metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}(formato-κO)manganese(III) dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 May 2011; accepted 10 May 2011; online 14 May 2011)

The MnIII atom in the title complex, [Mn(C18H18N2O4)(CHO2)(H2O)]·2H2O, is O,N,N′,O′-chelated by the deproton­ated Schiff base; the four chelating atoms form an approximate square, with the O atoms of the water mol­ecule and the formate ion in axial positions above and below the square plane. Two metal-bearing mol­ecules are linked by an O—Hwater⋯O hydrogen bond about a center of inversion, generating a hydrogen-bonded dinuclear species; adjacent dinuclear units are linked through the lattice water mol­ecules, forming a three-dimensional network.

Related literature

For related MnIII compounds with the same Schiff base, see: Bermejo et al. (2007[Bermejo, M. R., Fernandez, M. I., Gomez-Forneas, E., Gonzalez-Noya, A., Maneiro, M., Pedrido, R. & Rodriguez, M. J. (2007). Eur. J. Inorg. Chem. pp. 3789-3797.]); Li et al. (2009[Li, Z.-X., Li, X., Zhang, L.-F. & Yu, M.-M. (2009). Acta Cryst. E65, m153.]); Zhang et al. (1999[Zhang, C.-G., Wu, D., Zhao, C.-X., Sun, J. & Kong, X.-F. (1999). Transition Met. Chem. 24, 718-721.], 2000[Zhang, C.-G., Tian, G.-H., Ma, Z.-F. & Yan, D.-Y. (2000). Transition Met. Chem. 25, 270-273.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C18H18N2O4)(CHO2)(H2O)]·2H2O

  • Mr = 480.35

  • Monoclinic, P 21 /c

  • a = 11.5670 (2) Å

  • b = 19.9312 (3) Å

  • c = 8.7701 (1) Å

  • β = 96.859 (1)°

  • V = 2007.42 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.932

  • 18245 measured reflections

  • 4600 independent reflections

  • 3660 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.192

  • S = 1.12

  • 4600 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 1.67 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O3i 0.84 2.01 2.730 (4) 143
O1w—H12⋯O2i 0.84 2.09 2.813 (4) 145
O2w—H21⋯O6 0.84 2.04 2.793 (5) 148
O2w—H22⋯O3w 0.84 1.96 2.762 (7) 161
O3w—H31⋯O2wii 0.84 1.94 2.782 (7) 179
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The 6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenol Schiff base functions as a tetradentate dianionic ligand in a small number of manganese(III) derivatives (Bermejo et al., 2007; Li et al. 2009; Zhang et al., 1999, 2000). The counterion that balances the positive charge on the metal is involved in coordination. In the present study, the acetate portion of the manganese(III) acetate reactant undergoes carbon-carbon cleave to form a formate ion. The MnIII atom in Mn(H2O)(CHO2)(C18H18N2O4).2H2O (Scheme I) is O,N,N',O'-chelated by the deprotonated Schiff base; the four atoms involved in chelating form a square, above and below which are the O atoms of the water molecule and the formate ion (Fig. 1). Two molecules are linked by an O–Hwater···O hydrogen bond dinuclear species; adjacent dinuclear units are linked through the lattice water molecules, forming a three-dimensional network (Table 1).

Related literature top

For related MnIII compounds with the same Schiff base, see: Bermejo et al. (2007); Li et al. (2009); Zhang et al. (1999, 2000).

Experimental top

N,N'-Ethylenebis(4-methoxysalicylindeneaminate) was prepared by reacting 0.2 ml (3.1 mmol) of ethylenediamine with 0.9 g (6 mmol) of 2-hydroxy-4-methoxybenzaldehyde in 50 ml of ethanol. An aqueous solution of 0.18 g (1 mmol) of manganese(II) nitrate was added to a hot methanol solution (100 ml) containing 0. 32 g (1 mmol) of the ligand and 0.28 g (2 mmol) of sodium acetate trihydrate. The immediate brown solution was refluxed for an hour, after which it was filtered. Slow evaporation of the filtrate gave brown crystals. Under the reaction conditions, the acetate ion used in the synthesis was converted to the formate ion in the product; the carbon-carbon bond cleavage was accompanied by oxidation of the MnII to MnIII.

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98, O—H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 times Ueq(C). The water H atoms were placed on the basis of hydrogen bonding interactions. The O3w atom forms one only hydrogen bond; the O atom appears to be a little disordered but the disorder could not be modeled. The H31 atom is 1.99 Å from another H atom.

The final differerence Fourier map had a peak in the vicinity of Mn1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Mn(H2O)(CHO2)(C18H18N2O4).2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Aqua{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}(formato-κO)manganese(III) dihydrate top
Crystal data top
[Mn(C18H18N2O4)(CHO2)(H2O)]·2H2OF(000) = 1000
Mr = 480.35Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5455 reflections
a = 11.5670 (2) Åθ = 2.6–28.0°
b = 19.9312 (3) ŵ = 0.72 mm1
c = 8.7701 (1) ÅT = 100 K
β = 96.859 (1)°Prism, brown
V = 2007.42 (5) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4600 independent reflections
Radiation source: fine-focus sealed tube3660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.932, Tmax = 0.932k = 2525
18245 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0885P)2 + 6.8815P]
where P = (Fo2 + 2Fc2)/3
4600 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.67 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
[Mn(C18H18N2O4)(CHO2)(H2O)]·2H2OV = 2007.42 (5) Å3
Mr = 480.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5670 (2) ŵ = 0.72 mm1
b = 19.9312 (3) ÅT = 100 K
c = 8.7701 (1) Å0.10 × 0.10 × 0.10 mm
β = 96.859 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4600 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3660 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.932Rint = 0.054
18245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.12Δρmax = 1.67 e Å3
4600 reflectionsΔρmin = 0.96 e Å3
280 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.40763 (5)0.60235 (3)0.45697 (6)0.01376 (19)
O10.6169 (2)0.53984 (14)0.8928 (3)0.0177 (6)
O20.5069 (2)0.58740 (13)0.6460 (3)0.0144 (5)
O30.3207 (2)0.52060 (13)0.4678 (3)0.0125 (5)
O40.2108 (2)0.42353 (13)0.5778 (3)0.0158 (6)
O50.2946 (2)0.65306 (13)0.5659 (3)0.0162 (6)
O60.2078 (3)0.65735 (18)0.7803 (4)0.0348 (8)
O1W0.5237 (2)0.55239 (13)0.3407 (3)0.0126 (5)
H110.58940.54510.38960.019*
H120.49440.51550.31050.019*
O2W0.1084 (3)0.7667 (2)0.9154 (4)0.0449 (10)
H210.15100.74650.85920.067*
H220.08090.73830.97210.067*
O3W0.0064 (5)0.6998 (3)1.1285 (6)0.0685 (14)
H310.02740.70961.21580.103*
H320.00350.65811.11460.103*
N10.4905 (3)0.68849 (16)0.4208 (4)0.0136 (6)
N20.3178 (3)0.62522 (16)0.2534 (4)0.0143 (6)
C10.6694 (4)0.5152 (2)1.0374 (5)0.0246 (9)
H1A0.62640.47581.06680.037*
H1B0.66760.55021.11550.037*
H1C0.75040.50261.02940.037*
C20.6672 (3)0.5951 (2)0.8350 (4)0.0161 (8)
C30.7689 (3)0.6259 (2)0.8983 (5)0.0202 (8)
H30.80920.60950.99160.024*
C40.8127 (4)0.6813 (2)0.8249 (5)0.0233 (9)
H40.88360.70170.86720.028*
C50.7536 (3)0.7061 (2)0.6929 (5)0.0209 (9)
H50.78380.74380.64450.025*
C60.6482 (3)0.67655 (19)0.6269 (4)0.0155 (7)
C70.6036 (3)0.61946 (19)0.6976 (4)0.0138 (7)
C80.5872 (3)0.70852 (19)0.4923 (5)0.0170 (8)
H80.62160.74740.45420.020*
C90.4287 (4)0.72776 (19)0.2943 (5)0.0184 (8)
H9A0.48410.75750.24910.022*
H9B0.36830.75600.33330.022*
C100.3726 (4)0.6793 (2)0.1728 (5)0.0189 (8)
H10A0.31330.70290.10150.023*
H10B0.43220.66050.11270.023*
C110.2202 (3)0.59919 (19)0.1976 (4)0.0162 (7)
H11A0.18240.61760.10490.019*
C120.1639 (3)0.54401 (19)0.2656 (4)0.0143 (7)
C130.0536 (3)0.5237 (2)0.1934 (5)0.0186 (8)
H130.01860.54750.10600.022*
C140.0036 (3)0.4701 (2)0.2477 (5)0.0201 (8)
H140.07700.45660.19670.024*
C150.0461 (3)0.4352 (2)0.3783 (5)0.0186 (8)
H150.00560.39860.41670.022*
C160.1531 (3)0.45387 (18)0.4506 (4)0.0132 (7)
C170.2160 (3)0.50826 (18)0.3954 (4)0.0116 (7)
C180.1525 (4)0.3688 (2)0.6400 (5)0.0195 (8)
H18A0.20130.35080.72970.029*
H18B0.13760.33350.56220.029*
H18C0.07830.38430.67090.029*
C190.2604 (4)0.6283 (2)0.6891 (5)0.0232 (9)
H190.27830.58250.71020.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0155 (3)0.0130 (3)0.0126 (3)0.0006 (2)0.0011 (2)0.0015 (2)
O10.0182 (14)0.0221 (14)0.0117 (13)0.0003 (11)0.0031 (10)0.0014 (11)
O20.0141 (13)0.0138 (13)0.0151 (13)0.0037 (10)0.0006 (10)0.0000 (10)
O30.0129 (12)0.0119 (12)0.0119 (12)0.0012 (10)0.0022 (10)0.0012 (9)
O40.0173 (14)0.0134 (13)0.0163 (13)0.0013 (10)0.0007 (10)0.0039 (10)
O50.0158 (13)0.0145 (13)0.0187 (14)0.0010 (10)0.0040 (11)0.0008 (10)
O60.038 (2)0.0346 (19)0.0353 (19)0.0131 (15)0.0206 (16)0.0151 (15)
O1W0.0116 (12)0.0134 (12)0.0122 (12)0.0006 (9)0.0002 (10)0.0005 (10)
O2W0.042 (2)0.054 (2)0.039 (2)0.0025 (18)0.0034 (17)0.0162 (18)
O3W0.069 (3)0.066 (3)0.069 (3)0.004 (3)0.003 (3)0.004 (3)
N10.0152 (15)0.0119 (15)0.0142 (15)0.0004 (12)0.0036 (12)0.0025 (12)
N20.0170 (16)0.0128 (15)0.0134 (15)0.0022 (12)0.0023 (12)0.0032 (12)
C10.027 (2)0.036 (2)0.0102 (18)0.0038 (18)0.0022 (16)0.0031 (16)
C20.0155 (18)0.0182 (19)0.0147 (18)0.0015 (14)0.0023 (14)0.0046 (14)
C30.0149 (19)0.027 (2)0.0182 (19)0.0027 (16)0.0017 (15)0.0113 (16)
C40.0142 (19)0.026 (2)0.031 (2)0.0031 (16)0.0043 (16)0.0138 (18)
C50.0153 (19)0.0170 (19)0.032 (2)0.0030 (15)0.0089 (16)0.0082 (16)
C60.0132 (18)0.0145 (18)0.0191 (19)0.0002 (14)0.0033 (14)0.0051 (14)
C70.0120 (17)0.0161 (18)0.0136 (17)0.0016 (13)0.0026 (14)0.0066 (14)
C80.0199 (19)0.0106 (17)0.022 (2)0.0009 (14)0.0104 (16)0.0005 (14)
C90.023 (2)0.0146 (18)0.0177 (19)0.0004 (15)0.0034 (16)0.0062 (15)
C100.020 (2)0.020 (2)0.0164 (19)0.0007 (15)0.0041 (15)0.0060 (15)
C110.0169 (18)0.0170 (18)0.0143 (18)0.0051 (14)0.0003 (14)0.0032 (14)
C120.0151 (18)0.0158 (18)0.0119 (17)0.0023 (14)0.0008 (14)0.0010 (14)
C130.0157 (19)0.023 (2)0.0164 (18)0.0043 (15)0.0025 (15)0.0015 (15)
C140.0141 (18)0.026 (2)0.020 (2)0.0025 (16)0.0020 (15)0.0052 (16)
C150.0154 (19)0.021 (2)0.0200 (19)0.0018 (15)0.0029 (15)0.0021 (15)
C160.0151 (18)0.0140 (17)0.0103 (16)0.0005 (14)0.0010 (13)0.0016 (13)
C170.0128 (17)0.0111 (16)0.0113 (16)0.0013 (13)0.0027 (13)0.0026 (13)
C180.025 (2)0.0148 (18)0.0192 (19)0.0049 (15)0.0041 (16)0.0028 (15)
C190.021 (2)0.027 (2)0.022 (2)0.0087 (17)0.0062 (17)0.0055 (17)
Geometric parameters (Å, º) top
Mn1—O31.923 (3)C3—C41.403 (6)
Mn1—O21.924 (3)C3—H30.9500
Mn1—O51.985 (3)C4—C51.364 (6)
Mn1—N22.008 (3)C4—H40.9500
Mn1—N12.010 (3)C5—C61.414 (5)
Mn1—O1W2.040 (3)C5—H50.9500
O1—C21.371 (5)C6—C71.422 (5)
O1—C11.427 (5)C6—C81.449 (6)
O2—C71.321 (4)C8—H80.9500
O3—C171.322 (4)C9—C101.525 (6)
O4—C161.370 (4)C9—H9A0.9900
O4—C181.426 (5)C9—H9B0.9900
O5—C191.293 (5)C10—H10A0.9900
O6—C191.208 (5)C10—H10B0.9900
O1W—H110.8400C11—C121.443 (5)
O1W—H120.8400C11—H11A0.9500
O2W—H210.8400C12—C131.414 (5)
O2W—H220.8399C12—C171.415 (5)
O3W—H310.8401C13—C141.371 (6)
O3W—H320.8399C13—H130.9500
N1—C81.279 (5)C14—C151.403 (6)
N1—C91.471 (5)C14—H140.9500
N2—C111.285 (5)C15—C161.373 (5)
N2—C101.473 (5)C15—H150.9500
C1—H1A0.9800C16—C171.423 (5)
C1—H1B0.9800C18—H18A0.9800
C1—H1C0.9800C18—H18B0.9800
C2—C31.383 (5)C18—H18C0.9800
C2—C71.421 (5)C19—H190.9500
O3—Mn1—O295.04 (11)C5—C6—C8117.6 (4)
O3—Mn1—O591.70 (11)C7—C6—C8122.7 (3)
O2—Mn1—O591.35 (11)O2—C7—C2117.2 (3)
O3—Mn1—N291.04 (12)O2—C7—C6125.1 (3)
O2—Mn1—N2173.53 (12)C2—C7—C6117.7 (3)
O5—Mn1—N290.68 (12)N1—C8—C6125.1 (3)
O3—Mn1—N1173.52 (12)N1—C8—H8117.5
O2—Mn1—N191.25 (12)C6—C8—H8117.5
O5—Mn1—N189.71 (12)N1—C9—C10108.5 (3)
N2—Mn1—N182.62 (13)N1—C9—H9A110.0
O3—Mn1—O1W89.43 (11)C10—C9—H9A110.0
O2—Mn1—O1W89.70 (11)N1—C9—H9B110.0
O5—Mn1—O1W178.39 (11)C10—C9—H9B110.0
N2—Mn1—O1W88.15 (12)H9A—C9—H9B108.4
N1—Mn1—O1W89.05 (12)N2—C10—C9107.4 (3)
C2—O1—C1116.8 (3)N2—C10—H10A110.2
C7—O2—Mn1127.9 (2)C9—C10—H10A110.2
C17—O3—Mn1126.0 (2)N2—C10—H10B110.2
C16—O4—C18116.2 (3)C9—C10—H10B110.2
C19—O5—Mn1119.6 (3)H10A—C10—H10B108.5
Mn1—O1W—H11116.0N2—C11—C12124.8 (3)
Mn1—O1W—H12108.7N2—C11—H11A117.6
H11—O1W—H12108.4C12—C11—H11A117.6
H21—O2W—H22108.4C13—C12—C17119.4 (3)
H31—O3W—H32110.0C13—C12—C11117.5 (3)
C8—N1—C9121.4 (3)C17—C12—C11123.1 (3)
C8—N1—Mn1126.5 (3)C14—C13—C12121.0 (4)
C9—N1—Mn1112.1 (2)C14—C13—H13119.5
C11—N2—C10121.4 (3)C12—C13—H13119.5
C11—N2—Mn1125.8 (3)C13—C14—C15120.1 (4)
C10—N2—Mn1112.7 (2)C13—C14—H14119.9
O1—C1—H1A109.5C15—C14—H14119.9
O1—C1—H1B109.5C16—C15—C14120.1 (4)
H1A—C1—H1B109.5C16—C15—H15119.9
O1—C1—H1C109.5C14—C15—H15119.9
H1A—C1—H1C109.5O4—C16—C15125.6 (3)
H1B—C1—H1C109.5O4—C16—C17113.2 (3)
O1—C2—C3125.9 (4)C15—C16—C17121.2 (4)
O1—C2—C7112.8 (3)O3—C17—C12124.8 (3)
C3—C2—C7121.2 (4)O3—C17—C16117.1 (3)
C2—C3—C4120.1 (4)C12—C17—C16118.1 (3)
C2—C3—H3119.9O4—C18—H18A109.5
C4—C3—H3119.9O4—C18—H18B109.5
C5—C4—C3120.2 (4)H18A—C18—H18B109.5
C5—C4—H4119.9O4—C18—H18C109.5
C3—C4—H4119.9H18A—C18—H18C109.5
C4—C5—C6121.1 (4)H18B—C18—H18C109.5
C4—C5—H5119.5O6—C19—O5126.8 (5)
C6—C5—H5119.5O6—C19—H19116.6
C5—C6—C7119.6 (4)O5—C19—H19116.6
O3—Mn1—O2—C7166.9 (3)C3—C2—C7—O2179.4 (3)
O5—Mn1—O2—C7101.3 (3)O1—C2—C7—C6179.7 (3)
N1—Mn1—O2—C711.5 (3)C3—C2—C7—C60.1 (5)
O1W—Mn1—O2—C777.5 (3)C5—C6—C7—O2179.5 (3)
O2—Mn1—O3—C17159.0 (3)C8—C6—C7—O23.6 (6)
O5—Mn1—O3—C1767.5 (3)C5—C6—C7—C21.1 (5)
N2—Mn1—O3—C1723.2 (3)C8—C6—C7—C2175.8 (3)
O1W—Mn1—O3—C17111.4 (3)C9—N1—C8—C6173.9 (3)
O3—Mn1—O5—C1946.9 (3)Mn1—N1—C8—C68.3 (6)
O2—Mn1—O5—C1948.1 (3)C5—C6—C8—N1179.1 (4)
N2—Mn1—O5—C19138.0 (3)C7—C6—C8—N12.1 (6)
N1—Mn1—O5—C19139.4 (3)C8—N1—C9—C10143.4 (4)
O2—Mn1—N1—C812.7 (3)Mn1—N1—C9—C1034.8 (4)
O5—Mn1—N1—C8104.1 (3)C11—N2—C10—C9142.6 (4)
N2—Mn1—N1—C8165.2 (3)Mn1—N2—C10—C934.4 (4)
O1W—Mn1—N1—C876.9 (3)N1—C9—C10—N244.2 (4)
O2—Mn1—N1—C9169.2 (3)C10—N2—C11—C12176.8 (3)
O5—Mn1—N1—C977.9 (3)Mn1—N2—C11—C126.5 (6)
N2—Mn1—N1—C912.8 (2)N2—C11—C12—C13176.8 (4)
O1W—Mn1—N1—C9101.1 (2)N2—C11—C12—C176.0 (6)
O3—Mn1—N2—C1117.3 (3)C17—C12—C13—C140.3 (6)
O5—Mn1—N2—C1174.5 (3)C11—C12—C13—C14177.6 (4)
N1—Mn1—N2—C11164.1 (3)C12—C13—C14—C151.1 (6)
O1W—Mn1—N2—C11106.6 (3)C13—C14—C15—C161.1 (6)
O3—Mn1—N2—C10165.8 (3)C18—O4—C16—C151.1 (5)
O5—Mn1—N2—C10102.5 (3)C18—O4—C16—C17179.6 (3)
N1—Mn1—N2—C1012.9 (3)C14—C15—C16—O4179.4 (4)
O1W—Mn1—N2—C1076.4 (3)C14—C15—C16—C170.3 (6)
C1—O1—C2—C35.3 (5)Mn1—O3—C17—C1219.2 (5)
C1—O1—C2—C7175.0 (3)Mn1—O3—C17—C16162.5 (2)
O1—C2—C3—C4178.3 (4)C13—C12—C17—O3176.7 (3)
C7—C2—C3—C41.5 (6)C11—C12—C17—O30.4 (6)
C2—C3—C4—C51.6 (6)C13—C12—C17—C161.6 (5)
C3—C4—C5—C60.4 (6)C11—C12—C17—C16178.8 (3)
C4—C5—C6—C71.0 (6)O4—C16—C17—O32.4 (5)
C4—C5—C6—C8176.1 (4)C15—C16—C17—O3176.8 (3)
Mn1—O2—C7—C2174.6 (2)O4—C16—C17—C12179.1 (3)
Mn1—O2—C7—C66.0 (5)C15—C16—C17—C121.7 (5)
O1—C2—C7—O20.9 (5)Mn1—O5—C19—O6167.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O3i0.842.012.730 (4)143
O1w—H12···O2i0.842.092.813 (4)145
O2w—H21···O60.842.042.793 (5)148
O2w—H22···O3w0.841.962.762 (7)161
O3w—H31···O2wii0.841.942.782 (7)179
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C18H18N2O4)(CHO2)(H2O)]·2H2O
Mr480.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.5670 (2), 19.9312 (3), 8.7701 (1)
β (°) 96.859 (1)
V3)2007.42 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
18245, 4600, 3660
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.192, 1.12
No. of reflections4600
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.67, 0.96

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O3i0.842.012.730 (4)143
O1w—H12···O2i0.842.092.813 (4)145
O2w—H21···O60.842.042.793 (5)148
O2w—H22···O3w0.841.962.762 (7)161
O3w—H31···O2wii0.841.942.782 (7)179
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBermejo, M. R., Fernandez, M. I., Gomez-Forneas, E., Gonzalez-Noya, A., Maneiro, M., Pedrido, R. & Rodriguez, M. J. (2007). Eur. J. Inorg. Chem. pp. 3789–3797.  CrossRef Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Z.-X., Li, X., Zhang, L.-F. & Yu, M.-M. (2009). Acta Cryst. E65, m153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C.-G., Tian, G.-H., Ma, Z.-F. & Yan, D.-Y. (2000). Transition Met. Chem. 25, 270–273.  CrossRef CAS Google Scholar
First citationZhang, C.-G., Wu, D., Zhao, C.-X., Sun, J. & Kong, X.-F. (1999). Transition Met. Chem. 24, 718–721.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds