organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-(2-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 May 2011; accepted 17 May 2011; online 25 May 2011)

The asymmetric unit of the title compound, C15H15NO, contains two independent mol­ecules, which differ in the dihedral angle between the aromatic rings [48.98 (9) and 57.48 (8)°]. The methyl groups in para positions are disordered over two equally occupied positions. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds which link the mol­ecules into chains running along the b axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For our study of the effect of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1494.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1612.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Triclinic, [P \overline 1]

  • a = 7.2964 (6) Å

  • b = 9.9075 (5) Å

  • c = 18.1347 (13) Å

  • α = 88.331 (5)°

  • β = 82.892 (6)°

  • γ = 79.558 (5)°

  • V = 1279.29 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.88 × 0.09 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.968, Tmax = 0.996

  • 18269 measured reflections

  • 4354 independent reflections

  • 1602 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 0.74

  • 4354 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.05 2.878 (2) 163
N2—H2A⋯O1i 0.86 2.05 2.883 (2) 162
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structural aspects of N-aryl amides are of interest due to their chemical and biological importance (Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2008, 2009; Saeed et al., 2010). In the present work, as part of a study of the substituent effects on the structures of benzanilides (Gowda, et al., 2008, 2009), the structure of 4-methyl-N-(2-methylphenyl)benzamide (I) has been determined (Fig.1). The asymmetric unit of (I) contains two independent molecules. In the crystal, the ortho-methyl substituent in the anilino ring is positioned syn to the N–H bond in one of the molecules and anti in the other molecule. Further, the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other in both the molecules, similar to that observed in 2-methyl-N-(4-methylphenyl)benzamide (II)(Gowda et al., 2008) and 4-methyl-N-(2,6-dimethylphenyl)benzamide (III) (Gowda et al., 2009) and, with similar bond parameters.

The central amide group –NHCO– is tilted to the anilino ring with the C2—C1—N1—C8 and C6—C1—N1—C8 torsion angles of -118.2 (3)° and 63.9 (3)° in molecule 1, and the C17—C16—N2—C23 and C21—C16—N2—C23 torsion angles of -86.8 (3)° and 97.6 (3)° in molecule 2, while the C10—C9—C8—N1 and C14—C9—C8—N1 torsion angles in molecule 1, and and the C25—C24—C23—N2 and C29—C24—C23—N2 torsion angles in molecule 2 are -13.4 (4)° and 171.7 (2)°, and -150.4 (2)° and 27.9 (4)°, respectively.

The packing of molecules linked by N—H···O hydrogen bonds into infinite chains is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For our study of the effect of substituents on the structures and other aspects of N-(aryl)-amides, see: Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2008, 2009); Saeed et al. (2010).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. needle-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl). The methyl groups in p-position of the aromatic ring are disordered over two equally occupied positions rotated with respect to each other by 60°.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.
4-Methyl-N-(2-methylphenyl)benzamide top
Crystal data top
C15H15NOZ = 4
Mr = 225.28F(000) = 480
Triclinic, P1Dx = 1.170 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2964 (6) ÅCell parameters from 2440 reflections
b = 9.9075 (5) Åθ = 3.5–29.3°
c = 18.1347 (13) ŵ = 0.07 mm1
α = 88.331 (5)°T = 293 K
β = 82.892 (6)°Needle, colorless
γ = 79.558 (5)°0.88 × 0.09 × 0.06 mm
V = 1279.29 (15) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
4354 independent reflections
Radiation source: fine-focus sealed tube1602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 24.7°, θmin = 4.1°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
h = 88
Tmin = 0.968, Tmax = 0.996k = 1111
18269 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.74 w = 1/[σ2(Fo2) + (0.0367P)2]
where P = (Fo2 + 2Fc2)/3
4354 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C15H15NOγ = 79.558 (5)°
Mr = 225.28V = 1279.29 (15) Å3
Triclinic, P1Z = 4
a = 7.2964 (6) ÅMo Kα radiation
b = 9.9075 (5) ŵ = 0.07 mm1
c = 18.1347 (13) ÅT = 293 K
α = 88.331 (5)°0.88 × 0.09 × 0.06 mm
β = 82.892 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
4354 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
1602 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.996Rint = 0.088
18269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.74Δρmax = 0.12 e Å3
4354 reflectionsΔρmin = 0.11 e Å3
311 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3561 (3)0.83584 (15)0.23183 (11)0.0969 (7)
N10.3243 (3)0.62248 (17)0.26640 (11)0.0687 (7)
H1A0.36950.53660.26070.082*
C10.1559 (5)0.6596 (2)0.31651 (18)0.0614 (8)
C20.1579 (5)0.6225 (2)0.39053 (18)0.0622 (8)
C30.0084 (6)0.6555 (3)0.43740 (17)0.0776 (9)
H3A0.00990.63210.48750.093*
C40.1703 (5)0.7216 (3)0.4122 (2)0.0857 (10)
H4A0.28040.74210.44470.103*
C50.1687 (5)0.7572 (3)0.3388 (2)0.0881 (10)
H5A0.27830.80210.32120.106*
C60.0056 (6)0.7270 (3)0.29071 (17)0.0768 (9)
H6A0.00480.75220.24090.092*
C70.3332 (5)0.5461 (3)0.41909 (16)0.0928 (10)
H7A0.36340.45530.39870.139*
H7B0.31290.54030.47230.139*
H7C0.43520.59400.40440.139*
C80.4170 (4)0.7118 (2)0.22826 (14)0.0648 (8)
C90.5994 (4)0.6581 (2)0.18350 (14)0.0590 (7)
C100.6996 (5)0.5260 (2)0.18947 (15)0.0772 (9)
H10A0.64670.46190.21940.093*
C110.8757 (5)0.4888 (3)0.15171 (16)0.0832 (9)
H11A0.93960.39940.15650.100*
C120.9607 (5)0.5800 (3)0.10686 (15)0.0772 (9)
C130.8592 (5)0.7099 (3)0.09924 (15)0.0803 (10)
H13A0.91140.77290.06820.096*
C140.6840 (5)0.7481 (2)0.13623 (15)0.0736 (9)
H14A0.61920.83670.12970.088*
C151.1607 (5)0.5405 (3)0.06924 (18)0.1129 (12)
H15A1.23880.49320.10420.135*0.50
H15B1.20720.62180.05180.135*0.50
H15C1.16240.48160.02800.135*0.50
H15D1.24590.58200.09630.135*0.50
H15E1.17410.57170.01940.135*0.50
H15F1.20290.44150.07140.135*0.50
O20.3997 (3)0.32712 (14)0.26391 (11)0.0970 (7)
N20.4584 (3)0.10245 (17)0.23914 (11)0.0622 (6)
H2A0.42310.02470.24780.075*
C160.6234 (4)0.1063 (2)0.18894 (17)0.0541 (7)
C170.6124 (4)0.1340 (2)0.11454 (19)0.0665 (8)
C180.7779 (6)0.1290 (3)0.06697 (17)0.0799 (9)
H18A0.77230.14860.01680.096*
C190.9474 (5)0.0960 (3)0.0923 (2)0.0806 (9)
H19A1.05640.09310.05950.097*
C200.9594 (5)0.0668 (3)0.1660 (2)0.0866 (9)
H20A1.07570.04320.18340.104*
C210.7952 (5)0.0732 (2)0.21414 (16)0.0737 (9)
H21A0.80180.05460.26440.088*
C220.4253 (5)0.1644 (4)0.08421 (19)0.1311 (13)
H22A0.35920.08970.09620.197*
H22B0.44550.17550.03120.197*
H22C0.35240.24730.10600.197*
C230.3531 (4)0.2138 (2)0.27375 (14)0.0615 (8)
C240.1817 (4)0.1941 (2)0.32233 (13)0.0551 (7)
C250.0317 (4)0.3016 (2)0.33069 (14)0.0659 (8)
H25A0.04240.38570.30800.079*
C260.1335 (4)0.2853 (2)0.37224 (15)0.0718 (8)
H26A0.23400.35840.37660.086*
C270.1537 (4)0.1625 (3)0.40784 (14)0.0667 (8)
C280.0014 (4)0.0571 (2)0.40096 (14)0.0663 (8)
H28A0.01010.02550.42560.080*
C290.1638 (4)0.0716 (2)0.35820 (13)0.0618 (8)
H29A0.26390.00170.35350.074*
C300.3368 (4)0.1441 (3)0.45296 (17)0.1005 (10)
H30A0.34990.19040.49960.121*0.50
H30B0.33680.04810.46180.121*0.50
H30C0.43970.18210.42600.121*0.50
H30D0.32450.09520.49850.121*0.50
H30E0.40780.09010.42380.121*0.50
H30F0.42150.23210.46260.121*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0967 (17)0.0388 (9)0.1473 (19)0.0146 (10)0.0214 (13)0.0057 (10)
N10.092 (2)0.0376 (11)0.0721 (16)0.0128 (12)0.0087 (15)0.0023 (11)
C10.072 (3)0.0414 (14)0.071 (2)0.0138 (16)0.001 (2)0.0075 (14)
C20.075 (3)0.0501 (14)0.062 (2)0.0146 (15)0.006 (2)0.0012 (14)
C30.085 (3)0.0691 (18)0.077 (2)0.0195 (18)0.007 (2)0.0019 (16)
C40.079 (3)0.078 (2)0.099 (3)0.024 (2)0.013 (2)0.0113 (19)
C50.067 (3)0.082 (2)0.117 (3)0.0108 (17)0.018 (3)0.012 (2)
C60.088 (3)0.0662 (17)0.078 (2)0.0120 (18)0.018 (2)0.0020 (16)
C70.097 (3)0.0908 (19)0.088 (2)0.0066 (19)0.018 (2)0.0073 (16)
C80.084 (2)0.0408 (14)0.071 (2)0.0161 (16)0.0057 (17)0.0070 (14)
C90.080 (2)0.0410 (14)0.0574 (18)0.0154 (15)0.0075 (16)0.0022 (13)
C100.091 (3)0.0512 (16)0.086 (2)0.0196 (17)0.008 (2)0.0036 (14)
C110.092 (3)0.0567 (16)0.094 (2)0.0100 (17)0.012 (2)0.0026 (16)
C120.090 (3)0.0732 (19)0.067 (2)0.0194 (19)0.0062 (19)0.0126 (16)
C130.105 (3)0.0621 (18)0.071 (2)0.0251 (18)0.014 (2)0.0009 (15)
C140.104 (3)0.0491 (15)0.066 (2)0.0159 (17)0.0013 (19)0.0037 (14)
C150.113 (3)0.106 (2)0.112 (3)0.019 (2)0.019 (3)0.0098 (19)
O20.1053 (17)0.0411 (9)0.1356 (17)0.0257 (10)0.0425 (13)0.0120 (10)
N20.0637 (17)0.0417 (11)0.0764 (16)0.0172 (11)0.0228 (14)0.0052 (10)
C160.057 (2)0.0420 (13)0.063 (2)0.0137 (14)0.0015 (19)0.0012 (13)
C170.052 (2)0.0700 (16)0.074 (2)0.0101 (14)0.001 (2)0.0147 (15)
C180.075 (3)0.093 (2)0.071 (2)0.0203 (18)0.000 (2)0.0133 (15)
C190.070 (3)0.094 (2)0.078 (3)0.0254 (19)0.009 (2)0.0146 (17)
C200.060 (3)0.117 (2)0.086 (3)0.0205 (18)0.012 (2)0.0166 (19)
C210.074 (3)0.0844 (19)0.064 (2)0.0216 (18)0.002 (2)0.0082 (15)
C220.074 (3)0.192 (4)0.116 (3)0.002 (2)0.012 (3)0.040 (2)
C230.069 (2)0.0423 (14)0.0704 (19)0.0121 (14)0.0078 (16)0.0048 (13)
C240.063 (2)0.0440 (14)0.0565 (18)0.0142 (14)0.0097 (15)0.0070 (12)
C250.068 (2)0.0494 (15)0.076 (2)0.0110 (16)0.0076 (18)0.0050 (13)
C260.066 (2)0.0655 (17)0.078 (2)0.0011 (15)0.0018 (18)0.0082 (15)
C270.068 (2)0.0765 (18)0.0561 (19)0.0220 (18)0.0075 (17)0.0103 (15)
C280.074 (2)0.0588 (16)0.064 (2)0.0177 (16)0.0077 (17)0.0007 (13)
C290.070 (2)0.0498 (15)0.0624 (19)0.0120 (13)0.0097 (16)0.0049 (13)
C300.084 (3)0.111 (2)0.102 (3)0.0272 (19)0.022 (2)0.0060 (17)
Geometric parameters (Å, º) top
O1—C81.229 (2)O2—C231.233 (2)
N1—C81.336 (3)N2—C231.347 (3)
N1—C11.432 (3)N2—C161.423 (3)
N1—H1A0.8596N2—H2A0.8594
C1—C61.374 (4)C16—C211.368 (4)
C1—C21.383 (3)C16—C171.378 (3)
C2—C31.385 (4)C17—C181.389 (4)
C2—C71.506 (4)C17—C221.511 (4)
C3—C41.367 (4)C18—C191.354 (4)
C3—H3A0.9300C18—H18A0.9300
C4—C51.367 (4)C19—C201.369 (4)
C4—H4A0.9300C19—H19A0.9300
C5—C61.376 (4)C20—C211.385 (4)
C5—H5A0.9300C20—H20A0.9300
C6—H6A0.9300C21—H21A0.9300
C7—H7A0.9600C22—H22A0.9600
C7—H7B0.9600C22—H22B0.9600
C7—H7C0.9600C22—H22C0.9600
C8—C91.488 (3)C23—C241.477 (3)
C9—C101.387 (3)C24—C251.379 (3)
C9—C141.391 (3)C24—C291.380 (3)
C10—C111.372 (3)C25—C261.373 (3)
C10—H10A0.9300C25—H25A0.9300
C11—C121.378 (3)C26—C271.384 (3)
C11—H11A0.9300C26—H26A0.9300
C12—C131.375 (3)C27—C281.376 (3)
C12—C151.520 (4)C27—C301.515 (3)
C13—C141.362 (3)C28—C291.378 (3)
C13—H13A0.9300C28—H28A0.9300
C14—H14A0.9300C29—H29A0.9300
C15—H15A0.9600C30—H30A0.9600
C15—H15B0.9600C30—H30B0.9600
C15—H15C0.9600C30—H30C0.9600
C15—H15D0.9887C30—H30D0.9501
C15—H15E0.9457C30—H30E1.0098
C15—H15F0.9744C30—H30F0.9793
C8—N1—C1124.69 (19)C23—N2—C16123.84 (18)
C8—N1—H1A117.6C23—N2—H2A117.9
C1—N1—H1A117.7C16—N2—H2A118.3
C6—C1—C2120.9 (3)C21—C16—C17119.8 (3)
C6—C1—N1120.3 (3)C21—C16—N2119.3 (3)
C2—C1—N1118.7 (3)C17—C16—N2120.7 (3)
C1—C2—C3117.7 (3)C16—C17—C18118.6 (3)
C1—C2—C7121.3 (3)C16—C17—C22121.2 (3)
C3—C2—C7121.0 (3)C18—C17—C22120.2 (3)
C4—C3—C2121.9 (3)C19—C18—C17121.2 (3)
C4—C3—H3A119.0C19—C18—H18A119.4
C2—C3—H3A119.0C17—C18—H18A119.4
C3—C4—C5119.3 (3)C18—C19—C20120.5 (3)
C3—C4—H4A120.3C18—C19—H19A119.7
C5—C4—H4A120.3C20—C19—H19A119.7
C4—C5—C6120.3 (3)C19—C20—C21118.8 (3)
C4—C5—H5A119.8C19—C20—H20A120.6
C6—C5—H5A119.8C21—C20—H20A120.6
C1—C6—C5119.9 (3)C16—C21—C20121.1 (3)
C1—C6—H6A120.1C16—C21—H21A119.5
C5—C6—H6A120.1C20—C21—H21A119.5
C2—C7—H7A109.5C17—C22—H22A109.5
C2—C7—H7B109.5C17—C22—H22B109.5
H7A—C7—H7B109.5H22A—C22—H22B109.5
C2—C7—H7C109.5C17—C22—H22C109.5
H7A—C7—H7C109.5H22A—C22—H22C109.5
H7B—C7—H7C109.5H22B—C22—H22C109.5
O1—C8—N1120.8 (2)O2—C23—N2120.2 (2)
O1—C8—C9120.7 (2)O2—C23—C24122.3 (2)
N1—C8—C9118.4 (2)N2—C23—C24117.5 (2)
C10—C9—C14116.8 (3)C25—C24—C29118.6 (2)
C10—C9—C8124.5 (2)C25—C24—C23118.6 (2)
C14—C9—C8118.5 (2)C29—C24—C23122.8 (2)
C11—C10—C9120.8 (2)C26—C25—C24120.4 (2)
C11—C10—H10A119.6C26—C25—H25A119.8
C9—C10—H10A119.6C24—C25—H25A119.8
C10—C11—C12121.9 (3)C25—C26—C27121.5 (3)
C10—C11—H11A119.1C25—C26—H26A119.3
C12—C11—H11A119.1C27—C26—H26A119.3
C13—C12—C11117.3 (3)C28—C27—C26117.7 (3)
C13—C12—C15121.2 (3)C28—C27—C30120.9 (2)
C11—C12—C15121.5 (3)C26—C27—C30121.4 (3)
C14—C13—C12121.4 (3)C27—C28—C29121.3 (2)
C14—C13—H13A119.3C27—C28—H28A119.4
C12—C13—H13A119.3C29—C28—H28A119.4
C13—C14—C9121.7 (2)C28—C29—C24120.5 (2)
C13—C14—H14A119.1C28—C29—H29A119.7
C9—C14—H14A119.1C24—C29—H29A119.7
C12—C15—H15A109.5C27—C30—H30A109.5
C12—C15—H15B109.5C27—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
C12—C15—H15C109.5C27—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
C12—C15—H15D109.4C27—C30—H30D115.3
H15A—C15—H15D54.8H30A—C30—H30D58.1
H15B—C15—H15D57.7H30B—C30—H30D52.6
H15C—C15—H15D141.1H30C—C30—H30D135.2
C12—C15—H15E112.3C27—C30—H30E110.2
H15A—C15—H15E138.2H30A—C30—H30E140.3
H15B—C15—H15E53.8H30B—C30—H30E57.9
H15C—C15—H15E57.7H30C—C30—H30E54.3
H15D—C15—H15E107.7H30D—C30—H30E105.2
C12—C15—H15F110.8C27—C30—H30F111.6
H15A—C15—H15F54.7H30A—C30—H30F58.1
H15B—C15—H15F139.7H30B—C30—H30F138.8
H15C—C15—H15F57.4H30C—C30—H30F53.7
H15D—C15—H15F106.4H30D—C30—H30F109.3
H15E—C15—H15F110.1H30E—C30—H30F104.5
C8—N1—C1—C663.9 (3)C23—N2—C16—C2197.6 (3)
C8—N1—C1—C2118.2 (3)C23—N2—C16—C1786.8 (3)
C6—C1—C2—C30.1 (3)C21—C16—C17—C180.7 (3)
N1—C1—C2—C3177.9 (2)N2—C16—C17—C18176.4 (2)
C6—C1—C2—C7178.8 (2)C21—C16—C17—C22177.1 (2)
N1—C1—C2—C70.8 (3)N2—C16—C17—C221.4 (3)
C1—C2—C3—C40.4 (4)C16—C17—C18—C190.8 (4)
C7—C2—C3—C4178.2 (2)C22—C17—C18—C19177.0 (3)
C2—C3—C4—C50.5 (4)C17—C18—C19—C200.1 (4)
C3—C4—C5—C60.1 (4)C18—C19—C20—C210.7 (4)
C2—C1—C6—C50.6 (3)C17—C16—C21—C200.0 (3)
N1—C1—C6—C5177.3 (2)N2—C16—C21—C20175.7 (2)
C4—C5—C6—C10.6 (4)C19—C20—C21—C160.8 (4)
C1—N1—C8—O13.2 (4)C16—N2—C23—O21.5 (4)
C1—N1—C8—C9174.6 (3)C16—N2—C23—C24177.9 (3)
O1—C8—C9—C10164.4 (3)O2—C23—C24—C2528.9 (4)
N1—C8—C9—C1013.4 (4)N2—C23—C24—C25150.4 (2)
O1—C8—C9—C1410.5 (4)O2—C23—C24—C29152.7 (2)
N1—C8—C9—C14171.7 (2)N2—C23—C24—C2927.9 (4)
C14—C9—C10—C111.7 (4)C29—C24—C25—C261.7 (4)
C8—C9—C10—C11173.2 (3)C23—C24—C25—C26176.6 (2)
C9—C10—C11—C120.3 (4)C24—C25—C26—C271.1 (4)
C10—C11—C12—C132.1 (4)C25—C26—C27—C280.8 (4)
C10—C11—C12—C15176.0 (3)C25—C26—C27—C30179.3 (3)
C11—C12—C13—C141.9 (4)C26—C27—C28—C292.0 (4)
C15—C12—C13—C14176.2 (3)C30—C27—C28—C29178.0 (2)
C12—C13—C14—C90.1 (4)C27—C28—C29—C241.4 (4)
C10—C9—C14—C132.0 (4)C25—C24—C29—C280.5 (4)
C8—C9—C14—C13173.3 (3)C23—C24—C29—C28177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.052.878 (2)163
N2—H2A···O1i0.862.052.883 (2)162
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2964 (6), 9.9075 (5), 18.1347 (13)
α, β, γ (°)88.331 (5), 82.892 (6), 79.558 (5)
V3)1279.29 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.88 × 0.09 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.968, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
18269, 4354, 1602
Rint0.088
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 0.74
No. of reflections4354
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.11

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.052.878 (2)163
N2—H2A···O1i0.862.052.883 (2)162
Symmetry code: (i) x, y1, z.
 

Acknowledgements

MF and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds