organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis[4-(di­methyl­amino)­phen­yl]-3,6-di­methyl­pyrazine

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 9 May 2011; accepted 9 May 2011; online 14 May 2011)

The title compound, C22H26N4, was prepared from p-dimethyl­amino­propiophenone in six steps. The mol­ecule has no crystallographic symmetry. The dihedral angles between the pyrazine ring and the phenyl rings are 35.81 (6) and 37.11 (8)°. The dimethyl­amino groups are essentially planar (sum of the bond angles at N = 359.3 and 359.9°) and nearly coplanar with the adjacent aromatic ring [dihedral angles = 5.54 (11) and 7.40 (3)°]. This effect and the short aniline C—N bonds can be rationalised in terms of charge transfer from the amino groups to the central pyrazine ring.

Related literature

The title compound was prepared as a fundamental chromophore and as an inter­mediate for the preparation of acidochromic dyes, see: Detert & Sugiono (2005[Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372-376.]); Schmitt et al. (2008[Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1-7.]); Nemkovich et al. (2010[Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37-41.]). Conjugated oligomers with a pyrazine center and lateral donors are solvatochromic probes, see: Collette & Harper (2003[Collette, J. C. & Harper, A. W. (2003). Proc. SPIE, 5212, 184-192.]) and Schmitt et al. (2011[Schmitt, V., Fischer, J. & Detert, H. (2011). ISRN Org. Chem. article ID 589012, doi:10.5402/2011/589012. ]). 2,5-Diphenyl­pyrazine shows inter­planar angles of about 21° (Pieterse et al., 2000[Pieterse, K., Vekemans, J. A. J. M., Kooijman, H., Spek, A. L. & Meijer, E. W. (2000). Chem. Eur. J. 6, 4597-4603.]); due to steric hindrance these angles are opened up to 37–49° in the tetra­phenyl­pyrazine (Bartnik et al., 1999[Bartnik, R., Faure, R. & Gebicki, K. (1999). Acta Cryst. C55, 1034-1037.]). The planarization of terminal amino groups and short aniline C—N bonds due to strong electronic coupling has also been observed in 2,5-bis­(p-dimethyl­amino­styr­yl)pyrazine, see: Fischer et al. (2011[Fischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N4

  • Mr = 346.47

  • Triclinic, [P \overline 1]

  • a = 9.459 (1) Å

  • b = 9.6368 (16) Å

  • c = 11.9661 (15) Å

  • α = 73.30 (1)°

  • β = 69.465 (11)°

  • γ = 74.446 (10)°

  • V = 961.2 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 193 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3876 measured reflections

  • 3646 independent reflections

  • 2922 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.218

  • S = 1.07

  • 3646 reflections

  • 242 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as a fundamental chromophore and as an intermediate for the preparation of acidochromic dyes, see: Detert & Sugiono (2005); Schmitt et al. (2008); and Nemkovich et al. (2010). The synthesis started with the α-bromination of p-dimethylaminopropiophenone, nucleophilic bromine-azide exchange, reaction of the azide with triphenylphosphine followed by hydrolytic cleavage of the phosphorane imine and in situ condensation of the α-aminoketone to a dihydropyrazine that was directly air- oxidized to the title compound.

Though the molecular formula implies a center of inversion, the conformation of the title compound in the crystals is not centrosymmetric. Twists around the biaryl bonds with dihedral angles of -142.6 (2)° for N2—C1—C9—C14 and -144.41 (19)° for N5—C4—C18—C19 result in a helical conformation of the molecule. The dimethylamino groups are slightly twisted out of the plane of the benzene rings, with 9° or less, these deviations from coplanarity of these units and the adjacent phenyl rings are only small. The amino groups are planar, the sums of the bond angles at N15 amounts to 359.3° and to 359.9° at N24. This and the short aniline C—N bonds of 1.376 (2)Å for C12—N15 and C21—N24 prove a strong electronic coupling between the amino group and the pyrazine ring, similar to the related 2,5-bis(p-dimethylaminostyryl)pyrazine (Fischer et al., 2011).

Related literature top

The title compound was prepared as a fundamental chromophore and as an intermediate for the preparation of acidochromic dyes, see: Detert & Sugiono (2005); Schmitt et al. (2008); Nemkovich et al. (2010). Conjugated oligomers with a pyrazine center and lateral donors are solvatochromic probes, see: Collette & Harper (2003) and Schmitt et al. (2011). 2,5-Diphenylpyrazine shows interplanar angles of about 21° (Pieterse et al., 2000); due to steric hindrance these angles are opened up to 37–49° in the tetraphenylpyrazine (Bartnik et al., 1999). The planarization of terminal amino groups and short aniline C—N bonds due to strong electronic coupling has also been observed in 2,5-bis(p-dimethylaminostyryl)pyrazine, see: Fischer et al. (2011).

Experimental top

Synthesis: 810 mg (3.2 mmol) of 2-bromo-1-(4-(dimethylamino)-phenyl)-propan-1-one were dissolved in 50 ml of methanol and NaN3 (325 mg,5 mmol) was added. After stirring over night at room temperature the solvent was evaporated under vacuum and the residue was diluted with water. The aqueous solution was extracted three times with dichloromethane. The organic layers were dried (MgSO4) and the solvent was removed. Yield: 650 mg (3 mmol, 95%) of the crude 2-azido-1-(4-(dimethylamino)-phenyl)-propan-1-one as a yellow oil which was used without further purification. To a solution of 59 mg (0.27 mmol) 2-azido-1-(4-(dimethylamino)-phenyl)-propan-1-one in dry THF under nitrogen was added of triphenylphosphine (85 mg,0.32 mmol). The solution was stirred vigorously at room temperature until the nitrogen evolution ceased. 0.5 ml of water were added and stirring was continued overnight. The solvent was evaporated and the residue was dissolved in methanol. The reaction mixture was heated up to 333 K and air was passed through the solution for 5 h. Upon cooling the solution to 252 K, pure 2,5-bis(4-(dimethylamino)-phenyl)-3,6-dimethylpyrazine precipitated as a pale yellow solid. Yield: 20 mg (0.06 mmol, 43%). Red crystals were obtained by slow evaporation of a solution in methanol/dichloromethane. M.p.: 484 K.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98 Å (methyl groups). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
4-{5-[4-(dimethylamino)phenyl]-3,6-dimethylpyrazin-2-yl}- N,N-dimethylaniline top
Crystal data top
C22H26N4Z = 2
Mr = 346.47F(000) = 372
Triclinic, P1Dx = 1.197 Mg m3
Hall symbol: -P 1Melting point: 484 K
a = 9.459 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.6368 (16) ÅCell parameters from 25 reflections
c = 11.9661 (15) Åθ = 60–69°
α = 73.30 (1)°µ = 0.56 mm1
β = 69.465 (11)°T = 193 K
γ = 74.446 (10)°Plate, yellow
V = 961.2 (2) Å30.40 × 0.20 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
Radiation source: rotating anodeθmax = 70.0°, θmin = 4.0°
Graphite monochromatorh = 1111
ω/2θ scansk = 110
3876 measured reflectionsl = 1413
3646 independent reflections3 standard reflections every 60 min
2922 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.218 w = 1/[σ2(Fo2) + (0.1432P)2 + 0.2122P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3646 reflectionsΔρmax = 0.43 e Å3
242 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C22H26N4γ = 74.446 (10)°
Mr = 346.47V = 961.2 (2) Å3
Triclinic, P1Z = 2
a = 9.459 (1) ÅCu Kα radiation
b = 9.6368 (16) ŵ = 0.56 mm1
c = 11.9661 (15) ÅT = 193 K
α = 73.30 (1)°0.40 × 0.20 × 0.05 mm
β = 69.465 (11)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
3876 measured reflections3 standard reflections every 60 min
3646 independent reflections intensity decay: 2%
2922 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
3646 reflectionsΔρmin = 0.42 e Å3
242 parameters
Special details top

Experimental. 1H-NMR (CDCl3): δ = 7.55 (d, J = 8.7 Hz, 4 H, 2-H, 6-H phenyl); 6.79 (br. d, J = 8.8 Hz, 4 H, 3-H, 5-H, phenyl); 3.03 (s, 12 H, N-CH3); 2.64 (s, 6 H, pyrazin-CH3). 13C-NMR (CDCl3): δ = 150.3, 150.1, 147.5 (C-2, C-3 pyrazine, C-1 phenyl), 130.5, 127.9 (C-2, C-3, C-5, C-6 phenyl), 112.9, 41.2 (N(CH3)2), 23.3 (CH3). FD-MS : 346.5 (100%) [M+] IR (ATR): ν = 2918.7, 1607.4, 1528.3, 1438.6, 1389.5, 1359.6, 1231.2, 1194.7, 1161.9, 943.0, 818.6, 785.9, 674.0 cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4300 (2)0.7610 (2)0.62142 (18)0.0308 (4)
N20.55091 (18)0.65153 (18)0.59277 (15)0.0339 (4)
C30.6186 (2)0.6432 (2)0.47567 (18)0.0335 (5)
C40.5629 (2)0.7449 (2)0.38283 (18)0.0321 (5)
N50.44665 (18)0.85760 (18)0.41135 (15)0.0333 (4)
C60.3811 (2)0.8678 (2)0.52829 (18)0.0328 (5)
C70.7572 (2)0.5220 (2)0.45446 (19)0.0434 (6)
H7A0.80890.50520.51650.065*
H7B0.82820.55050.37310.065*
H7C0.72490.43120.45990.065*
C80.2599 (2)1.0036 (2)0.54900 (19)0.0407 (5)
H8A0.15920.98280.56070.061*
H8B0.28311.08450.47790.061*
H8C0.25861.03160.62190.061*
C90.3625 (2)0.7599 (2)0.75399 (18)0.0313 (5)
C100.4576 (2)0.7140 (2)0.82934 (18)0.0343 (5)
H100.56490.68460.79410.041*
C110.4019 (2)0.7099 (2)0.95281 (18)0.0345 (5)
H110.47080.67811.00080.041*
C120.2435 (2)0.7525 (2)1.00883 (17)0.0307 (5)
C130.1460 (2)0.7930 (2)0.93438 (18)0.0331 (5)
H130.03800.81790.96970.040*
C140.2057 (2)0.7971 (2)0.81013 (18)0.0327 (5)
H140.13740.82630.76180.039*
N150.18654 (19)0.7556 (2)1.13101 (15)0.0389 (5)
C160.0227 (2)0.7857 (3)1.18829 (19)0.0425 (5)
H16A0.02030.88611.15220.064*
H16B0.00190.77621.27610.064*
H16C0.02490.71521.17550.064*
C170.2880 (3)0.7075 (3)1.20702 (19)0.0435 (5)
H17A0.32510.60081.21630.065*
H17B0.23200.73061.28750.065*
H17C0.37560.75841.16870.065*
C180.6290 (2)0.7442 (2)0.25089 (18)0.0313 (5)
C190.6822 (2)0.6145 (2)0.20663 (18)0.0341 (5)
H190.67790.52220.26290.041*
C200.7408 (2)0.6174 (2)0.08291 (18)0.0339 (5)
H200.77640.52700.05610.041*
C210.7490 (2)0.7497 (2)0.00351 (17)0.0310 (5)
C220.6928 (2)0.8808 (2)0.04087 (18)0.0331 (5)
H220.69450.97340.01520.040*
C230.6352 (2)0.8763 (2)0.16485 (17)0.0317 (5)
H230.59870.96640.19210.038*
N240.8089 (2)0.75325 (19)0.12682 (15)0.0399 (5)
C250.8785 (3)0.6186 (2)0.1704 (2)0.0449 (6)
H25A0.96180.56520.13480.067*
H25B0.92000.64210.25970.067*
H25C0.80100.55700.14650.067*
C260.7970 (3)0.8908 (2)0.21529 (19)0.0436 (5)
H26A0.68860.93790.20250.065*
H26B0.84100.87160.29790.065*
H26C0.85320.95620.20540.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0270 (9)0.0304 (10)0.0347 (10)0.0053 (7)0.0072 (8)0.0089 (8)
N20.0298 (8)0.0339 (9)0.0336 (9)0.0026 (7)0.0059 (7)0.0080 (7)
C30.0294 (9)0.0339 (10)0.0331 (10)0.0039 (8)0.0054 (8)0.0074 (8)
C40.0279 (9)0.0323 (10)0.0359 (10)0.0058 (8)0.0081 (8)0.0086 (8)
N50.0293 (8)0.0345 (9)0.0344 (9)0.0024 (7)0.0086 (7)0.0090 (7)
C60.0286 (9)0.0340 (10)0.0354 (10)0.0036 (8)0.0092 (8)0.0093 (8)
C70.0392 (11)0.0414 (12)0.0367 (11)0.0079 (9)0.0084 (9)0.0071 (9)
C80.0383 (11)0.0385 (11)0.0386 (11)0.0019 (9)0.0085 (9)0.0101 (9)
C90.0299 (9)0.0313 (10)0.0331 (10)0.0047 (8)0.0082 (8)0.0099 (8)
C100.0243 (9)0.0371 (11)0.0411 (11)0.0020 (8)0.0092 (8)0.0122 (8)
C110.0285 (9)0.0395 (11)0.0393 (11)0.0049 (8)0.0146 (8)0.0097 (8)
C120.0306 (10)0.0304 (10)0.0331 (10)0.0073 (8)0.0095 (8)0.0083 (8)
C130.0238 (9)0.0378 (11)0.0371 (10)0.0036 (7)0.0083 (7)0.0104 (8)
C140.0271 (9)0.0380 (11)0.0366 (10)0.0060 (8)0.0125 (8)0.0095 (8)
N150.0325 (9)0.0514 (11)0.0335 (9)0.0063 (8)0.0100 (7)0.0111 (8)
C160.0375 (11)0.0494 (13)0.0371 (11)0.0048 (9)0.0052 (9)0.0143 (9)
C170.0486 (12)0.0466 (13)0.0378 (11)0.0036 (10)0.0191 (9)0.0097 (9)
C180.0254 (9)0.0346 (10)0.0352 (10)0.0055 (8)0.0089 (8)0.0096 (8)
C190.0323 (10)0.0326 (10)0.0382 (11)0.0050 (8)0.0116 (8)0.0081 (8)
C200.0318 (10)0.0316 (10)0.0405 (11)0.0039 (8)0.0110 (8)0.0123 (8)
C210.0249 (9)0.0342 (11)0.0365 (10)0.0033 (8)0.0111 (8)0.0113 (8)
C220.0323 (10)0.0313 (10)0.0357 (10)0.0056 (8)0.0104 (8)0.0071 (8)
C230.0281 (9)0.0290 (10)0.0392 (10)0.0038 (7)0.0093 (8)0.0115 (8)
N240.0459 (10)0.0381 (10)0.0343 (10)0.0021 (8)0.0112 (8)0.0120 (8)
C250.0479 (12)0.0444 (12)0.0426 (12)0.0013 (10)0.0130 (10)0.0194 (10)
C260.0465 (12)0.0432 (12)0.0375 (11)0.0042 (10)0.0119 (9)0.0079 (9)
Geometric parameters (Å, º) top
C1—N21.350 (2)N15—C161.444 (3)
C1—C61.401 (3)N15—C171.447 (3)
C1—C91.486 (3)C16—H16A0.9800
N2—C31.337 (2)C16—H16B0.9800
C3—C41.407 (3)C16—H16C0.9800
C3—C71.504 (3)C17—H17A0.9800
C4—N51.347 (2)C17—H17B0.9800
C4—C181.481 (3)C17—H17C0.9800
N5—C61.338 (2)C18—C231.388 (3)
C6—C81.507 (3)C18—C191.398 (3)
C7—H7A0.9800C19—C201.382 (3)
C7—H7B0.9800C19—H190.9500
C7—H7C0.9800C20—C211.393 (3)
C8—H8A0.9800C20—H200.9500
C8—H8B0.9800C21—N241.376 (2)
C8—H8C0.9800C21—C221.410 (3)
C9—C141.391 (3)C22—C231.381 (3)
C9—C101.395 (3)C22—H220.9500
C10—C111.376 (3)C23—H230.9500
C10—H100.9500N24—C251.442 (3)
C11—C121.410 (3)N24—C261.445 (3)
C11—H110.9500C25—H25A0.9800
C12—N151.376 (2)C25—H25B0.9800
C12—C131.407 (3)C25—H25C0.9800
C13—C141.386 (3)C26—H26A0.9800
C13—H130.9500C26—H26B0.9800
C14—H140.9500C26—H26C0.9800
N2—C1—C6119.83 (17)C16—N15—C17118.93 (17)
N2—C1—C9115.15 (17)N15—C16—H16A109.5
C6—C1—C9124.97 (17)N15—C16—H16B109.5
C3—N2—C1119.37 (17)H16A—C16—H16B109.5
N2—C3—C4120.69 (18)N15—C16—H16C109.5
N2—C3—C7114.53 (17)H16A—C16—H16C109.5
C4—C3—C7124.75 (17)H16B—C16—H16C109.5
N5—C4—C3119.63 (18)N15—C17—H17A109.5
N5—C4—C18115.47 (17)N15—C17—H17B109.5
C3—C4—C18124.79 (17)H17A—C17—H17B109.5
C6—N5—C4119.54 (17)N15—C17—H17C109.5
N5—C6—C1120.72 (18)H17A—C17—H17C109.5
N5—C6—C8115.08 (17)H17B—C17—H17C109.5
C1—C6—C8124.14 (18)C23—C18—C19117.00 (18)
C3—C7—H7A109.5C23—C18—C4120.18 (17)
C3—C7—H7B109.5C19—C18—C4122.78 (18)
H7A—C7—H7B109.5C20—C19—C18121.52 (18)
C3—C7—H7C109.5C20—C19—H19119.2
H7A—C7—H7C109.5C18—C19—H19119.2
H7B—C7—H7C109.5C19—C20—C21121.55 (18)
C6—C8—H8A109.5C19—C20—H20119.2
C6—C8—H8B109.5C21—C20—H20119.2
H8A—C8—H8B109.5N24—C21—C20121.82 (18)
C6—C8—H8C109.5N24—C21—C22121.17 (18)
H8A—C8—H8C109.5C20—C21—C22117.01 (18)
H8B—C8—H8C109.5C23—C22—C21120.81 (18)
C14—C9—C10116.81 (18)C23—C22—H22119.6
C14—C9—C1123.42 (17)C21—C22—H22119.6
C10—C9—C1119.72 (17)C22—C23—C18122.09 (18)
C11—C10—C9122.45 (17)C22—C23—H23119.0
C11—C10—H10118.8C18—C23—H23119.0
C9—C10—H10118.8C21—N24—C25120.54 (17)
C10—C11—C12120.62 (17)C21—N24—C26120.83 (17)
C10—C11—H11119.7C25—N24—C26118.57 (17)
C12—C11—H11119.7N24—C25—H25A109.5
N15—C12—C13121.30 (17)N24—C25—H25B109.5
N15—C12—C11121.43 (17)H25A—C25—H25B109.5
C13—C12—C11117.27 (17)N24—C25—H25C109.5
C14—C13—C12120.70 (17)H25A—C25—H25C109.5
C14—C13—H13119.6H25B—C25—H25C109.5
C12—C13—H13119.6N24—C26—H26A109.5
C13—C14—C9122.06 (17)N24—C26—H26B109.5
C13—C14—H14119.0H26A—C26—H26B109.5
C9—C14—H14119.0N24—C26—H26C109.5
C12—N15—C16120.04 (16)H26A—C26—H26C109.5
C12—N15—C17120.38 (17)H26B—C26—H26C109.5
C6—C1—N2—C32.7 (3)C11—C12—C13—C142.9 (3)
C9—C1—N2—C3179.60 (17)C12—C13—C14—C90.9 (3)
C1—N2—C3—C41.5 (3)C10—C9—C14—C131.7 (3)
C1—N2—C3—C7176.75 (18)C1—C9—C14—C13179.07 (18)
N2—C3—C4—N54.4 (3)C13—C12—N15—C166.7 (3)
C7—C3—C4—N5173.64 (19)C11—C12—N15—C16173.95 (19)
N2—C3—C4—C18179.55 (18)C13—C12—N15—C17177.36 (18)
C7—C3—C4—C182.4 (3)C11—C12—N15—C173.3 (3)
C3—C4—N5—C62.9 (3)N5—C4—C18—C2333.3 (3)
C18—C4—N5—C6179.32 (17)C3—C4—C18—C23142.9 (2)
C4—N5—C6—C11.3 (3)N5—C4—C18—C19144.41 (19)
C4—N5—C6—C8175.93 (17)C3—C4—C18—C1939.4 (3)
N2—C1—C6—N54.2 (3)C23—C18—C19—C201.1 (3)
C9—C1—C6—N5178.35 (18)C4—C18—C19—C20178.86 (17)
N2—C1—C6—C8172.74 (18)C18—C19—C20—C210.3 (3)
C9—C1—C6—C84.7 (3)C19—C20—C21—N24179.26 (17)
N2—C1—C9—C14142.6 (2)C19—C20—C21—C220.8 (3)
C6—C1—C9—C1439.9 (3)N24—C21—C22—C23178.92 (17)
N2—C1—C9—C1034.8 (3)C20—C21—C22—C231.2 (3)
C6—C1—C9—C10142.8 (2)C21—C22—C23—C180.4 (3)
C14—C9—C10—C112.2 (3)C19—C18—C23—C220.8 (3)
C1—C9—C10—C11179.68 (18)C4—C18—C23—C22178.57 (17)
C9—C10—C11—C120.1 (3)C20—C21—N24—C255.7 (3)
C10—C11—C12—N15176.91 (18)C22—C21—N24—C25174.39 (18)
C10—C11—C12—C132.5 (3)C20—C21—N24—C26171.36 (18)
N15—C12—C13—C14176.43 (18)C22—C21—N24—C268.5 (3)

Experimental details

Crystal data
Chemical formulaC22H26N4
Mr346.47
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)9.459 (1), 9.6368 (16), 11.9661 (15)
α, β, γ (°)73.30 (1), 69.465 (11), 74.446 (10)
V3)961.2 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3876, 3646, 2922
Rint0.027
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.218, 1.07
No. of reflections3646
No. of parameters242
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.42

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBartnik, R., Faure, R. & Gebicki, K. (1999). Acta Cryst. C55, 1034–1037.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCollette, J. C. & Harper, A. W. (2003). Proc. SPIE, 5212, 184-192.  CrossRef CAS Google Scholar
First citationDetert, H. & Sugiono, E. (2005). J. Lumin. 112, 372–376.  Web of Science CrossRef CAS Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41.  Web of Science CrossRef CAS Google Scholar
First citationPieterse, K., Vekemans, J. A. J. M., Kooijman, H., Spek, A. L. & Meijer, E. W. (2000). Chem. Eur. J. 6, 4597–4603.  CrossRef PubMed CAS Google Scholar
First citationSchmitt, V., Fischer, J. & Detert, H. (2011). ISRN Org. Chem. article ID 589012, doi:10.5402/2011/589012.  Google Scholar
First citationSchmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1–7.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds