metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[2-(4-pyridyl­sulfan­yl)acetato-κN]nickel(II)

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn

(Received 15 May 2011; accepted 19 May 2011; online 25 May 2011)

In the centrosymmetric title complex, [Ni(C7H6NO2S)2(H2O)4], the NiII atom, located on a centre of inversion, is coordinated by two N atoms from two 2-(4-pyridyl­sulfan­yl)acetate ligands and four water O atoms in an octa­hedral geometry. In the crystal, inter­molecular O—H⋯O hydrogen bonds between the coordinated water mol­ecules and the carboxyl­ate group of the anionic 2-(4-pyridyl­sulfan­yl)acetate ligands link these discrete mononuclear units into a three-dimensional network.

Related literature

For structures and applications of metal complexes with polycarboxyl­ate-based pyridine ligands, see: Zhao et al. (2010[Zhao, J.-P., Hu, B.-W., Yang, Q., Zhang, X.-F., Hu, T.-L. & Bu, X.-H. (2010). Dalton Trans. pp. 56-58.]); Wang et al. (2007[Wang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851-1857.]). For metal complexes with 2-(4-pyridyl­sulfan­yl)acetate ligands, see: Kondo et al. (2002[Kondo, M., Miyazawa, M., Irie, Y., Shinagawa, R., Horiba, T., Nakamura, A., Naito, T., Maeda, K., Utsuno, S. & Uchida, F. (2002). Chem. Commun. pp. 2156-2157.]); Zhang et al. (2004[Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m135-m136.]); Qin et al. (2004[Qin, S., Ke, Y., Lu, S., Li, J., Pei, H., Wu, X. & Du, W. (2004). J. Mol. Struct. 689, 75-80.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H6NO2S)2(H2O)4]

  • Mr = 467.15

  • Triclinic, [P \overline 1]

  • a = 6.3577 (4) Å

  • b = 7.0330 (5) Å

  • c = 11.7624 (8) Å

  • α = 92.713 (1)°

  • β = 103.440 (1)°

  • γ = 115.120 (1)°

  • V = 456.75 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.758, Tmax = 0.835

  • 2358 measured reflections

  • 1610 independent reflections

  • 1525 reflections with I > 2σ(I)

  • Rint = 0.008

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.061

  • S = 1.05

  • 1610 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.85 2.13 2.951 (2) 161
O3—H3B⋯O1ii 0.85 1.92 2.7265 (18) 158
O4—H4A⋯O1iii 0.85 1.83 2.6697 (18) 168
O4—H4B⋯O2iv 0.85 2.01 2.855 (2) 172
Symmetry codes: (i) x-1, y, z-1; (ii) x, y, z-1; (iii) -x+1, -y, -z+1; (iv) x-1, y-1, z-1.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, functional metal complexes with polycarboxylate-based pyridine ligands have gained more and more interest due to their intriguing structures and potential applications in magnetism (Zhao et al. 2010), and luminescence (Wang et al. 2007). Acting as one of flexible multifunctional building blocks, 2-(4-pyridylsulfanyl)acetic acid with three potential metal binding sites and various flexible connection modes (Kondo et al., 2002; Zhang et al., 2004; Qin et al., 2004) has been extensively used to construct novel metal complexes with discrete mononuclear structure or polymeric coordination framework with variable dimensionality. Herein, as the continuing investigations on the coordination chemistry of the ligand, we report the crystal structure of a tetraaquonickel(II) complex with deprotonated 2-(4-pyridylsulfanyl)acetate ligand, (I).

The molecular structure of the title mononuclear complex is show Fig.1 and selected bond lengths and angles are listed in Table 1. The NiII atom in the mononuclear structure of I lies on an inversion centre and is in a octahedral coordination environment involving two pyridyl N atoms from two different 2-(4-pyridylsulfanyl)acetate ligand and four O donors from four water molecules. In the crystal structure, four intermolecular O—H···O hydrogen bonds between the coordinated water molecules and the carboxylate group of 2-(4-pyridylsulfanyl)acetate ligand link adjacent mononuclear structures into a three-dimensional supramolecular network (Fig.2 and Table 2).

Related literature top

For structures and applications of metal complexes with polycarboxylate-based pyridine ligands, see Zhao et al. (2010); Wang et al. (2007). For metal complexes with 2-(4-pyridylsulfanyl)acetate ligands, see: Kondo et al. (2002); Zhang et al. (2004); Qin et al. (2004).

Experimental top

A methanol solution of 2-(4-pyridylsulfanyl)acetic acid (25.3 mg, 0.1 mmol) was carefully layered onto a buffer layer of ethyl acetate (2.0 ml) in a straight glass tube, meanwhile the pH value of the top layer was carefully adjusted to 7.0 by slow addition of triethylamine. Below which an aqueous solution containing NiCl2.6H2O (23.7 mg, 0.1 mmol) was placed. The test tube was left in air under room temperature. Blue block-shaped crystals were harvested within three weeks. Yield: 50% based on 2-(4-pyridylsulfanyl)acetic acid. Anal. Calcd. for C14H20N2NiO8S2: C, 36.00; H, 4.32; N, 6.00%. Found: C, 35.98; H, 4.34; N, 6.03%.

Refinement top

H atoms were located in a difference map, but refined using a riding model with Caromatic-H = 0.93Å, Cmethylene-H = 0.97Å or O-H = 0.85Å. U(H) was set to 1.2 Ueq(C) or 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probablity level. [Symmetry code: (A) –x, –y, –z.]
[Figure 2] Fig. 2. Crystal packing of the title compound, showing O—H···O hydrogen bonds as dashed lines. Only H atoms involved in hydrogen bonds have been included.
Tetraaquabis[2-(4-pyridylsulfanyl)acetato-κN]nickel(II) top
Crystal data top
[Ni(C7H6NO2S)2(H2O)4]Z = 1
Mr = 467.15F(000) = 242
Triclinic, P1Dx = 1.698 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3577 (4) ÅCell parameters from 2208 reflections
b = 7.0330 (5) Åθ = 3.2–27.8°
c = 11.7624 (8) ŵ = 1.34 mm1
α = 92.713 (1)°T = 296 K
β = 103.440 (1)°Block, blue
γ = 115.120 (1)°0.22 × 0.20 × 0.14 mm
V = 456.75 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1610 independent reflections
Radiation source: fine-focus sealed tube1525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.008
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.758, Tmax = 0.835k = 58
2358 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.2312P]
where P = (Fo2 + 2Fc2)/3
1610 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ni(C7H6NO2S)2(H2O)4]γ = 115.120 (1)°
Mr = 467.15V = 456.75 (5) Å3
Triclinic, P1Z = 1
a = 6.3577 (4) ÅMo Kα radiation
b = 7.0330 (5) ŵ = 1.34 mm1
c = 11.7624 (8) ÅT = 296 K
α = 92.713 (1)°0.22 × 0.20 × 0.14 mm
β = 103.440 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1610 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1525 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.835Rint = 0.008
2358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
1610 reflectionsΔρmin = 0.28 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.02365 (11)
S10.72786 (9)0.33945 (8)0.54727 (4)0.03489 (14)
O10.5787 (3)0.2690 (3)0.84929 (12)0.0430 (4)
O20.9194 (3)0.4387 (2)0.79704 (12)0.0423 (4)
O30.2259 (2)0.2716 (2)0.05684 (11)0.0347 (3)
H3A0.13770.33170.08330.052*
H3B0.35440.30650.07830.052*
O40.1770 (2)0.1742 (2)0.03636 (11)0.0302 (3)
H4A0.25850.18760.02840.045*
H4B0.08910.28610.08780.045*
N10.2203 (3)0.1150 (2)0.17292 (13)0.0275 (3)
C10.5198 (3)0.2521 (3)0.40628 (15)0.0268 (4)
C20.2691 (3)0.1584 (3)0.38241 (16)0.0307 (4)
H20.19700.14010.44400.037*
C30.1292 (3)0.0933 (3)0.26627 (16)0.0315 (4)
H30.03810.03070.25170.038*
C40.4625 (3)0.2085 (3)0.19676 (16)0.0313 (4)
H40.52980.22690.13340.038*
C50.6160 (3)0.2784 (3)0.30962 (16)0.0312 (4)
H50.78270.34270.32160.037*
C60.5391 (3)0.2753 (3)0.64667 (15)0.0301 (4)
H6A0.44210.35200.63480.036*
H6B0.43040.12400.62960.036*
C70.6951 (3)0.3354 (3)0.77521 (16)0.0306 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02087 (17)0.03278 (19)0.01705 (17)0.01169 (14)0.00582 (12)0.00240 (12)
S10.0305 (3)0.0442 (3)0.0201 (2)0.0099 (2)0.00367 (18)0.0011 (2)
O10.0413 (8)0.0722 (10)0.0279 (7)0.0330 (8)0.0153 (6)0.0169 (7)
O20.0346 (8)0.0547 (9)0.0266 (7)0.0118 (7)0.0058 (6)0.0018 (6)
O30.0292 (7)0.0405 (7)0.0353 (7)0.0138 (6)0.0139 (6)0.0101 (6)
O40.0297 (6)0.0415 (7)0.0210 (6)0.0189 (6)0.0049 (5)0.0013 (5)
N10.0264 (8)0.0353 (8)0.0218 (7)0.0146 (7)0.0075 (6)0.0035 (6)
C10.0321 (9)0.0247 (8)0.0219 (9)0.0131 (7)0.0044 (7)0.0015 (7)
C20.0327 (10)0.0376 (10)0.0221 (9)0.0146 (8)0.0104 (7)0.0042 (8)
C30.0272 (9)0.0424 (11)0.0244 (9)0.0147 (8)0.0081 (8)0.0039 (8)
C40.0304 (10)0.0406 (10)0.0228 (9)0.0146 (8)0.0103 (7)0.0028 (8)
C50.0254 (9)0.0374 (10)0.0270 (9)0.0115 (8)0.0066 (7)0.0011 (8)
C60.0337 (10)0.0320 (9)0.0237 (9)0.0143 (8)0.0070 (8)0.0055 (7)
C70.0361 (10)0.0358 (10)0.0233 (9)0.0198 (9)0.0073 (8)0.0041 (7)
Geometric parameters (Å, º) top
Ni1—O42.0727 (12)N1—C31.342 (2)
Ni1—O4i2.0727 (12)N1—C41.344 (2)
Ni1—N12.0762 (15)C1—C21.392 (3)
Ni1—N1i2.0762 (15)C1—C51.396 (3)
Ni1—O3i2.0967 (13)C2—C31.377 (3)
Ni1—O32.0967 (13)C2—H20.9300
S1—C11.7524 (18)C3—H30.9300
S1—C61.8035 (19)C4—C51.373 (3)
O1—C71.253 (2)C4—H40.9300
O2—C71.249 (2)C5—H50.9300
O3—H3A0.8501C6—C71.528 (3)
O3—H3B0.8503C6—H6A0.9700
O4—H4A0.8501C6—H6B0.9700
O4—H4B0.8501
O4—Ni1—O4i179.999 (1)C2—C1—C5117.45 (16)
O4—Ni1—N192.68 (5)C2—C1—S1125.97 (14)
O4i—Ni1—N187.32 (5)C5—C1—S1116.57 (14)
O4—Ni1—N1i87.32 (5)C3—C2—C1119.08 (17)
O4i—Ni1—N1i92.68 (5)C3—C2—H2120.5
N1—Ni1—N1i180.0C1—C2—H2120.5
O4—Ni1—O3i86.23 (5)N1—C3—C2123.81 (17)
O4i—Ni1—O3i93.77 (5)N1—C3—H3118.1
N1—Ni1—O3i89.32 (5)C2—C3—H3118.1
N1i—Ni1—O3i90.69 (5)N1—C4—C5123.50 (17)
O4—Ni1—O393.77 (5)N1—C4—H4118.3
O4i—Ni1—O386.23 (5)C5—C4—H4118.3
N1—Ni1—O390.69 (5)C4—C5—C1119.45 (17)
N1i—Ni1—O389.31 (5)C4—C5—H5120.3
O3i—Ni1—O3180.0C1—C5—H5120.3
C1—S1—C6103.65 (9)C7—C6—S1110.25 (13)
Ni1—O3—H3A105.2C7—C6—H6A109.6
Ni1—O3—H3B134.1S1—C6—H6A109.6
H3A—O3—H3B117.1C7—C6—H6B109.6
Ni1—O4—H4A109.3S1—C6—H6B109.6
Ni1—O4—H4B114.5H6A—C6—H6B108.1
H4A—O4—H4B117.0O2—C7—O1126.41 (18)
C3—N1—C4116.70 (16)O2—C7—C6119.17 (17)
C3—N1—Ni1122.04 (12)O1—C7—C6114.39 (17)
C4—N1—Ni1121.22 (12)
O4—Ni1—N1—C3125.81 (15)C4—N1—C3—C20.8 (3)
O4i—Ni1—N1—C354.19 (15)Ni1—N1—C3—C2176.86 (15)
O3i—Ni1—N1—C339.62 (15)C1—C2—C3—N10.1 (3)
O3—Ni1—N1—C3140.38 (15)C3—N1—C4—C50.8 (3)
O4—Ni1—N1—C451.79 (15)Ni1—N1—C4—C5176.94 (14)
O4i—Ni1—N1—C4128.21 (15)N1—C4—C5—C10.2 (3)
O3i—Ni1—N1—C4137.98 (15)C2—C1—C5—C41.2 (3)
O3—Ni1—N1—C442.02 (15)S1—C1—C5—C4178.42 (14)
C6—S1—C1—C20.69 (19)C1—S1—C6—C7178.07 (12)
C6—S1—C1—C5178.92 (14)S1—C6—C7—O28.2 (2)
C5—C1—C2—C31.2 (3)S1—C6—C7—O1170.33 (14)
S1—C1—C2—C3178.44 (14)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.852.132.951 (2)161
O3—H3B···O1iii0.851.922.7265 (18)158
O4—H4A···O1iv0.851.832.6697 (18)168
O4—H4B···O2v0.852.012.855 (2)172
Symmetry codes: (ii) x1, y, z1; (iii) x, y, z1; (iv) x+1, y, z+1; (v) x1, y1, z1.

Experimental details

Crystal data
Chemical formula[Ni(C7H6NO2S)2(H2O)4]
Mr467.15
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.3577 (4), 7.0330 (5), 11.7624 (8)
α, β, γ (°)92.713 (1), 103.440 (1), 115.120 (1)
V3)456.75 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.22 × 0.20 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.758, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
2358, 1610, 1525
Rint0.008
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.05
No. of reflections1610
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.852.132.951 (2)161
O3—H3B···O1ii0.851.922.7265 (18)158
O4—H4A···O1iii0.851.832.6697 (18)168
O4—H4B···O2iv0.852.012.855 (2)172
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x+1, y, z+1; (iv) x1, y1, z1.
 

Acknowledgements

The authors gratefully acknowledge financial support from Tianjin Normal University.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKondo, M., Miyazawa, M., Irie, Y., Shinagawa, R., Horiba, T., Nakamura, A., Naito, T., Maeda, K., Utsuno, S. & Uchida, F. (2002). Chem. Commun. pp. 2156–2157.  Web of Science CSD CrossRef Google Scholar
First citationQin, S., Ke, Y., Lu, S., Li, J., Pei, H., Wu, X. & Du, W. (2004). J. Mol. Struct. 689, 75–80.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851–1857.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m135–m136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J.-P., Hu, B.-W., Yang, Q., Zhang, X.-F., Hu, T.-L. & Bu, X.-H. (2010). Dalton Trans. pp. 56–58.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds