular C—H⋯O inter­actions, forming centrosymmetric dimers.

Related literature

For the synthesis see: Pandiarajan et al. (2005[Pandiarajan, K., Sabapathy Mohan, R. T., Gomathi, R. & Muthukumaran, G. (2005). Mag. Reson. Chem. 43, 430-434.]). For related structures, see: Amézquita-Valencia et al. (2009,[Amézquita-Valencia, M., Hernández-Ortega, S., Suárez-Ortiz, G. A. & Cabrera, A. (2010). Acta Cryst. E66, o500.] 2010)[Amézquita-Valencia, M., Hernández-Ortega, S., Suárez-Ortiz, G. A., Toscano, R. A. & Cabrera, A. (2009). Acta Cryst. E65, o2728.]; Venter et al. (2010[Venter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o3011-o3012.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22ClNO5

  • Mr = 367.82

  • Monoclinic, P 21 /c

  • a = 11.962 (3) Å

  • b = 9.118 (4) Å

  • c = 17.704 (5) Å

  • β = 104.890 (3)°

  • V = 1866.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.955

  • 17431 measured reflections

  • 4638 independent reflections

  • 3337 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 1.04

  • 4638 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.0 2.673 (2) 134
O3—H4A⋯O4 0.82 2.39 2.990 (2) 131
C15—H15B⋯O1i 0.96 2.52 3.327 (3) 142
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound has been obtained as a minor product during the synthesis of 2,4-bismethoxycarbonyl-3-(3-chlorophenyl)- 5-hydroxy-5-methylcyclohexanone (Pandiarajan et al., 2005). The synthesized cyclohexanone has been purified by the recrystallization process in ethanol solvent. The expected compound regenerated and settled as powder along with some small crystals. The obtained crystals were analysed by single-crystal XRD and the results clearly evidence the formation of the title compound.

The ORTEP diagram of the title compound is shown in Fig.1. The cyclohexane ring adopts a distorted half-chair conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.4038 (16) Å, q3 = -0.3083 (16) Å, QT = 0.5080 (16) Å, and θ = 127.36 (18)°. Atom Cl1 deviates from the plane of the C1—C6 benzene ring by 0.034 (1) Å.

The crystal packing is stabilized by C—H···O intermolecular interactions. The molecular structure is stabilized by N—H···O and O—H···O hydrogen bonds, wherein, atom N1 and O3 act as donor to O1 and O4, to generate S(6) motifs, respectively. In the crystal structure, the molecules at (x, y, z) and (1 - x,1 - y,1 - z) are linked by C(15)—H(15B) ···O(1) hydrogen bonds, generating a centrosymmetric dimeric ring motif R22(14) (Bernstein et al., 1995).

Related literature top

For the synthesis see: Pandiarajan et al. (2005). For related structures, see: Amézquita-Valencia et al. (2009, 2010); Venter et al. (2010). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-chlorobenzaldehyde (1 equvi) and methyl acetoacetate (2 equvi) and 40% methylamine solution (1 equvi) in ethanol was kept in hot water bath for about 30 minutes. It was kept aside for a day. The separated solid was recrystallized from ethanol.

