organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1497-o1498

Methyl 1-(7-acetamido-5,8-dimeth­­oxy­quinolin-2-yl)-4-methyl-β-carboline-3-carboxyl­ate

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 16 May 2011; accepted 17 May 2011; online 25 May 2011)

The title compound, C27H24N4O5, is an inter­mediate in the synthesis of lavendamycin via a ruthenium-catalysed [2 + 2 + 2] cyclo­addition. An intra­molecular hydrogen-bond bridge from the carboline to the quinoline stabilizes a highly planar geometry [maximum deviation = 0.065 (6) Å] for the two rigid units. This hydrogen-bond-stabilized coplanarity has a very close analogy in the structure of the anti­tumor anti­biotic streptonigrin in the solid state and in solution. Inter­molecular hydrogen-bond bridges of amides groups along the a axis and ππ stacking inter­actions [centroid–centroid distance = 3.665 (9) Å] connect mol­ecules arranged in a parallel manner.

Related literature

For metal-catalysed transformations of tethered alkynyl-ynamides to carbolines and other heteroannulated indoles, see: Nissen et al. (2011[Nissen, F., Richard, V., Alayrac, C. & Witulski, B. (2011). Chem. Commun. doi: 10.1039/C1CC11298H.]); Dassonneville et al. (2010[Dassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665.], 2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]). For the synthesis of the natural product lavendamycin (systematic name 1-(7-amino-5,8-dioxoquinolin-2-yl)-4-methyl-9H-pyrido[3,4-b]indole-3-carb­oxy­lic acid) via [2 + 2 + 2] cyclo­addition, see: Nissen & Detert (2011[Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2853.]). For the isololation of lavendamycin from streptomyces lavendulae, see: Doyle et al. (1981[Doyle, T. W., Balitz, D. M., Grulich, R. E., Nettleton, D. E., Gopuld, S. J., Tann, C. & Moews, A. E. (1981). Tetrahedron Lett. 22, 4594-4598.]). For the anti-tumor activity of lavendamycin, see: Fang et al. (2003[Fang, A. Y., Linardic, C. M., Richardson, D. A. & Behforouz, M. A. (2003). Mol. Cancer Ther. 2, 517-526.]). For the preparation of lavandamycin, see: Behforouz et al. (1996[Behforouz, M., Haddad, J., Cai, W., Arnold, M. B., Mohammadi, F., Sousa, A. C. & Horn, M. A. (1996). J. Org. Chem. 61, 6552-6555.]) Godard et al. (1993[Godard, A., Rocca, P., Fourquez, J. M., Rovera, J. Z., Marsais, F. & Quéguiner, G. (1993). Tetrahedron Lett. 34, 7919-7922.]). For related structures, see: Chiu & Lipscomb (1975[Chiu, Y.-Y. H. & Lipscomb, W. N. (1975). J. Am. Chem. Soc. 97, 2525-2530.]); Harding et al. (1993[Harding, M. M., Long, G. V. & Brown, C. L. (1993). J. Med. Chem. 36, 3056-3060.]).

[Scheme 1]

Experimental

Crystal data
  • C27H24N4O5

  • Mr = 484.50

  • Triclinic, [P \overline 1]

  • a = 4.646 (10) Å

  • b = 13.81 (3) Å

  • c = 18.768 (19) Å

  • α = 102.06 (9)°

  • β = 95.23 (10)°

  • γ = 96.85 (11)°

  • V = 1161 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.58 × 0.06 × 0.03 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 4993 measured reflections

  • 4412 independent reflections

  • 2069 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.248

  • S = 0.99

  • 4412 reflections

  • 330 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3 0.88 2.17 2.693 (7) 118
N4—H4⋯O5i 0.88 1.98 2.824 (8) 160
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as part of a larger project focusing on the synthesis of indolo-annulated heterocycles via [2 + 2+2] cycloaddition of alkynyl-ynamides and nitriles or heterocumulenes catalyzed by rhodium or ruthenium (Nissen et al., 2011; Dassonneville et al., 2011) and is a synthetic precursor of the natural product lavendamycin (Nissen & Detert, 2011). The molecule is built up by two rigid and planar units, both are coplanar. This flat structure is stabilized by an intramolecular hydrogen bond from the carboline-NH to the quinoline-N N2—H2···N3 with a distance of 2.17 Å. Whereas the ester group is coplanar with the carboline core [torsion angle O1—C1—C3—C9 of -0.4 (8)°], the acetamido group is twisted out of the plane of the quinoline framework. The torsion angle C20—N4—C19—C22 amounts to -47.9 (7)°. This torsion can result from the sterical hindrance due to the neighbouring methoxy group, but its ability to act as a hydrogen bridge donor and acceptor is important for the formation of crystals of the title compound. Parallel molecules, arranged in the shape of tilted staples are connected to infinite chains via H-bridging along the a-axis. The tilt angle of the mean plane of the molecules relative to the ab-plane is 54.3°. The second interaction is π-π-stacking, resulting in a distance of only 3.665 (9) Å of the centroids of the pyrrole ring (N2—C6) and the benzo-ring (C6—C14) (symmetry code 1+X,Y,Z). Two molecules, connected via a center of inversion fill the unit cell.

Related literature top

For metal-catalysed transformations of tethered alkynyl-ynamides to carbolines and other heteroannulated indoles, see: Nissen et al. (2011); Dassonneville et al. (2010, 2011). For the synthesis of the natural product lavendamycin (systematic name 1-(7-amino-5,8-dioxoquinolin-2-yl)-4-methyl-9H-pyrido[3,4-b]indole-3-carboxylic acid) via [2+2+2] cycloaddition, see: Nissen & Detert (2011). For the isololation of lavendamycin from streptomyces lavendulae, see: Doyle et al. (1981). For the anti-tumor activity of lavendamycin, see: Fang et al. (2003). For the preparation of lavandamycin, see: Behforouz et al. (1996) Godard et al. (1993). For related structures, see: Chiu & Lipscomb (1975); Harding et al. (1993).

Experimental top

Pd/C (10%, 47 mg, 44 µmol, 5 mol%) was added to a suspension of Methyl 1-(5,8-dimethoxy-7-nitroquinolin-2-yl)-4-methyl-β-carboline-3-carboxylate (405 mg, 0.86 mmol) (Nissen & Detert, 2011) in THF (170 ml) and the mixture was stirred 13 h under H2 atmosphere. Ac2O (5.0 ml) was added and the mixture was heated to 323 K. After 3 h the solvent was removed in vacuo, the residue dissolved in CH2Cl2 and filtered through celite. The filtrate was washed with aqueous NaHCO3 (8%, 8 ml), dried (MgSO4) and concentrated. Crystallization from chloroform/diethyl ether yielded the title compound (399 mg, 0.82 mmol, 96%) as a bright yellow solid. M.p. 467–468 K Rf: 0.12 (SiO2, hexane:ethyl acetate:ethanol 6:3:1).

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the packing diagram showing the hydrogen bonds. View along b-axis.
Methyl 1-(7-acetamido-5,8-dimethoxyquinolin-2-yl)-4-methyl-β-carboline-3- carboxylate top
Crystal data top
C27H24N4O5Z = 2
Mr = 484.50F(000) = 508
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 4.646 (10) ÅCell parameters from 25 reflections
b = 13.81 (3) Åθ = 10–25°
c = 18.768 (19) ŵ = 0.80 mm1
α = 102.06 (9)°T = 193 K
β = 95.23 (10)°10, yellow
γ = 96.85 (11)°0.58 × 0.06 × 0.03 mm
V = 1161 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.054
Radiation source: rotating anodeθmax = 70.0°, θmin = 2.4°
Graphite monochromatorh = 50
ω/2θ scansk = 1616
4993 measured reflectionsl = 2222
4412 independent reflections3 standard reflections every 60 min
2069 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.248 w = 1/[σ2(Fo2) + (0.1159P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4412 reflectionsΔρmax = 0.26 e Å3
330 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (5)
Crystal data top
C27H24N4O5γ = 96.85 (11)°
Mr = 484.50V = 1161 (4) Å3
Triclinic, P1Z = 2
a = 4.646 (10) ÅCu Kα radiation
b = 13.81 (3) ŵ = 0.80 mm1
c = 18.768 (19) ÅT = 193 K
α = 102.06 (9)°0.58 × 0.06 × 0.03 mm
β = 95.23 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.054
4993 measured reflections3 standard reflections every 60 min
4412 independent reflections intensity decay: 2%
2069 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
4412 reflectionsΔρmin = 0.34 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9484 (9)0.6415 (3)0.3958 (2)0.0631 (12)
O21.1937 (9)0.5349 (3)0.43953 (19)0.0530 (11)
O30.5569 (7)0.0529 (2)0.16500 (18)0.0381 (8)
N40.7247 (8)0.2335 (3)0.1735 (2)0.0314 (9)
H40.53290.24040.16600.038*
O51.1210 (8)0.3053 (3)0.1464 (2)0.0691 (14)
O61.4309 (8)0.0606 (3)0.38367 (19)0.0469 (10)
N10.9463 (9)0.3816 (3)0.3424 (2)0.0363 (10)
N20.4724 (9)0.2191 (3)0.1858 (2)0.0367 (10)
H20.49940.15610.18060.044*
N30.8225 (9)0.1206 (3)0.2585 (2)0.0349 (10)
C10.9992 (12)0.5579 (4)0.3929 (3)0.0392 (12)
C21.3460 (13)0.6178 (4)0.4953 (3)0.0506 (15)
H2A1.46800.66260.47250.076*
H2B1.46950.59260.53050.076*
H2C1.20390.65450.52100.076*
C30.8488 (11)0.4675 (3)0.3360 (3)0.0362 (12)
C40.8328 (11)0.2958 (3)0.2955 (3)0.0361 (12)
C50.6143 (11)0.2973 (3)0.2397 (3)0.0341 (11)
C60.2800 (11)0.2556 (4)0.1412 (3)0.0352 (11)
C70.2906 (11)0.3594 (4)0.1682 (3)0.0355 (11)
C80.5118 (11)0.3860 (3)0.2323 (3)0.0344 (11)
C90.6334 (11)0.4754 (3)0.2817 (3)0.0368 (12)
C100.5268 (13)0.5721 (4)0.2747 (3)0.0508 (15)
H10A0.46420.60390.32140.076*
H10B0.36160.55850.23590.076*
H10C0.68500.61690.26230.076*
C110.1095 (11)0.4101 (4)0.1309 (3)0.0416 (13)
H110.11050.48000.14760.050*
C120.0723 (12)0.3573 (4)0.0691 (3)0.0490 (14)
H120.19930.39140.04390.059*
C130.0731 (12)0.2558 (4)0.0431 (3)0.0477 (14)
H130.19690.22200.00020.057*
C140.0991 (12)0.2038 (4)0.0782 (3)0.0432 (13)
H140.09650.13400.06050.052*
C150.9462 (11)0.2043 (3)0.3056 (3)0.0367 (12)
C160.9155 (11)0.0334 (3)0.2670 (3)0.0320 (11)
C170.7812 (10)0.0564 (3)0.2176 (3)0.0330 (11)
C180.6517 (15)0.0421 (5)0.0971 (3)0.0645 (19)
H18A0.79020.01950.10470.097*
H18B0.48310.03880.06270.097*
H18C0.74730.09960.07690.097*
C190.8703 (10)0.1450 (3)0.2232 (3)0.0323 (11)
C200.8550 (10)0.3067 (4)0.1373 (3)0.0374 (12)
C210.6628 (11)0.3906 (4)0.0857 (3)0.0447 (14)
H21A0.72720.39840.03680.067*
H21B0.46100.37620.08330.067*
H21C0.67310.45250.10290.067*
C221.0881 (11)0.1513 (4)0.2785 (3)0.0373 (12)
H221.14370.21430.28200.045*
C231.2197 (10)0.0657 (4)0.3273 (3)0.0338 (11)
C241.5056 (13)0.1523 (4)0.3972 (3)0.0514 (15)
H24A1.33110.19300.40640.077*
H24B1.65280.13870.44030.077*
H24C1.58460.18850.35440.077*
C251.1358 (11)0.0293 (3)0.3224 (3)0.0345 (11)
C261.2625 (12)0.1205 (4)0.3705 (3)0.0413 (13)
H261.41500.12140.40800.050*
C271.1656 (11)0.2061 (4)0.3626 (3)0.0392 (12)
H271.24530.26760.39550.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.068 (3)0.032 (2)0.077 (3)0.006 (2)0.016 (2)0.004 (2)
O20.073 (3)0.037 (2)0.042 (2)0.003 (2)0.006 (2)0.0036 (17)
O30.038 (2)0.0337 (18)0.0398 (19)0.0018 (16)0.0003 (17)0.0052 (15)
N40.022 (2)0.0242 (19)0.044 (2)0.0010 (16)0.0027 (18)0.0013 (17)
O50.0185 (19)0.067 (3)0.097 (3)0.0068 (18)0.001 (2)0.033 (2)
O60.047 (2)0.039 (2)0.050 (2)0.0009 (17)0.0097 (18)0.0100 (17)
N10.039 (2)0.028 (2)0.040 (2)0.0042 (18)0.009 (2)0.0057 (18)
N20.036 (2)0.031 (2)0.038 (2)0.0019 (18)0.002 (2)0.0024 (18)
N30.038 (2)0.027 (2)0.034 (2)0.0025 (18)0.0078 (19)0.0016 (17)
C10.042 (3)0.029 (3)0.044 (3)0.002 (2)0.012 (3)0.003 (2)
C20.069 (4)0.033 (3)0.041 (3)0.006 (3)0.000 (3)0.000 (2)
C30.047 (3)0.024 (2)0.038 (3)0.001 (2)0.016 (2)0.007 (2)
C40.040 (3)0.032 (3)0.033 (3)0.004 (2)0.013 (2)0.001 (2)
C50.033 (3)0.027 (2)0.039 (3)0.002 (2)0.010 (2)0.003 (2)
C60.031 (3)0.037 (3)0.037 (3)0.004 (2)0.008 (2)0.005 (2)
C70.030 (3)0.039 (3)0.035 (3)0.001 (2)0.011 (2)0.002 (2)
C80.034 (3)0.036 (3)0.034 (3)0.001 (2)0.015 (2)0.008 (2)
C90.042 (3)0.028 (2)0.038 (3)0.000 (2)0.012 (2)0.002 (2)
C100.058 (4)0.038 (3)0.050 (3)0.004 (3)0.007 (3)0.004 (3)
C110.041 (3)0.035 (3)0.052 (3)0.010 (2)0.010 (3)0.011 (3)
C120.041 (3)0.052 (3)0.053 (3)0.004 (3)0.004 (3)0.012 (3)
C130.039 (3)0.050 (3)0.048 (3)0.002 (3)0.002 (3)0.004 (3)
C140.045 (3)0.035 (3)0.047 (3)0.001 (2)0.007 (3)0.005 (2)
C150.040 (3)0.031 (3)0.036 (3)0.002 (2)0.006 (2)0.002 (2)
C160.033 (3)0.028 (2)0.034 (3)0.001 (2)0.005 (2)0.006 (2)
C170.029 (3)0.033 (3)0.034 (3)0.002 (2)0.000 (2)0.005 (2)
C180.075 (5)0.071 (4)0.040 (3)0.016 (4)0.004 (3)0.016 (3)
C190.028 (3)0.025 (2)0.039 (3)0.003 (2)0.001 (2)0.002 (2)
C200.020 (2)0.040 (3)0.046 (3)0.004 (2)0.003 (2)0.001 (2)
C210.032 (3)0.039 (3)0.054 (3)0.002 (2)0.002 (3)0.009 (3)
C220.038 (3)0.032 (3)0.041 (3)0.003 (2)0.005 (2)0.008 (2)
C230.026 (2)0.038 (3)0.037 (3)0.001 (2)0.003 (2)0.011 (2)
C240.047 (3)0.049 (3)0.057 (4)0.003 (3)0.008 (3)0.020 (3)
C250.032 (3)0.034 (3)0.033 (3)0.006 (2)0.002 (2)0.003 (2)
C260.040 (3)0.038 (3)0.038 (3)0.007 (2)0.004 (2)0.004 (2)
C270.043 (3)0.031 (3)0.037 (3)0.003 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C11.198 (6)C16—C171.420 (7)
O2—C11.313 (6)C17—C191.359 (7)
O2—C21.442 (6)C19—C221.406 (7)
O3—C171.380 (6)C20—C211.485 (7)
O3—C181.417 (7)C22—C231.373 (7)
N4—C201.336 (6)C23—C251.431 (7)
N4—C191.425 (6)C25—C261.414 (7)
O5—C201.229 (6)C26—C271.346 (7)
O6—C231.360 (6)N2—H20.8800
O6—C241.419 (6)N4—H40.8800
N1—C41.337 (6)C2—H2A0.9800
N1—C31.342 (6)C2—H2B0.9800
N2—C51.370 (6)C2—H2C0.9800
N2—C61.380 (6)C10—H10A0.9800
N3—C151.330 (6)C10—H10B0.9800
N3—C161.362 (6)C10—H10C0.9800
C1—C31.512 (7)C11—H110.9500
C3—C91.392 (7)C12—H120.9500
C4—C51.396 (7)C13—H130.9500
C4—C151.467 (7)C14—H140.9500
C5—C81.395 (7)C18—H18A0.9800
C6—C141.392 (7)C18—H18B0.9800
C6—C71.410 (7)C18—H18C0.9800
C7—C111.388 (7)C21—H21A0.9800
C7—C81.462 (7)C21—H21B0.9800
C8—C91.400 (7)C21—H21C0.9800
C9—C101.505 (7)C22—H220.9500
C11—C121.383 (7)C24—H24A0.9800
C12—C131.383 (8)C24—H24B0.9800
C13—C141.352 (7)C24—H24C0.9800
C15—C271.402 (7)C26—H260.9500
C16—C251.406 (7)C27—H270.9500
C1—O2—C2115.5 (4)C16—C25—C26117.4 (5)
C17—O3—C18113.6 (4)C16—C25—C23119.0 (4)
C20—N4—C19125.5 (4)C26—C25—C23123.6 (5)
C23—O6—C24117.3 (4)C27—C26—C25119.5 (5)
C4—N1—C3120.2 (5)C26—C27—C15119.7 (5)
C5—N2—C6108.6 (4)C6—N2—H2126.00
C15—N3—C16117.6 (4)C5—N2—H2126.00
O1—C1—O2123.1 (5)C19—N4—H4117.00
O1—C1—C3124.4 (5)C20—N4—H4117.00
O2—C1—C3112.5 (4)O2—C2—H2A110.00
N1—C3—C9124.4 (4)O2—C2—H2B109.00
N1—C3—C1113.9 (5)O2—C2—H2C109.00
C9—C3—C1121.7 (4)H2A—C2—H2B109.00
N1—C4—C5118.9 (5)H2A—C2—H2C109.00
N1—C4—C15117.8 (5)H2B—C2—H2C109.00
C5—C4—C15123.2 (4)C9—C10—H10A109.00
N2—C5—C8110.2 (4)C9—C10—H10B109.00
N2—C5—C4128.5 (5)C9—C10—H10C110.00
C8—C5—C4121.4 (4)H10A—C10—H10B109.00
N2—C6—C14128.4 (5)H10A—C10—H10C109.00
N2—C6—C7109.4 (4)H10B—C10—H10C109.00
C14—C6—C7122.2 (5)C7—C11—H11120.00
C11—C7—C6118.2 (5)C12—C11—H11121.00
C11—C7—C8136.1 (5)C11—C12—H12119.00
C6—C7—C8105.7 (4)C13—C12—H12119.00
C5—C8—C9119.0 (5)C12—C13—H13119.00
C5—C8—C7106.1 (4)C14—C13—H13119.00
C9—C8—C7134.8 (5)C6—C14—H14121.00
C3—C9—C8116.0 (5)C13—C14—H14121.00
C3—C9—C10124.0 (4)O3—C18—H18A110.00
C8—C9—C10120.0 (5)O3—C18—H18B109.00
C12—C11—C7119.0 (5)O3—C18—H18C109.00
C11—C12—C13121.4 (5)H18A—C18—H18B109.00
C14—C13—C12121.3 (5)H18A—C18—H18C109.00
C13—C14—C6118.0 (5)H18B—C18—H18C109.00
N3—C15—C27123.1 (5)C20—C21—H21A109.00
N3—C15—C4115.5 (5)C20—C21—H21B109.00
C27—C15—C4121.4 (4)C20—C21—H21C110.00
N3—C16—C25122.7 (4)H21A—C21—H21B109.00
N3—C16—C17117.9 (4)H21A—C21—H21C109.00
C25—C16—C17119.4 (4)H21B—C21—H21C109.00
C19—C17—O3120.5 (4)C19—C22—H22120.00
C19—C17—C16120.0 (4)C23—C22—H22120.00
O3—C17—C16119.5 (4)O6—C24—H24A109.00
C17—C19—C22121.7 (4)O6—C24—H24B109.00
C17—C19—N4118.0 (4)O6—C24—H24C109.00
C22—C19—N4120.2 (4)H24A—C24—H24B109.00
O5—C20—N4121.8 (5)H24A—C24—H24C109.00
O5—C20—C21121.4 (5)H24B—C24—H24C110.00
N4—C20—C21116.8 (4)C25—C26—H26120.00
C23—C22—C19119.5 (5)C27—C26—H26120.00
O6—C23—C22125.9 (5)C15—C27—H27120.00
O6—C23—C25113.7 (4)C26—C27—H27120.00
C22—C23—C25120.5 (5)
C2—O2—C1—O10.2 (8)N2—C6—C14—C13179.9 (5)
C2—O2—C1—C3179.9 (4)C7—C6—C14—C130.7 (8)
C4—N1—C3—C91.0 (7)C16—N3—C15—C270.1 (7)
C4—N1—C3—C1179.9 (4)C16—N3—C15—C4178.3 (4)
O1—C1—C3—N1178.5 (5)N1—C4—C15—N3178.7 (4)
O2—C1—C3—N11.6 (6)C5—C4—C15—N31.4 (7)
O1—C1—C3—C90.4 (8)N1—C4—C15—C270.3 (7)
O2—C1—C3—C9179.5 (5)C5—C4—C15—C27179.8 (5)
C3—N1—C4—C50.6 (7)C15—N3—C16—C250.6 (7)
C3—N1—C4—C15179.5 (4)C15—N3—C16—C17179.1 (5)
C6—N2—C5—C81.5 (5)C18—O3—C17—C1988.9 (6)
C6—N2—C5—C4178.0 (5)C18—O3—C17—C1692.3 (6)
N1—C4—C5—N2179.1 (5)N3—C16—C17—C19179.0 (4)
C15—C4—C5—N20.8 (8)C25—C16—C17—C191.4 (7)
N1—C4—C5—C80.4 (7)N3—C16—C17—O32.3 (7)
C15—C4—C5—C8179.7 (4)C25—C16—C17—O3177.4 (4)
C5—N2—C6—C14177.4 (5)O3—C17—C19—C22176.8 (4)
C5—N2—C6—C72.0 (5)C16—C17—C19—C222.0 (7)
N2—C6—C7—C11179.4 (4)O3—C17—C19—N40.2 (7)
C14—C6—C7—C111.1 (7)C16—C17—C19—N4178.6 (4)
N2—C6—C7—C81.7 (5)C20—N4—C19—C17135.4 (5)
C14—C6—C7—C8177.8 (5)C20—N4—C19—C2247.9 (7)
N2—C5—C8—C9178.9 (4)C19—N4—C20—O52.7 (8)
C4—C5—C8—C90.6 (7)C19—N4—C20—C21177.5 (4)
N2—C5—C8—C70.4 (5)C17—C19—C22—C231.4 (7)
C4—C5—C8—C7179.1 (4)N4—C19—C22—C23178.0 (5)
C11—C7—C8—C5179.3 (6)C24—O6—C23—C225.6 (7)
C6—C7—C8—C50.8 (5)C24—O6—C23—C25173.7 (4)
C11—C7—C8—C91.1 (10)C19—C22—C23—O6179.5 (5)
C6—C7—C8—C9177.4 (5)C19—C22—C23—C250.2 (7)
N1—C3—C9—C81.2 (7)N3—C16—C25—C260.1 (7)
C1—C3—C9—C8179.9 (5)C17—C16—C25—C26179.8 (5)
N1—C3—C9—C10179.7 (5)N3—C16—C25—C23179.9 (4)
C1—C3—C9—C100.9 (8)C17—C16—C25—C230.2 (7)
C5—C8—C9—C31.0 (7)O6—C23—C25—C16179.0 (4)
C7—C8—C9—C3179.0 (5)C22—C23—C25—C160.3 (7)
C5—C8—C9—C10179.9 (5)O6—C23—C25—C261.0 (7)
C7—C8—C9—C101.9 (8)C22—C23—C25—C26179.7 (5)
C6—C7—C11—C120.1 (7)C16—C25—C26—C271.4 (7)
C8—C7—C11—C12178.3 (5)C23—C25—C26—C27178.7 (5)
C7—C11—C12—C131.2 (8)C25—C26—C27—C151.8 (8)
C11—C12—C13—C141.6 (9)N3—C15—C27—C261.1 (8)
C12—C13—C14—C60.6 (8)C4—C15—C27—C26179.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N30.882.172.693 (7)118
N4—H4···O5i0.881.982.824 (8)160
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC27H24N4O5
Mr484.50
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)4.646 (10), 13.81 (3), 18.768 (19)
α, β, γ (°)102.06 (9), 95.23 (10), 96.85 (11)
V3)1161 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.58 × 0.06 × 0.03
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4993, 4412, 2069
Rint0.054
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.248, 0.99
No. of reflections4412
No. of parameters330
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N30.882.172.693 (7)118
N4—H4···O5i0.881.982.824 (8)160
Symmetry code: (i) x1, y, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBehforouz, M., Haddad, J., Cai, W., Arnold, M. B., Mohammadi, F., Sousa, A. C. & Horn, M. A. (1996). J. Org. Chem. 61, 6552–6555.  CrossRef PubMed CAS Google Scholar
First citationChiu, Y.-Y. H. & Lipscomb, W. N. (1975). J. Am. Chem. Soc. 97, 2525–2530.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDassonneville, B., Schollmeyer, D., Witulski, B. & Detert, H. (2010). Acta Cryst. E66, o2665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationDoyle, T. W., Balitz, D. M., Grulich, R. E., Nettleton, D. E., Gopuld, S. J., Tann, C. & Moews, A. E. (1981). Tetrahedron Lett. 22, 4594–4598.  Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFang, A. Y., Linardic, C. M., Richardson, D. A. & Behforouz, M. A. (2003). Mol. Cancer Ther. 2, 517–526.  Web of Science PubMed CAS Google Scholar
First citationGodard, A., Rocca, P., Fourquez, J. M., Rovera, J. Z., Marsais, F. & Quéguiner, G. (1993). Tetrahedron Lett. 34, 7919–7922.  CrossRef CAS Google Scholar
First citationHarding, M. M., Long, G. V. & Brown, C. L. (1993). J. Med. Chem. 36, 3056–3060.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2853.  Web of Science CSD CrossRef Google Scholar
First citationNissen, F., Richard, V., Alayrac, C. & Witulski, B. (2011). Chem. Commun. doi: 10.1039/C1CC11298H.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1497-o1498
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds