organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Creatininium cinnamate

aDepartment of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India, and cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India
*Correspondence e-mail: s_a_bahadur@yahoo.co.in

(Received 2 May 2011; accepted 4 May 2011; online 11 May 2011)

The crystal structure of the title compound (systematic name: 2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 3-phenyl­prop-2-enoate), C4H8N3O+·C9H7O2, is stabilized by N—H⋯O hydrogen bonding. Cations are linked to anions to form ion pairs with an R22(8) ring motif. These ion pairs are connected through a C22(6) chain motif extending along the c axis of the unit cell. This crystal packing is characterized by hydro­phobic layers at x ∼ 1/2 packed between hydro­philic layers at x ∼ 0.

Related literature

For related structures, see: Bahadur, Kannan et al. (2007[Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387-o2389.]); Bahadur, Sivapragasam et al. (2007[Bahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714-o1716.]); Bahadur, Rajalakshmi et al. (2007[Bahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.]). For hydrogen-bonding motif notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For crystal engineering, see: Desiraju (1989[Desiraju, G. R. (1989). In Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.]). For information about creatinine and its biological significance, see: Madaras & Buck (1996[Madaras, M. B. & Buck, R. P. (1996). Anal. Chem. 68, 3832-3839.]); Sharma et al. (2004[Sharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971-2977.]); Narayanan & Appleton (1980[Narayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119-1126.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N3O+·C9H7O2

  • Mr = 261.28

  • Monoclinic, P 21 /c

  • a = 9.1680 (8) Å

  • b = 11.3391 (11) Å

  • c = 12.7070 (12) Å

  • β = 104.578 (2)°

  • V = 1278.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 9014 measured reflections

  • 2250 independent reflections

  • 2037 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.05

  • 2250 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O11i 0.899 (18) 1.840 (18) 2.7373 (15) 177 (2)
N5—H5A⋯O11ii 0.899 (18) 1.959 (18) 2.8403 (16) 166 (1)
N5—H5B⋯O12i 0.929 (19) 1.754 (19) 2.6663 (16) 167 (2)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Noncovalent interactions play a vital role in crystal engineering and supramolecular chemistry. Their strength and directionality is responsible for crystal packing and entire molecular arrays (Desiraju, 1989). Our interest lies in the specificity of recognition between inorganic/organic acids and creatinine. Creatinine is a blood metabolite of considerable importance in clinical chemistry, particularly as an indicator of renal function. It has been proven that determination of creatinine is more valuable for the detection of renal dysfunction than that of urea (Sharma et al., 2004). In renal physiology, creatinine clearance (Madaras & Buck, 1996) is the volume of blood plasma that is cleared of creatinine per unit time. Clinically, creatinine clearance is a useful measure for estimating the glomerular filtration rate of the kidneys. An abnormal level of creatinine in biological fluids is an indicator of various diseases (Narayanan & Appleton, 1980).

The asymmetric part of the title compound contains one creatininium cation and one cinnamate anion (Fig. 1). The protonation of the N site of the cation is evident from C—N bond distances. The values are comaparable with creatininium oxalate monohydrate (Bahadur, Kannan et al., 2007), creatininium benzoate (Bahadur, Sivapragasam et al., 2007) and bis(creatininium) sulfate (Bahadur, Rajalakshmi et al., 2007). The deprotonation on the –COOH group of the cinnamic acid is confirmed from –COO- bond geometry. The planes of the five-membered creatininium ring and the six-membered cinnamate ring are oriented almost parallel to each other with the dihedral angle of 4.5 (1)°. The plane of the deprotonated carboxylate group is twisted out from the plane of aromatic ring by an angle of 11.5 (3)°.

The crystal structure is stabilized by N—H···O hydrogen bonds (Fig. 2; Table 1). Cations are linked to anions forming ion pairs through two N—H···O bonds that produce ring R22(8) motifs around inversion centres (Bernstein et al., 1995). These ionic dimers are planar and stacked with a dihedral angle of 74.9 (3)°. Further, these adjacent dimers are connected via another N—H···O hydrogen bond leading to chain C22(6) motif extending along b axis of the unit cell (Fig. 3). Alternate hydrophilic and hydrophobic regions are observed along the a axis of the unit cell. The hydrophobic regions are located at x ~1/2 whereas the hydrophilic regions are located between the hydrophilic layers at x ~0.

Related literature top

For related structures, see: Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007); Bahadur, Rajalakshmi et al. (2007). For hydrogen-bonding motif notation, see: Bernstein et al. (1995). For crystal engineering, see: Desiraju (1989). For information about creatinine and its biological significance, see: Madaras & Buck (1996); Sharma et al. (2004); Narayanan & Appleton (1980).

Experimental top

The title compound was crystallized from an aqueous mixture containing creatinine and cinnamic acid in the stoichiometric ratio of 1:1 at room temperature by slow evaporation technique.

Refinement top

All the H atoms except the atoms involved in hydrogen bonds were positioned geometrically and refined using a riding model, with C—H = 0.93 (–CH) and 0.96 Å (–CH3) and Uiso(H) = 1.2–1.5 Ueq (parent atom). H atoms involved in hydrogen bonds were located from differential Fourier maps and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme for the atoms and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecules viewed down the b axis. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. View of ring R22(8) motif and chain C22(6) motifs. Hydrogen bonds are drawn as dashed lines.
2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 3-phenylprop-2-enoate top
Crystal data top
C4H8N3O+·C9H7O2F(000) = 552
Mr = 261.28Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3849 reflections
a = 9.1680 (8) Åθ = 2.1–24.5°
b = 11.3391 (11) ŵ = 0.10 mm1
c = 12.7070 (12) ÅT = 293 K
β = 104.578 (2)°Block, colourless
V = 1278.5 (2) Å30.25 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2037 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω scansh = 1010
9014 measured reflectionsk = 1313
2250 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.2262P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2250 reflectionsΔρmax = 0.16 e Å3
186 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.047 (4)
Crystal data top
C4H8N3O+·C9H7O2V = 1278.5 (2) Å3
Mr = 261.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1680 (8) ŵ = 0.10 mm1
b = 11.3391 (11) ÅT = 293 K
c = 12.7070 (12) Å0.25 × 0.22 × 0.18 mm
β = 104.578 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2037 reflections with I > 2σ(I)
9014 measured reflectionsRint = 0.023
2250 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
2250 reflectionsΔρmin = 0.14 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.90518 (15)0.14215 (12)0.42786 (10)0.0444 (3)
C120.82555 (14)0.03500 (11)0.37734 (10)0.0425 (3)
H120.84490.00460.31420.051*
C130.72755 (15)0.01743 (12)0.42137 (10)0.0465 (3)
H130.71590.01680.48530.056*
C140.63452 (14)0.12096 (11)0.38527 (10)0.0431 (3)
C150.61909 (16)0.17391 (12)0.28495 (11)0.0501 (3)
H150.67160.14460.23680.060*
C160.52597 (19)0.26999 (14)0.25656 (13)0.0620 (4)
H160.51490.30460.18870.074*
C170.44942 (18)0.31527 (14)0.32702 (14)0.0627 (4)
H170.38850.38130.30760.075*
C180.46263 (19)0.26350 (16)0.42554 (14)0.0685 (5)
H180.40990.29340.47330.082*
C190.55385 (19)0.16718 (15)0.45395 (12)0.0616 (4)
H190.56180.13190.52120.074*
C50.88984 (14)0.38873 (11)0.37801 (10)0.0404 (3)
C30.78741 (16)0.45605 (12)0.50957 (11)0.0490 (3)
C20.74062 (17)0.53562 (12)0.41229 (11)0.0514 (4)
H2A0.63190.53680.38460.062*
H2B0.77630.61550.42990.062*
C10.8109 (2)0.53413 (16)0.23096 (13)0.0705 (5)
H1A0.87390.60300.24170.106*
H1B0.70960.55590.19440.106*
H1C0.84810.47790.18750.106*
N10.81251 (13)0.48238 (10)0.33492 (9)0.0477 (3)
N40.87699 (13)0.37178 (10)0.48180 (9)0.0445 (3)
N50.96941 (14)0.32061 (11)0.33272 (10)0.0490 (3)
O110.99961 (12)0.18945 (8)0.38395 (8)0.0530 (3)
O120.87297 (14)0.18107 (10)0.51056 (9)0.0711 (4)
O10.75459 (15)0.46421 (10)0.59527 (9)0.0710 (4)
H40.9161 (18)0.3101 (15)0.5239 (14)0.060 (5)*
H5A0.9778 (18)0.3305 (14)0.2643 (15)0.058 (4)*
H5B1.0243 (19)0.2638 (16)0.3789 (15)0.066 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0542 (7)0.0438 (7)0.0369 (6)0.0026 (6)0.0146 (5)0.0020 (5)
C120.0507 (7)0.0421 (7)0.0361 (6)0.0009 (5)0.0134 (5)0.0027 (5)
C130.0584 (8)0.0485 (7)0.0338 (6)0.0048 (6)0.0137 (6)0.0018 (5)
C140.0480 (7)0.0435 (7)0.0385 (7)0.0017 (5)0.0125 (5)0.0033 (5)
C150.0614 (8)0.0500 (8)0.0425 (7)0.0052 (6)0.0196 (6)0.0004 (6)
C160.0775 (10)0.0569 (9)0.0514 (8)0.0108 (8)0.0155 (7)0.0125 (7)
C170.0643 (9)0.0541 (9)0.0671 (10)0.0176 (7)0.0116 (8)0.0003 (7)
C180.0749 (10)0.0713 (11)0.0660 (10)0.0226 (9)0.0301 (8)0.0061 (8)
C190.0767 (10)0.0682 (10)0.0463 (8)0.0190 (8)0.0276 (7)0.0051 (7)
C50.0469 (7)0.0404 (7)0.0353 (6)0.0022 (5)0.0130 (5)0.0000 (5)
C30.0625 (8)0.0446 (7)0.0451 (7)0.0008 (6)0.0231 (6)0.0030 (6)
C20.0596 (8)0.0469 (8)0.0507 (8)0.0092 (6)0.0196 (6)0.0002 (6)
C10.0960 (12)0.0713 (11)0.0481 (9)0.0244 (9)0.0257 (8)0.0208 (7)
N10.0600 (7)0.0469 (6)0.0385 (6)0.0083 (5)0.0165 (5)0.0061 (5)
N40.0596 (7)0.0415 (6)0.0363 (6)0.0050 (5)0.0194 (5)0.0036 (5)
N50.0634 (7)0.0509 (7)0.0374 (6)0.0112 (6)0.0216 (5)0.0045 (5)
O110.0690 (6)0.0500 (6)0.0451 (5)0.0160 (4)0.0240 (5)0.0054 (4)
O120.0861 (8)0.0757 (8)0.0637 (7)0.0326 (6)0.0415 (6)0.0330 (6)
O10.1074 (9)0.0644 (7)0.0550 (6)0.0145 (6)0.0460 (6)0.0001 (5)
Geometric parameters (Å, º) top
C11—O121.2419 (16)C19—H190.9300
C11—O111.2616 (16)C5—N51.2928 (17)
C11—C121.4784 (18)C5—N11.3170 (16)
C12—C131.3140 (18)C5—N41.3669 (16)
C12—H120.9300C3—O11.2041 (16)
C13—C141.4558 (19)C3—N41.3631 (17)
C13—H130.9300C2—N11.4462 (16)
C14—C191.3814 (18)C2—H2A0.9700
C14—C151.3836 (19)C2—H2B0.9700
C15—C161.375 (2)C1—N11.4422 (17)
C15—H150.9300C1—H1A0.9600
C16—C171.369 (2)C1—H1B0.9600
C16—H160.9300C1—H1C0.9600
C17—C181.360 (2)N4—H40.899 (18)
C17—H170.9300N5—H5A0.899 (18)
C18—C191.368 (2)N5—H5B0.929 (19)
C18—H180.9300
O12—C11—O11123.98 (12)N5—C5—N1126.99 (12)
O12—C11—C12117.57 (11)N5—C5—N4122.74 (12)
O11—C11—C12118.44 (11)N1—C5—N4110.27 (11)
C13—C12—C11120.18 (12)O1—C3—N4126.30 (13)
C13—C12—H12119.9O1—C3—C2127.81 (13)
C11—C12—H12119.9N4—C3—C2105.88 (11)
C12—C13—C14129.78 (12)N1—C2—C3102.94 (11)
C12—C13—H13115.1N1—C2—H2A111.2
C14—C13—H13115.1C3—C2—H2A111.2
C19—C14—C15118.07 (13)N1—C2—H2B111.2
C19—C14—C13118.11 (12)C3—C2—H2B111.2
C15—C14—C13123.79 (11)H2A—C2—H2B109.1
C16—C15—C14119.89 (13)N1—C1—H1A109.5
C16—C15—H15120.1N1—C1—H1B109.5
C14—C15—H15120.1H1A—C1—H1B109.5
C17—C16—C15120.80 (14)N1—C1—H1C109.5
C17—C16—H16119.6H1A—C1—H1C109.5
C15—C16—H16119.6H1B—C1—H1C109.5
C18—C17—C16119.90 (14)C5—N1—C1126.10 (12)
C18—C17—H17120.0C5—N1—C2110.10 (10)
C16—C17—H17120.0C1—N1—C2123.47 (12)
C17—C18—C19119.63 (14)C3—N4—C5110.80 (11)
C17—C18—H18120.2C3—N4—H4124.6 (10)
C19—C18—H18120.2C5—N4—H4124.4 (10)
C18—C19—C14121.69 (14)C5—N5—H5A123.4 (10)
C18—C19—H19119.2C5—N5—H5B114.2 (10)
C14—C19—H19119.2H5A—N5—H5B122.2 (14)
O12—C11—C12—C131.7 (2)O1—C3—C2—N1179.68 (15)
O11—C11—C12—C13179.30 (13)N4—C3—C2—N10.82 (15)
C11—C12—C13—C14178.52 (13)N5—C5—N1—C15.5 (2)
C12—C13—C14—C19172.03 (15)N4—C5—N1—C1173.73 (14)
C12—C13—C14—C159.8 (2)N5—C5—N1—C2179.12 (13)
C19—C14—C15—C160.3 (2)N4—C5—N1—C20.16 (15)
C13—C14—C15—C16178.51 (14)C3—C2—N1—C50.60 (15)
C14—C15—C16—C170.9 (2)C3—C2—N1—C1174.38 (14)
C15—C16—C17—C181.4 (3)O1—C3—N4—C5179.71 (15)
C16—C17—C18—C190.7 (3)C2—C3—N4—C50.79 (15)
C17—C18—C19—C140.5 (3)N5—C5—N4—C3179.74 (12)
C15—C14—C19—C181.0 (2)N1—C5—N4—C30.43 (15)
C13—C14—C19—C18179.29 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O11i0.899 (18)1.840 (18)2.7373 (15)177 (2)
N5—H5A···O11ii0.899 (18)1.959 (18)2.8403 (16)166 (1)
N5—H5B···O12i0.929 (19)1.754 (19)2.6663 (16)167 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H8N3O+·C9H7O2
Mr261.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1680 (8), 11.3391 (11), 12.7070 (12)
β (°) 104.578 (2)
V3)1278.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9014, 2250, 2037
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.05
No. of reflections2250
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O11i0.899 (18)1.840 (18)2.7373 (15)177 (2)
N5—H5A···O11ii0.899 (18)1.959 (18)2.8403 (16)166 (1)
N5—H5B···O12i0.929 (19)1.754 (19)2.6663 (16)167 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

AJA and SAB sincerely thank the Vice-Chancellor and management of Kalasalingam University for their support and encouragement. AJA thanks the Principal and the management of the National College of Engineering for their support.

References

First citationBahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387–o2389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714–o1716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). In Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadaras, M. B. & Buck, R. P. (1996). Anal. Chem. 68, 3832–3839.  CrossRef CAS PubMed Google Scholar
First citationNarayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119–1126.  CAS PubMed Web of Science Google Scholar
First citationSharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971–2977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds