organic compounds
2,5-Bis[4-(dimethylamino)phenyl]-3,6-dimethylpyrazine
aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The title compound, C22H26N4, was prepared from p-dimethylaminopropiophenone in six steps. The molecule has no The dihedral angles between the pyrazine ring and the phenyl rings are 35.81 (6) and 37.11 (8)°. The dimethylamino groups are essentially planar (sum of the bond angles at N = 359.3 and 359.9°) and nearly coplanar with the adjacent aromatic ring [dihedral angles = 5.54 (11) and 7.40 (3)°]. This effect and the short aniline C—N bonds can be rationalised in terms of charge transfer from the amino groups to the central pyrazine ring.
Related literature
The title compound was prepared as a fundamental chromophore and as an intermediate for the preparation of acidochromic dyes, see: Detert & Sugiono (2005); Schmitt et al. (2008); Nemkovich et al. (2010). Conjugated oligomers with a pyrazine center and lateral donors are solvatochromic probes, see: Collette & Harper (2003) and Schmitt et al. (2011). 2,5-Diphenylpyrazine shows interplanar angles of about 21° (Pieterse et al., 2000); due to these angles are opened up to 37–49° in the tetraphenylpyrazine (Bartnik et al., 1999). The planarization of terminal amino groups and short aniline C—N bonds due to strong electronic coupling has also been observed in 2,5-bis(p-dimethylaminostyryl)pyrazine, see: Fischer et al. (2011).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S160053681101748X/bt5544sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681101748X/bt5544Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681101748X/bt5544Isup3.cdx
Supporting information file. DOI: 10.1107/S160053681101748X/bt5544Isup4.cml
Synthesis: 810 mg (3.2 mmol) of 2-bromo-1-(4-(dimethylamino)-phenyl)-propan-1-one were dissolved in 50 ml of methanol and NaN3 (325 mg,5 mmol) was added. After stirring over night at room temperature the solvent was evaporated under vacuum and the residue was diluted with water. The aqueous solution was extracted three times with dichloromethane. The organic layers were dried (MgSO4) and the solvent was removed. Yield: 650 mg (3 mmol, 95%) of the crude 2-azido-1-(4-(dimethylamino)-phenyl)-propan-1-one as a yellow oil which was used without further purification. To a solution of 59 mg (0.27 mmol) 2-azido-1-(4-(dimethylamino)-phenyl)-propan-1-one in dry THF under nitrogen was added of triphenylphosphine (85 mg,0.32 mmol). The solution was stirred vigorously at room temperature until the nitrogen evolution ceased. 0.5 ml of water were added and stirring was continued overnight. The solvent was evaporated and the residue was dissolved in methanol. The reaction mixture was heated up to 333 K and air was passed through the solution for 5 h. Upon cooling the solution to 252 K, pure 2,5-bis(4-(dimethylamino)-phenyl)-3,6-dimethylpyrazine precipitated as a pale yellow solid. Yield: 20 mg (0.06 mmol, 43%). Red crystals were obtained by slow evaporation of a solution in methanol/dichloromethane. M.p.: 484 K.
Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98 Å (methyl groups). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. |
C22H26N4 | Z = 2 |
Mr = 346.47 | F(000) = 372 |
Triclinic, P1 | Dx = 1.197 Mg m−3 |
Hall symbol: -P 1 | Melting point: 484 K |
a = 9.459 (1) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.6368 (16) Å | Cell parameters from 25 reflections |
c = 11.9661 (15) Å | θ = 60–69° |
α = 73.30 (1)° | µ = 0.56 mm−1 |
β = 69.465 (11)° | T = 193 K |
γ = 74.446 (10)° | Plate, yellow |
V = 961.2 (2) Å3 | 0.40 × 0.20 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.027 |
Radiation source: rotating anode | θmax = 70.0°, θmin = 4.0° |
Graphite monochromator | h = −11→11 |
ω/2θ scans | k = −11→0 |
3876 measured reflections | l = −14→13 |
3646 independent reflections | 3 standard reflections every 60 min |
2922 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.218 | w = 1/[σ2(Fo2) + (0.1432P)2 + 0.2122P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3646 reflections | Δρmax = 0.43 e Å−3 |
242 parameters | Δρmin = −0.42 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.012 (2) |
C22H26N4 | γ = 74.446 (10)° |
Mr = 346.47 | V = 961.2 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.459 (1) Å | Cu Kα radiation |
b = 9.6368 (16) Å | µ = 0.56 mm−1 |
c = 11.9661 (15) Å | T = 193 K |
α = 73.30 (1)° | 0.40 × 0.20 × 0.05 mm |
β = 69.465 (11)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.027 |
3876 measured reflections | 3 standard reflections every 60 min |
3646 independent reflections | intensity decay: 2% |
2922 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.218 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.43 e Å−3 |
3646 reflections | Δρmin = −0.42 e Å−3 |
242 parameters |
Experimental. 1H-NMR (CDCl3): δ = 7.55 (d, J = 8.7 Hz, 4 H, 2-H, 6-H phenyl); 6.79 (br. d, J = 8.8 Hz, 4 H, 3-H, 5-H, phenyl); 3.03 (s, 12 H, N-CH3); 2.64 (s, 6 H, pyrazin-CH3). 13C-NMR (CDCl3): δ = 150.3, 150.1, 147.5 (C-2, C-3 pyrazine, C-1 phenyl), 130.5, 127.9 (C-2, C-3, C-5, C-6 phenyl), 112.9, 41.2 (N(CH3)2), 23.3 (CH3). FD-MS : 346.5 (100%) [M+] IR (ATR): ν = 2918.7, 1607.4, 1528.3, 1438.6, 1389.5, 1359.6, 1231.2, 1194.7, 1161.9, 943.0, 818.6, 785.9, 674.0 cm-1. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4300 (2) | 0.7610 (2) | 0.62142 (18) | 0.0308 (4) | |
N2 | 0.55091 (18) | 0.65153 (18) | 0.59277 (15) | 0.0339 (4) | |
C3 | 0.6186 (2) | 0.6432 (2) | 0.47567 (18) | 0.0335 (5) | |
C4 | 0.5629 (2) | 0.7449 (2) | 0.38283 (18) | 0.0321 (5) | |
N5 | 0.44665 (18) | 0.85760 (18) | 0.41135 (15) | 0.0333 (4) | |
C6 | 0.3811 (2) | 0.8678 (2) | 0.52829 (18) | 0.0328 (5) | |
C7 | 0.7572 (2) | 0.5220 (2) | 0.45446 (19) | 0.0434 (6) | |
H7A | 0.8089 | 0.5052 | 0.5165 | 0.065* | |
H7B | 0.8282 | 0.5505 | 0.3731 | 0.065* | |
H7C | 0.7249 | 0.4312 | 0.4599 | 0.065* | |
C8 | 0.2599 (2) | 1.0036 (2) | 0.54900 (19) | 0.0407 (5) | |
H8A | 0.1592 | 0.9828 | 0.5607 | 0.061* | |
H8B | 0.2831 | 1.0845 | 0.4779 | 0.061* | |
H8C | 0.2586 | 1.0316 | 0.6219 | 0.061* | |
C9 | 0.3625 (2) | 0.7599 (2) | 0.75399 (18) | 0.0313 (5) | |
C10 | 0.4576 (2) | 0.7140 (2) | 0.82934 (18) | 0.0343 (5) | |
H10 | 0.5649 | 0.6846 | 0.7941 | 0.041* | |
C11 | 0.4019 (2) | 0.7099 (2) | 0.95281 (18) | 0.0345 (5) | |
H11 | 0.4708 | 0.6781 | 1.0008 | 0.041* | |
C12 | 0.2435 (2) | 0.7525 (2) | 1.00883 (17) | 0.0307 (5) | |
C13 | 0.1460 (2) | 0.7930 (2) | 0.93438 (18) | 0.0331 (5) | |
H13 | 0.0380 | 0.8179 | 0.9697 | 0.040* | |
C14 | 0.2057 (2) | 0.7971 (2) | 0.81013 (18) | 0.0327 (5) | |
H14 | 0.1374 | 0.8263 | 0.7618 | 0.039* | |
N15 | 0.18654 (19) | 0.7556 (2) | 1.13101 (15) | 0.0389 (5) | |
C16 | 0.0227 (2) | 0.7857 (3) | 1.18829 (19) | 0.0425 (5) | |
H16A | −0.0203 | 0.8861 | 1.1522 | 0.064* | |
H16B | 0.0019 | 0.7762 | 1.2761 | 0.064* | |
H16C | −0.0249 | 0.7152 | 1.1755 | 0.064* | |
C17 | 0.2880 (3) | 0.7075 (3) | 1.20702 (19) | 0.0435 (5) | |
H17A | 0.3251 | 0.6008 | 1.2163 | 0.065* | |
H17B | 0.2320 | 0.7306 | 1.2875 | 0.065* | |
H17C | 0.3756 | 0.7584 | 1.1687 | 0.065* | |
C18 | 0.6290 (2) | 0.7442 (2) | 0.25089 (18) | 0.0313 (5) | |
C19 | 0.6822 (2) | 0.6145 (2) | 0.20663 (18) | 0.0341 (5) | |
H19 | 0.6779 | 0.5222 | 0.2629 | 0.041* | |
C20 | 0.7408 (2) | 0.6174 (2) | 0.08291 (18) | 0.0339 (5) | |
H20 | 0.7764 | 0.5270 | 0.0561 | 0.041* | |
C21 | 0.7490 (2) | 0.7497 (2) | −0.00351 (17) | 0.0310 (5) | |
C22 | 0.6928 (2) | 0.8808 (2) | 0.04087 (18) | 0.0331 (5) | |
H22 | 0.6945 | 0.9734 | −0.0152 | 0.040* | |
C23 | 0.6352 (2) | 0.8763 (2) | 0.16485 (17) | 0.0317 (5) | |
H23 | 0.5987 | 0.9664 | 0.1921 | 0.038* | |
N24 | 0.8089 (2) | 0.75325 (19) | −0.12682 (15) | 0.0399 (5) | |
C25 | 0.8785 (3) | 0.6186 (2) | −0.1704 (2) | 0.0449 (6) | |
H25A | 0.9618 | 0.5652 | −0.1348 | 0.067* | |
H25B | 0.9200 | 0.6421 | −0.2597 | 0.067* | |
H25C | 0.8010 | 0.5570 | −0.1465 | 0.067* | |
C26 | 0.7970 (3) | 0.8908 (2) | −0.21529 (19) | 0.0436 (5) | |
H26A | 0.6886 | 0.9379 | −0.2025 | 0.065* | |
H26B | 0.8410 | 0.8716 | −0.2979 | 0.065* | |
H26C | 0.8532 | 0.9562 | −0.2054 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0270 (9) | 0.0304 (10) | 0.0347 (10) | −0.0053 (7) | −0.0072 (8) | −0.0089 (8) |
N2 | 0.0298 (8) | 0.0339 (9) | 0.0336 (9) | −0.0026 (7) | −0.0059 (7) | −0.0080 (7) |
C3 | 0.0294 (9) | 0.0339 (10) | 0.0331 (10) | −0.0039 (8) | −0.0054 (8) | −0.0074 (8) |
C4 | 0.0279 (9) | 0.0323 (10) | 0.0359 (10) | −0.0058 (8) | −0.0081 (8) | −0.0086 (8) |
N5 | 0.0293 (8) | 0.0345 (9) | 0.0344 (9) | −0.0024 (7) | −0.0086 (7) | −0.0090 (7) |
C6 | 0.0286 (9) | 0.0340 (10) | 0.0354 (10) | −0.0036 (8) | −0.0092 (8) | −0.0093 (8) |
C7 | 0.0392 (11) | 0.0414 (12) | 0.0367 (11) | 0.0079 (9) | −0.0084 (9) | −0.0071 (9) |
C8 | 0.0383 (11) | 0.0385 (11) | 0.0386 (11) | 0.0019 (9) | −0.0085 (9) | −0.0101 (9) |
C9 | 0.0299 (9) | 0.0313 (10) | 0.0331 (10) | −0.0047 (8) | −0.0082 (8) | −0.0099 (8) |
C10 | 0.0243 (9) | 0.0371 (11) | 0.0411 (11) | −0.0020 (8) | −0.0092 (8) | −0.0122 (8) |
C11 | 0.0285 (9) | 0.0395 (11) | 0.0393 (11) | −0.0049 (8) | −0.0146 (8) | −0.0097 (8) |
C12 | 0.0306 (10) | 0.0304 (10) | 0.0331 (10) | −0.0073 (8) | −0.0095 (8) | −0.0083 (8) |
C13 | 0.0238 (9) | 0.0378 (11) | 0.0371 (10) | −0.0036 (7) | −0.0083 (7) | −0.0104 (8) |
C14 | 0.0271 (9) | 0.0380 (11) | 0.0366 (10) | −0.0060 (8) | −0.0125 (8) | −0.0095 (8) |
N15 | 0.0325 (9) | 0.0514 (11) | 0.0335 (9) | −0.0063 (8) | −0.0100 (7) | −0.0111 (8) |
C16 | 0.0375 (11) | 0.0494 (13) | 0.0371 (11) | −0.0048 (9) | −0.0052 (9) | −0.0143 (9) |
C17 | 0.0486 (12) | 0.0466 (13) | 0.0378 (11) | −0.0036 (10) | −0.0191 (9) | −0.0097 (9) |
C18 | 0.0254 (9) | 0.0346 (10) | 0.0352 (10) | −0.0055 (8) | −0.0089 (8) | −0.0096 (8) |
C19 | 0.0323 (10) | 0.0326 (10) | 0.0382 (11) | −0.0050 (8) | −0.0116 (8) | −0.0081 (8) |
C20 | 0.0318 (10) | 0.0316 (10) | 0.0405 (11) | −0.0039 (8) | −0.0110 (8) | −0.0123 (8) |
C21 | 0.0249 (9) | 0.0342 (11) | 0.0365 (10) | −0.0033 (8) | −0.0111 (8) | −0.0113 (8) |
C22 | 0.0323 (10) | 0.0313 (10) | 0.0357 (10) | −0.0056 (8) | −0.0104 (8) | −0.0071 (8) |
C23 | 0.0281 (9) | 0.0290 (10) | 0.0392 (10) | −0.0038 (7) | −0.0093 (8) | −0.0115 (8) |
N24 | 0.0459 (10) | 0.0381 (10) | 0.0343 (10) | −0.0021 (8) | −0.0112 (8) | −0.0120 (8) |
C25 | 0.0479 (12) | 0.0444 (12) | 0.0426 (12) | 0.0013 (10) | −0.0130 (10) | −0.0194 (10) |
C26 | 0.0465 (12) | 0.0432 (12) | 0.0375 (11) | −0.0042 (10) | −0.0119 (9) | −0.0079 (9) |
C1—N2 | 1.350 (2) | N15—C16 | 1.444 (3) |
C1—C6 | 1.401 (3) | N15—C17 | 1.447 (3) |
C1—C9 | 1.486 (3) | C16—H16A | 0.9800 |
N2—C3 | 1.337 (2) | C16—H16B | 0.9800 |
C3—C4 | 1.407 (3) | C16—H16C | 0.9800 |
C3—C7 | 1.504 (3) | C17—H17A | 0.9800 |
C4—N5 | 1.347 (2) | C17—H17B | 0.9800 |
C4—C18 | 1.481 (3) | C17—H17C | 0.9800 |
N5—C6 | 1.338 (2) | C18—C23 | 1.388 (3) |
C6—C8 | 1.507 (3) | C18—C19 | 1.398 (3) |
C7—H7A | 0.9800 | C19—C20 | 1.382 (3) |
C7—H7B | 0.9800 | C19—H19 | 0.9500 |
C7—H7C | 0.9800 | C20—C21 | 1.393 (3) |
C8—H8A | 0.9800 | C20—H20 | 0.9500 |
C8—H8B | 0.9800 | C21—N24 | 1.376 (2) |
C8—H8C | 0.9800 | C21—C22 | 1.410 (3) |
C9—C14 | 1.391 (3) | C22—C23 | 1.381 (3) |
C9—C10 | 1.395 (3) | C22—H22 | 0.9500 |
C10—C11 | 1.376 (3) | C23—H23 | 0.9500 |
C10—H10 | 0.9500 | N24—C25 | 1.442 (3) |
C11—C12 | 1.410 (3) | N24—C26 | 1.445 (3) |
C11—H11 | 0.9500 | C25—H25A | 0.9800 |
C12—N15 | 1.376 (2) | C25—H25B | 0.9800 |
C12—C13 | 1.407 (3) | C25—H25C | 0.9800 |
C13—C14 | 1.386 (3) | C26—H26A | 0.9800 |
C13—H13 | 0.9500 | C26—H26B | 0.9800 |
C14—H14 | 0.9500 | C26—H26C | 0.9800 |
N2—C1—C6 | 119.83 (17) | C16—N15—C17 | 118.93 (17) |
N2—C1—C9 | 115.15 (17) | N15—C16—H16A | 109.5 |
C6—C1—C9 | 124.97 (17) | N15—C16—H16B | 109.5 |
C3—N2—C1 | 119.37 (17) | H16A—C16—H16B | 109.5 |
N2—C3—C4 | 120.69 (18) | N15—C16—H16C | 109.5 |
N2—C3—C7 | 114.53 (17) | H16A—C16—H16C | 109.5 |
C4—C3—C7 | 124.75 (17) | H16B—C16—H16C | 109.5 |
N5—C4—C3 | 119.63 (18) | N15—C17—H17A | 109.5 |
N5—C4—C18 | 115.47 (17) | N15—C17—H17B | 109.5 |
C3—C4—C18 | 124.79 (17) | H17A—C17—H17B | 109.5 |
C6—N5—C4 | 119.54 (17) | N15—C17—H17C | 109.5 |
N5—C6—C1 | 120.72 (18) | H17A—C17—H17C | 109.5 |
N5—C6—C8 | 115.08 (17) | H17B—C17—H17C | 109.5 |
C1—C6—C8 | 124.14 (18) | C23—C18—C19 | 117.00 (18) |
C3—C7—H7A | 109.5 | C23—C18—C4 | 120.18 (17) |
C3—C7—H7B | 109.5 | C19—C18—C4 | 122.78 (18) |
H7A—C7—H7B | 109.5 | C20—C19—C18 | 121.52 (18) |
C3—C7—H7C | 109.5 | C20—C19—H19 | 119.2 |
H7A—C7—H7C | 109.5 | C18—C19—H19 | 119.2 |
H7B—C7—H7C | 109.5 | C19—C20—C21 | 121.55 (18) |
C6—C8—H8A | 109.5 | C19—C20—H20 | 119.2 |
C6—C8—H8B | 109.5 | C21—C20—H20 | 119.2 |
H8A—C8—H8B | 109.5 | N24—C21—C20 | 121.82 (18) |
C6—C8—H8C | 109.5 | N24—C21—C22 | 121.17 (18) |
H8A—C8—H8C | 109.5 | C20—C21—C22 | 117.01 (18) |
H8B—C8—H8C | 109.5 | C23—C22—C21 | 120.81 (18) |
C14—C9—C10 | 116.81 (18) | C23—C22—H22 | 119.6 |
C14—C9—C1 | 123.42 (17) | C21—C22—H22 | 119.6 |
C10—C9—C1 | 119.72 (17) | C22—C23—C18 | 122.09 (18) |
C11—C10—C9 | 122.45 (17) | C22—C23—H23 | 119.0 |
C11—C10—H10 | 118.8 | C18—C23—H23 | 119.0 |
C9—C10—H10 | 118.8 | C21—N24—C25 | 120.54 (17) |
C10—C11—C12 | 120.62 (17) | C21—N24—C26 | 120.83 (17) |
C10—C11—H11 | 119.7 | C25—N24—C26 | 118.57 (17) |
C12—C11—H11 | 119.7 | N24—C25—H25A | 109.5 |
N15—C12—C13 | 121.30 (17) | N24—C25—H25B | 109.5 |
N15—C12—C11 | 121.43 (17) | H25A—C25—H25B | 109.5 |
C13—C12—C11 | 117.27 (17) | N24—C25—H25C | 109.5 |
C14—C13—C12 | 120.70 (17) | H25A—C25—H25C | 109.5 |
C14—C13—H13 | 119.6 | H25B—C25—H25C | 109.5 |
C12—C13—H13 | 119.6 | N24—C26—H26A | 109.5 |
C13—C14—C9 | 122.06 (17) | N24—C26—H26B | 109.5 |
C13—C14—H14 | 119.0 | H26A—C26—H26B | 109.5 |
C9—C14—H14 | 119.0 | N24—C26—H26C | 109.5 |
C12—N15—C16 | 120.04 (16) | H26A—C26—H26C | 109.5 |
C12—N15—C17 | 120.38 (17) | H26B—C26—H26C | 109.5 |
C6—C1—N2—C3 | −2.7 (3) | C11—C12—C13—C14 | −2.9 (3) |
C9—C1—N2—C3 | 179.60 (17) | C12—C13—C14—C9 | 0.9 (3) |
C1—N2—C3—C4 | −1.5 (3) | C10—C9—C14—C13 | 1.7 (3) |
C1—N2—C3—C7 | 176.75 (18) | C1—C9—C14—C13 | 179.07 (18) |
N2—C3—C4—N5 | 4.4 (3) | C13—C12—N15—C16 | 6.7 (3) |
C7—C3—C4—N5 | −173.64 (19) | C11—C12—N15—C16 | −173.95 (19) |
N2—C3—C4—C18 | −179.55 (18) | C13—C12—N15—C17 | 177.36 (18) |
C7—C3—C4—C18 | 2.4 (3) | C11—C12—N15—C17 | −3.3 (3) |
C3—C4—N5—C6 | −2.9 (3) | N5—C4—C18—C23 | 33.3 (3) |
C18—C4—N5—C6 | −179.32 (17) | C3—C4—C18—C23 | −142.9 (2) |
C4—N5—C6—C1 | −1.3 (3) | N5—C4—C18—C19 | −144.41 (19) |
C4—N5—C6—C8 | 175.93 (17) | C3—C4—C18—C19 | 39.4 (3) |
N2—C1—C6—N5 | 4.2 (3) | C23—C18—C19—C20 | 1.1 (3) |
C9—C1—C6—N5 | −178.35 (18) | C4—C18—C19—C20 | 178.86 (17) |
N2—C1—C6—C8 | −172.74 (18) | C18—C19—C20—C21 | −0.3 (3) |
C9—C1—C6—C8 | 4.7 (3) | C19—C20—C21—N24 | 179.26 (17) |
N2—C1—C9—C14 | −142.6 (2) | C19—C20—C21—C22 | −0.8 (3) |
C6—C1—C9—C14 | 39.9 (3) | N24—C21—C22—C23 | −178.92 (17) |
N2—C1—C9—C10 | 34.8 (3) | C20—C21—C22—C23 | 1.2 (3) |
C6—C1—C9—C10 | −142.8 (2) | C21—C22—C23—C18 | −0.4 (3) |
C14—C9—C10—C11 | −2.2 (3) | C19—C18—C23—C22 | −0.8 (3) |
C1—C9—C10—C11 | −179.68 (18) | C4—C18—C23—C22 | −178.57 (17) |
C9—C10—C11—C12 | 0.1 (3) | C20—C21—N24—C25 | −5.7 (3) |
C10—C11—C12—N15 | −176.91 (18) | C22—C21—N24—C25 | 174.39 (18) |
C10—C11—C12—C13 | 2.5 (3) | C20—C21—N24—C26 | 171.36 (18) |
N15—C12—C13—C14 | 176.43 (18) | C22—C21—N24—C26 | −8.5 (3) |
Experimental details
Crystal data | |
Chemical formula | C22H26N4 |
Mr | 346.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 193 |
a, b, c (Å) | 9.459 (1), 9.6368 (16), 11.9661 (15) |
α, β, γ (°) | 73.30 (1), 69.465 (11), 74.446 (10) |
V (Å3) | 961.2 (2) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.56 |
Crystal size (mm) | 0.40 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3876, 3646, 2922 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.218, 1.07 |
No. of reflections | 3646 |
No. of parameters | 242 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.42 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bartnik, R., Faure, R. & Gebicki, K. (1999). Acta Cryst. C55, 1034–1037. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Collette, J. C. & Harper, A. W. (2003). Proc. SPIE, 5212, 184-192. CrossRef CAS Google Scholar
Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372–376. Web of Science CrossRef CAS Google Scholar
Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Fischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41. Web of Science CrossRef CAS Google Scholar
Pieterse, K., Vekemans, J. A. J. M., Kooijman, H., Spek, A. L. & Meijer, E. W. (2000). Chem. Eur. J. 6, 4597–4603. CrossRef PubMed CAS Google Scholar
Schmitt, V., Fischer, J. & Detert, H. (2011). ISRN Org. Chem. article ID 589012, doi:10.5402/2011/589012. Google Scholar
Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1–7. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was prepared as a fundamental chromophore and as an intermediate for the preparation of acidochromic dyes, see: Detert & Sugiono (2005); Schmitt et al. (2008); and Nemkovich et al. (2010). The synthesis started with the α-bromination of p-dimethylaminopropiophenone, nucleophilic bromine-azide exchange, reaction of the azide with triphenylphosphine followed by hydrolytic cleavage of the phosphorane imine and in situ condensation of the α-aminoketone to a dihydropyrazine that was directly air- oxidized to the title compound.
Though the molecular formula implies a center of inversion, the conformation of the title compound in the crystals is not centrosymmetric. Twists around the biaryl bonds with dihedral angles of -142.6 (2)° for N2—C1—C9—C14 and -144.41 (19)° for N5—C4—C18—C19 result in a helical conformation of the molecule. The dimethylamino groups are slightly twisted out of the plane of the benzene rings, with 9° or less, these deviations from coplanarity of these units and the adjacent phenyl rings are only small. The amino groups are planar, the sums of the bond angles at N15 amounts to 359.3° and to 359.9° at N24. This and the short aniline C—N bonds of 1.376 (2)Å for C12—N15 and C21—N24 prove a strong electronic coupling between the amino group and the pyrazine ring, similar to the related 2,5-bis(p-dimethylaminostyryl)pyrazine (Fischer et al., 2011).