Refinement top

The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed along a face. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted
Dimethyl 2-(3-chlorophenyl)-6-hydroxy-6-methyl-4-(methylamino)cyclohex-3-ene- 1,3-dicarboxylate top
Crystal data top
C18H22ClNO5F(000) = 776
Mr = 367.82Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1222 reflections
a = 11.962 (3) Åθ = 1.8–28.3°
b = 9.118 (4) ŵ = 0.23 mm1
c = 17.704 (5) ÅT = 293 K
β = 104.890 (3)°Block, colourless
V = 1866.1 (11) Å30.25 × 0.22 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4638 independent reflections
Radiation source: fine-focus sealed tube3337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.944, Tmax = 0.955k = 712
17431 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.4709P]
where P = (Fo2 + 2Fc2)/3
4638 reflections(Δ/σ)max = 0.009
231 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C18H22ClNO5V = 1866.1 (11) Å3
Mr = 367.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.962 (3) ŵ = 0.23 mm1
b = 9.118 (4) ÅT = 293 K
c = 17.704 (5) Å0.25 × 0.22 × 0.2 mm
β = 104.890 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4638 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3337 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.955Rint = 0.024
17431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
4638 reflectionsΔρmin = 0.46 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20024 (13)0.2336 (2)0.66810 (9)0.0491 (4)
H10.26930.19750.66060.059*
C20.10067 (15)0.1499 (2)0.64705 (10)0.0606 (5)
C30.00304 (16)0.2004 (3)0.65606 (12)0.0762 (7)
H30.06960.14340.64120.091*
C40.00607 (16)0.3366 (4)0.68751 (14)0.0845 (8)
H40.07570.37220.69440.101*
C50.09225 (15)0.4229 (3)0.70946 (12)0.0671 (5)
H50.08810.51570.73030.081*
C60.19700 (12)0.37074 (19)0.70030 (9)0.0454 (4)
C70.30800 (12)0.45902 (17)0.72953 (8)0.0404 (3)
H70.28680.55890.74080.048*
C80.37441 (12)0.38775 (16)0.80710 (8)0.0405 (3)
H80.37660.28160.79890.049*
C90.49940 (13)0.44328 (17)0.83388 (9)0.0421 (3)
C100.56091 (13)0.39960 (18)0.77252 (9)0.0450 (3)
H10A0.63580.44750.78430.054*
H10B0.57430.29460.77580.054*
C110.49636 (13)0.43744 (17)0.68999 (9)0.0410 (3)
C120.38012 (13)0.46821 (16)0.67106 (8)0.0404 (3)
C130.32399 (14)0.51982 (17)0.59341 (9)0.0444 (3)
C140.15531 (18)0.6312 (3)0.51469 (11)0.0699 (5)
H14A0.19770.70820.49760.105*
H14B0.08180.66810.51840.105*
H14C0.14350.55190.47780.105*
C150.68410 (14)0.4189 (2)0.65474 (11)0.0597 (5)
H15A0.72250.49800.68690.090*
H15B0.70750.41720.60680.090*
H15C0.70450.32760.68180.090*
C160.56123 (15)0.3786 (2)0.91304 (9)0.0558 (4)
H16A0.64180.40410.92510.084*
H16B0.55330.27380.91120.084*
H16C0.52760.41720.95260.084*
C170.31063 (14)0.41559 (19)0.86895 (9)0.0469 (4)
C180.2187 (3)0.3077 (3)0.95785 (16)0.0975 (9)
H18A0.27350.33211.00610.146*
H18B0.18140.21680.96380.146*
H18C0.16180.38400.94420.146*
N10.56045 (12)0.43967 (18)0.63774 (8)0.0528 (4)
H1A0.52440.45490.58970.063*
O10.36279 (10)0.51675 (14)0.53585 (7)0.0560 (3)
O20.21941 (10)0.57946 (15)0.58975 (7)0.0584 (3)
O30.50425 (11)0.59997 (12)0.83719 (7)0.0542 (3)
H4A0.46530.62980.86600.081*
O40.29242 (13)0.53525 (15)0.89139 (8)0.0645 (4)
O50.27827 (13)0.29272 (15)0.89645 (8)0.0682 (4)
Cl10.10795 (6)0.02490 (8)0.60884 (5)0.1010 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (8)0.0622 (10)0.0469 (8)0.0061 (7)0.0098 (6)0.0010 (8)
C20.0497 (9)0.0767 (13)0.0517 (10)0.0198 (9)0.0062 (8)0.0058 (9)
C30.0414 (10)0.119 (2)0.0647 (12)0.0225 (11)0.0068 (8)0.0159 (13)
C40.0342 (9)0.140 (2)0.0821 (15)0.0098 (12)0.0193 (9)0.0128 (16)
C50.0430 (9)0.0944 (15)0.0655 (11)0.0141 (10)0.0169 (8)0.0020 (11)
C60.0350 (7)0.0616 (10)0.0400 (7)0.0044 (7)0.0102 (6)0.0052 (7)
C70.0387 (7)0.0420 (8)0.0394 (7)0.0054 (6)0.0081 (6)0.0008 (6)
C80.0421 (7)0.0376 (7)0.0403 (7)0.0038 (6)0.0079 (6)0.0009 (6)
C90.0426 (8)0.0385 (8)0.0417 (7)0.0042 (6)0.0044 (6)0.0030 (6)
C100.0374 (7)0.0481 (8)0.0466 (8)0.0037 (6)0.0055 (6)0.0020 (7)
C110.0403 (7)0.0386 (7)0.0437 (8)0.0035 (6)0.0102 (6)0.0024 (6)
C120.0397 (7)0.0400 (7)0.0403 (7)0.0017 (6)0.0082 (6)0.0007 (6)
C130.0426 (8)0.0434 (8)0.0448 (8)0.0040 (6)0.0067 (6)0.0010 (6)
C140.0613 (11)0.0841 (14)0.0560 (10)0.0188 (10)0.0002 (9)0.0116 (10)
C150.0439 (9)0.0733 (12)0.0662 (11)0.0014 (8)0.0220 (8)0.0039 (9)
C160.0540 (9)0.0634 (11)0.0444 (8)0.0121 (8)0.0024 (7)0.0013 (8)
C170.0467 (8)0.0512 (9)0.0415 (8)0.0065 (7)0.0089 (6)0.0045 (7)
C180.119 (2)0.0965 (19)0.1025 (18)0.0165 (16)0.0740 (17)0.0306 (15)
N10.0410 (7)0.0695 (9)0.0493 (8)0.0001 (6)0.0142 (6)0.0047 (7)
O10.0550 (7)0.0707 (8)0.0418 (6)0.0006 (6)0.0115 (5)0.0031 (6)
O20.0510 (7)0.0724 (8)0.0494 (6)0.0148 (6)0.0085 (5)0.0126 (6)
O30.0582 (7)0.0396 (6)0.0613 (7)0.0005 (5)0.0093 (6)0.0078 (5)
O40.0821 (9)0.0578 (8)0.0607 (8)0.0108 (7)0.0313 (7)0.0045 (6)
O50.0826 (9)0.0585 (8)0.0754 (9)0.0083 (7)0.0420 (7)0.0149 (7)
Cl10.0875 (4)0.0874 (5)0.1206 (5)0.0422 (3)0.0133 (4)0.0251 (4)
Geometric parameters (Å, º) top
C1—C61.379 (2)C11—N11.345 (2)
C1—C21.383 (2)C11—C121.373 (2)
C1—H10.9300C12—C131.445 (2)
C2—C31.370 (3)C13—O11.2237 (19)
C2—Cl11.743 (2)C13—O21.350 (2)
C3—C41.365 (4)C14—O21.433 (2)
C3—H30.9300C14—H14A0.9600
C4—C51.385 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.388 (2)C15—N11.444 (2)
C5—H50.9300C15—H15A0.9600
C6—C71.525 (2)C15—H15B0.9600
C7—C121.511 (2)C15—H15C0.9600
C7—C81.542 (2)C16—H16A0.9600
C7—H70.9800C16—H16B0.9600
C8—C171.508 (2)C16—H16C0.9600
C8—C91.534 (2)C17—O41.200 (2)
C8—H80.9800C17—O51.319 (2)
C9—O31.430 (2)C18—O51.451 (2)
C9—C101.514 (2)C18—H18A0.9600
C9—C161.525 (2)C18—H18B0.9600
C10—C111.507 (2)C18—H18C0.9600
C10—H10A0.9700N1—H1A0.8600
C10—H10B0.9700O3—H4A0.8200
C6—C1—C2119.88 (16)N1—C11—C12123.34 (14)
C6—C1—H1120.1N1—C11—C10115.45 (13)
C2—C1—H1120.1C12—C11—C10121.20 (13)
C3—C2—C1121.8 (2)C11—C12—C13119.52 (14)
C3—C2—Cl1119.31 (16)C11—C12—C7122.84 (13)
C1—C2—Cl1118.94 (16)C13—C12—C7117.55 (13)
C4—C3—C2118.21 (19)O1—C13—O2120.94 (14)
C4—C3—H3120.9O1—C13—C12127.01 (15)
C2—C3—H3120.9O2—C13—C12112.03 (13)
C3—C4—C5121.43 (19)O2—C14—H14A109.5
C3—C4—H4119.3O2—C14—H14B109.5
C5—C4—H4119.3H14A—C14—H14B109.5
C4—C5—C6120.0 (2)O2—C14—H14C109.5
C4—C5—H5120.0H14A—C14—H14C109.5
C6—C5—H5120.0H14B—C14—H14C109.5
C1—C6—C5118.74 (17)N1—C15—H15A109.5
C1—C6—C7120.30 (13)N1—C15—H15B109.5
C5—C6—C7120.86 (17)H15A—C15—H15B109.5
C12—C7—C6113.42 (12)N1—C15—H15C109.5
C12—C7—C8112.29 (12)H15A—C15—H15C109.5
C6—C7—C8106.51 (12)H15B—C15—H15C109.5
C12—C7—H7108.1C9—C16—H16A109.5
C6—C7—H7108.1C9—C16—H16B109.5
C8—C7—H7108.1H16A—C16—H16B109.5
C17—C8—C9110.78 (12)C9—C16—H16C109.5
C17—C8—C7109.55 (12)H16A—C16—H16C109.5
C9—C8—C7111.98 (12)H16B—C16—H16C109.5
C17—C8—H8108.1O4—C17—O5123.70 (16)
C9—C8—H8108.1O4—C17—C8124.20 (15)
C7—C8—H8108.1O5—C17—C8112.10 (14)
O3—C9—C10105.67 (13)O5—C18—H18A109.5
O3—C9—C16110.09 (13)O5—C18—H18B109.5
C10—C9—C16110.33 (13)H18A—C18—H18B109.5
O3—C9—C8111.62 (12)O5—C18—H18C109.5
C10—C9—C8107.83 (12)H18A—C18—H18C109.5
C16—C9—C8111.13 (14)H18B—C18—H18C109.5
C11—C10—C9114.41 (13)C11—N1—C15126.10 (14)
C11—C10—H10A108.7C11—N1—H1A117.0
C9—C10—H10A108.7C15—N1—H1A117.0
C11—C10—H10B108.7C13—O2—C14116.46 (14)
C9—C10—H10B108.7C9—O3—H4A109.5
H10A—C10—H10B107.6C17—O5—C18116.35 (16)
C6—C1—C2—C31.1 (3)C8—C9—C10—C1149.17 (18)
C6—C1—C2—Cl1178.36 (12)C9—C10—C11—N1161.63 (14)
C1—C2—C3—C40.7 (3)C9—C10—C11—C1217.9 (2)
Cl1—C2—C3—C4178.76 (17)N1—C11—C12—C136.3 (2)
C2—C3—C4—C50.4 (3)C10—C11—C12—C13173.14 (14)
C3—C4—C5—C60.6 (3)N1—C11—C12—C7177.30 (14)
C2—C1—C6—C51.2 (2)C10—C11—C12—C73.2 (2)
C2—C1—C6—C7175.25 (15)C6—C7—C12—C11130.26 (16)
C4—C5—C6—C11.0 (3)C8—C7—C12—C119.5 (2)
C4—C5—C6—C7175.46 (17)C6—C7—C12—C1353.32 (18)
C1—C6—C7—C1249.45 (19)C8—C7—C12—C13174.13 (13)
C5—C6—C7—C12134.17 (16)C11—C12—C13—O113.8 (3)
C1—C6—C7—C874.57 (17)C7—C12—C13—O1169.67 (15)
C5—C6—C7—C8101.81 (17)C11—C12—C13—O2164.39 (14)
C12—C7—C8—C17165.93 (13)C7—C12—C13—O212.1 (2)
C6—C7—C8—C1769.36 (16)C9—C8—C17—O462.5 (2)
C12—C7—C8—C942.61 (17)C7—C8—C17—O461.5 (2)
C6—C7—C8—C9167.32 (12)C9—C8—C17—O5116.62 (15)
C17—C8—C9—O369.40 (16)C7—C8—C17—O5119.35 (15)
C7—C8—C9—O353.22 (16)C12—C11—N1—C15175.24 (17)
C17—C8—C9—C10174.96 (12)C10—C11—N1—C154.3 (2)
C7—C8—C9—C1062.42 (16)O1—C13—O2—C143.0 (2)
C17—C8—C9—C1653.92 (17)C12—C13—O2—C14178.66 (16)
C7—C8—C9—C16176.54 (13)O4—C17—O5—C180.7 (3)
O3—C9—C10—C1170.31 (16)C8—C17—O5—C18178.47 (18)
C16—C9—C10—C11170.72 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.02.673 (2)134
O3—H4A···O40.822.392.990 (2)131
C15—H15B···O1i0.962.523.327 (3)142
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H22ClNO5
Mr367.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.962 (3), 9.118 (4), 17.704 (5)
β (°) 104.890 (3)
V3)1866.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.25 × 0.22 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.944, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
17431, 4638, 3337
Rint0.024
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.04
No. of reflections4638
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.46

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.02.673 (2)134
O3—H4A···O40.822.392.990 (2)131
C15—H15B···O1i0.962.523.327 (3)142
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This study was supported financially by Pukyong National University in the 2009 Post-Doc. Program. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC&SAP) for financial support.

References

First citationAmézquita-Valencia, M., Hernández-Ortega, S., Suárez-Ortiz, G. A. & Cabrera, A. (2010). Acta Cryst. E66, o500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmézquita-Valencia, M., Hernández-Ortega, S., Suárez-Ortiz, G. A., Toscano, R. A. & Cabrera, A. (2009). Acta Cryst. E65, o2728.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPandiarajan, K., Sabapathy Mohan, R. T., Gomathi, R. & Muthukumaran, G. (2005). Mag. Reson. Chem. 43, 430–434.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o3011–o3012.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds