metal-organic compounds
Diaquabis[5-(2-pyridylmethyl)tetrazolato-κ2N1,N5]zinc(II)
aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: encui_yang@yahoo.com.cn
In the title mononuclear complex, [Zn(C7H6N5)2(H2O)2], the ZnII atom, located on an inversion centre, is in a distorted octahedral coordination geometry formed by four N atoms from two chelating 5-(2-pyridylmethyl)tetrazolate ligands and two O donors from two water molecules. Intermolecular O—H⋯N hydrogen bonds between the coordinated water molecule and the tetrazolyl group of the 5-(2-pyridylmethyl)tetrazolate ligand lead to the formation of a three-dimensional network.
Related literature
For metal-organic frameworks with tetrazolate ligands and their applications in magnetism, fluorescence and gas storage, see: Yang et al. (2011); Feng et al. (2010); Zhao et al. (2008); Panda et al. (2011). For metal complexes with in situ-generated 5-(2-pyridylmethyl)-tetrazolate ligands, see: Xu et al. (2009); Wang (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811019507/bt5553sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019507/bt5553Isup2.hkl
A mixture containing 2-(pyridin-2-yl)acetonitrile (26 mg, 0.2 mmol), Zn(NO3)2 (29.7 mg, 0.1 mmol), 1,3,5-benzenetricarboxylic acid (21.0 mg, 0.1 mmol), NaN3 (13.0 mg, 0.2 mmol), and doubly deionized water (10.0 ml) was sealed in a Teflon-lined reactor (23.0 ml) and heated at 125 °C for 72 h. After the mixture was cooled to room temperature at a rate of 5.5°C/h, pale-yellow block-shaped crystals suitable for X-ray
were obtained. Yield: 56% based on ZnII salt. Anal. Calcd.for C14H16N10O2Zn: C, 39.87; H, 3.82; N, 33.21%. Found: C, 39.85; H, 3.82; N, 33.24%.H atoms were located in a difference map but refined using a riding model with O-H = 0.85Å, Caromatic-H = 0.95Å, Cmethylene-H = 0.99Å and with U(H) set to 1.2 U of the parent atom.
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C7H6N5)2(H2O)2] | F(000) = 432 |
Mr = 421.74 | Dx = 1.742 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6695 (4) Å | Cell parameters from 3869 reflections |
b = 13.8949 (8) Å | θ = 2.8–28.4° |
c = 10.8718 (5) Å | µ = 1.57 mm−1 |
β = 127.055 (2)° | T = 173 K |
V = 804.05 (8) Å3 | Block, pale yellow |
Z = 2 | 0.20 × 0.10 × 0.08 mm |
Bruker APEXII CCD diffractometer | 1388 independent reflections |
Radiation source: fine-focus sealed tube | 1335 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.745, Tmax = 0.885 | k = −16→11 |
3929 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0146P)2 + 0.7405P] where P = (Fo2 + 2Fc2)/3 |
1388 reflections | (Δ/σ)max < 0.001 |
124 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Zn(C7H6N5)2(H2O)2] | V = 804.05 (8) Å3 |
Mr = 421.74 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.6695 (4) Å | µ = 1.57 mm−1 |
b = 13.8949 (8) Å | T = 173 K |
c = 10.8718 (5) Å | 0.20 × 0.10 × 0.08 mm |
β = 127.055 (2)° |
Bruker APEXII CCD diffractometer | 1388 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1335 reflections with I > 2σ(I) |
Tmin = 0.745, Tmax = 0.885 | Rint = 0.030 |
3929 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.62 e Å−3 |
1388 reflections | Δρmin = −0.30 e Å−3 |
124 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 1.0000 | 0.0000 | 0.01318 (11) | |
O1 | 0.6481 (2) | 0.90283 (9) | −0.08811 (14) | 0.0196 (3) | |
H1A | 0.5809 | 0.8510 | −0.1382 | 0.024* | |
H1B | 0.7995 | 0.9131 | −0.0532 | 0.024* | |
N1 | 0.4006 (3) | 0.88555 (10) | 0.07937 (16) | 0.0144 (3) | |
N2 | 0.1830 (3) | 0.86762 (11) | 0.05983 (17) | 0.0164 (3) | |
N3 | 0.2217 (3) | 0.79864 (11) | 0.15370 (17) | 0.0185 (3) | |
N4 | 0.4661 (3) | 0.77039 (11) | 0.23846 (16) | 0.0161 (3) | |
N5 | 0.8595 (3) | 0.99858 (9) | 0.22729 (17) | 0.0135 (3) | |
C1 | 0.5681 (3) | 0.82608 (12) | 0.18945 (19) | 0.0140 (4) | |
C2 | 0.8406 (3) | 0.82446 (13) | 0.2548 (2) | 0.0166 (4) | |
H2A | 0.8553 | 0.8047 | 0.1730 | 0.020* | |
H2B | 0.9289 | 0.7759 | 0.3381 | 0.020* | |
C3 | 0.9670 (3) | 0.92064 (13) | 0.3181 (2) | 0.0146 (4) | |
C4 | 0.9710 (3) | 1.08445 (13) | 0.2853 (2) | 0.0159 (4) | |
H4 | 0.8952 | 1.1398 | 0.2218 | 0.019* | |
C5 | 1.1913 (3) | 1.09628 (14) | 0.4334 (2) | 0.0189 (4) | |
H5 | 1.2641 | 1.1582 | 0.4704 | 0.023* | |
C6 | 1.3018 (3) | 1.01590 (14) | 0.5256 (2) | 0.0196 (4) | |
H6 | 1.4524 | 1.0216 | 0.6276 | 0.023* | |
C7 | 1.1908 (3) | 0.92742 (14) | 0.4676 (2) | 0.0175 (4) | |
H7 | 1.2659 | 0.8712 | 0.5289 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01153 (16) | 0.01131 (17) | 0.01161 (16) | −0.00133 (10) | 0.00427 (13) | 0.00173 (10) |
O1 | 0.0142 (6) | 0.0174 (7) | 0.0229 (6) | −0.0019 (5) | 0.0089 (5) | −0.0076 (6) |
N1 | 0.0128 (7) | 0.0135 (7) | 0.0140 (7) | −0.0012 (6) | 0.0066 (6) | 0.0001 (6) |
N2 | 0.0138 (7) | 0.0160 (8) | 0.0174 (7) | −0.0018 (6) | 0.0083 (6) | −0.0003 (7) |
N3 | 0.0160 (7) | 0.0183 (8) | 0.0189 (7) | −0.0012 (6) | 0.0093 (6) | 0.0004 (7) |
N4 | 0.0150 (7) | 0.0145 (7) | 0.0169 (7) | −0.0003 (6) | 0.0086 (6) | 0.0018 (6) |
N5 | 0.0127 (7) | 0.0136 (8) | 0.0141 (7) | 0.0005 (5) | 0.0080 (6) | 0.0011 (5) |
C1 | 0.0160 (8) | 0.0104 (8) | 0.0143 (8) | −0.0005 (7) | 0.0085 (7) | −0.0020 (7) |
C2 | 0.0153 (8) | 0.0139 (9) | 0.0189 (9) | 0.0028 (7) | 0.0094 (7) | 0.0029 (8) |
C3 | 0.0141 (8) | 0.0176 (9) | 0.0164 (8) | 0.0020 (7) | 0.0115 (7) | 0.0019 (8) |
C4 | 0.0166 (8) | 0.0159 (9) | 0.0146 (8) | −0.0015 (7) | 0.0092 (7) | 0.0008 (8) |
C5 | 0.0180 (9) | 0.0212 (10) | 0.0169 (9) | −0.0049 (8) | 0.0102 (8) | −0.0038 (8) |
C6 | 0.0127 (8) | 0.0298 (10) | 0.0151 (9) | 0.0001 (8) | 0.0078 (7) | −0.0005 (8) |
C7 | 0.0145 (8) | 0.0214 (10) | 0.0172 (9) | 0.0051 (7) | 0.0100 (7) | 0.0058 (8) |
Zn1—N1i | 2.0983 (14) | N5—C3 | 1.345 (2) |
Zn1—N1 | 2.0984 (14) | C1—C2 | 1.501 (2) |
Zn1—N5 | 2.1714 (15) | C2—C3 | 1.507 (2) |
Zn1—N5i | 2.1714 (15) | C2—H2A | 0.9900 |
Zn1—O1 | 2.2039 (12) | C2—H2B | 0.9900 |
Zn1—O1i | 2.2039 (12) | C3—C7 | 1.399 (2) |
O1—H1A | 0.8501 | C4—C5 | 1.388 (2) |
O1—H1B | 0.8500 | C4—H4 | 0.9500 |
N1—C1 | 1.324 (2) | C5—C6 | 1.380 (3) |
N1—N2 | 1.3572 (19) | C5—H5 | 0.9500 |
N2—N3 | 1.307 (2) | C6—C7 | 1.376 (3) |
N3—N4 | 1.360 (2) | C6—H6 | 0.9500 |
N4—C1 | 1.335 (2) | C7—H7 | 0.9500 |
N5—C4 | 1.345 (2) | ||
N1i—Zn1—N1 | 180.00 (7) | C3—N5—Zn1 | 125.26 (11) |
N1i—Zn1—N5 | 93.96 (5) | N1—C1—N4 | 111.52 (15) |
N1—Zn1—N5 | 86.04 (5) | N1—C1—C2 | 123.99 (15) |
N1i—Zn1—N5i | 86.04 (5) | N4—C1—C2 | 124.45 (15) |
N1—Zn1—N5i | 93.96 (5) | C1—C2—C3 | 112.78 (14) |
N5—Zn1—N5i | 180.0 | C1—C2—H2A | 109.0 |
N1i—Zn1—O1 | 87.13 (5) | C3—C2—H2A | 109.0 |
N1—Zn1—O1 | 92.87 (5) | C1—C2—H2B | 109.0 |
N5—Zn1—O1 | 90.71 (5) | C3—C2—H2B | 109.0 |
N5i—Zn1—O1 | 89.29 (5) | H2A—C2—H2B | 107.8 |
N1i—Zn1—O1i | 92.87 (5) | N5—C3—C7 | 121.50 (16) |
N1—Zn1—O1i | 87.13 (5) | N5—C3—C2 | 118.36 (15) |
N5—Zn1—O1i | 89.29 (5) | C7—C3—C2 | 120.14 (16) |
N5i—Zn1—O1i | 90.71 (5) | N5—C4—C5 | 123.28 (17) |
O1—Zn1—O1i | 180.00 (6) | N5—C4—H4 | 118.4 |
Zn1—O1—H1A | 126.6 | C5—C4—H4 | 118.4 |
Zn1—O1—H1B | 115.2 | C6—C5—C4 | 118.38 (17) |
H1A—O1—H1B | 117.0 | C6—C5—H5 | 120.8 |
C1—N1—N2 | 105.52 (13) | C4—C5—H5 | 120.8 |
C1—N1—Zn1 | 122.75 (11) | C7—C6—C5 | 119.06 (17) |
N2—N1—Zn1 | 130.38 (11) | C7—C6—H6 | 120.5 |
N3—N2—N1 | 108.81 (13) | C5—C6—H6 | 120.5 |
N2—N3—N4 | 109.47 (13) | C6—C7—C3 | 119.69 (17) |
C1—N4—N3 | 104.66 (14) | C6—C7—H7 | 120.2 |
C4—N5—C3 | 118.08 (15) | C3—C7—H7 | 120.2 |
C4—N5—Zn1 | 116.42 (11) | ||
N1i—Zn1—N1—C1 | −100 (10) | O1i—Zn1—N5—C3 | 116.31 (13) |
N5—Zn1—N1—C1 | −26.79 (13) | N2—N1—C1—N4 | 1.07 (19) |
N5i—Zn1—N1—C1 | 153.21 (13) | Zn1—N1—C1—N4 | 169.09 (11) |
O1—Zn1—N1—C1 | 63.72 (13) | N2—N1—C1—C2 | −176.72 (15) |
O1i—Zn1—N1—C1 | −116.28 (13) | Zn1—N1—C1—C2 | −8.7 (2) |
N1i—Zn1—N1—N2 | 65 (10) | N3—N4—C1—N1 | −0.63 (19) |
N5—Zn1—N1—N2 | 137.97 (14) | N3—N4—C1—C2 | 177.15 (15) |
N5i—Zn1—N1—N2 | −42.03 (14) | N1—C1—C2—C3 | 56.5 (2) |
O1—Zn1—N1—N2 | −131.52 (14) | N4—C1—C2—C3 | −121.02 (18) |
O1i—Zn1—N1—N2 | 48.48 (14) | C4—N5—C3—C7 | −1.2 (2) |
C1—N1—N2—N3 | −1.10 (18) | Zn1—N5—C3—C7 | −175.34 (12) |
Zn1—N1—N2—N3 | −167.85 (11) | C4—N5—C3—C2 | 178.95 (15) |
N1—N2—N3—N4 | 0.75 (18) | Zn1—N5—C3—C2 | 4.8 (2) |
N2—N3—N4—C1 | −0.09 (18) | C1—C2—C3—N5 | −51.8 (2) |
N1i—Zn1—N5—C4 | 34.93 (13) | C1—C2—C3—C7 | 128.33 (16) |
N1—Zn1—N5—C4 | −145.07 (13) | C3—N5—C4—C5 | 0.3 (2) |
N5i—Zn1—N5—C4 | 85.1 (7) | Zn1—N5—C4—C5 | 174.98 (13) |
O1—Zn1—N5—C4 | 122.11 (12) | N5—C4—C5—C6 | 0.2 (3) |
O1i—Zn1—N5—C4 | −57.89 (12) | C4—C5—C6—C7 | 0.2 (3) |
N1i—Zn1—N5—C3 | −150.86 (13) | C5—C6—C7—C3 | −1.0 (3) |
N1—Zn1—N5—C3 | 29.14 (13) | N5—C3—C7—C6 | 1.6 (2) |
N5i—Zn1—N5—C3 | −100.7 (7) | C2—C3—C7—C6 | −178.58 (16) |
O1—Zn1—N5—C3 | −63.69 (13) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N4ii | 0.85 | 2.00 | 2.8395 (19) | 171 |
O1—H1B···N2iii | 0.85 | 2.16 | 2.9386 (18) | 152 |
Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C7H6N5)2(H2O)2] |
Mr | 421.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 6.6695 (4), 13.8949 (8), 10.8718 (5) |
β (°) | 127.055 (2) |
V (Å3) | 804.05 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.57 |
Crystal size (mm) | 0.20 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.745, 0.885 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3929, 1388, 1335 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.053, 1.05 |
No. of reflections | 1388 |
No. of parameters | 124 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.30 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N4i | 0.85 | 2.00 | 2.8395 (19) | 171 |
O1—H1B···N2ii | 0.85 | 2.16 | 2.9386 (18) | 152 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, y, z. |
Acknowledgements
The authors gratefully acknowledge financial support from Tianjin Normal University.
References
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Feng, Y., Yang, E.-C., Fu, M. & Zhao, X.-J. (2010). Z. Anorg. Allg. Chem. 636, 253–257. Web of Science CSD CrossRef CAS Google Scholar
Panda, T., Pachfule, P., Chen, Y., Jiang, J. & Banerjee, R. (2011). Chem. Commun. 47, 2011–2013. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, W. (2008). Acta Cryst. E64, m999. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, G.-H., Tian, H., Pan, K.-J. & Ye, Q. (2009). J. Coord. Chem. 62, 2457–2464. CrossRef CAS Google Scholar
Yang, E.-C., Feng, Y., Liu, Z.-Y. & Zhao, X.-J. (2011). CrystEngComm, 13, 230–242. CrossRef CAS Google Scholar
Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Design and construction of metal-organic frameworks (MOFs) with in situ generated tetrazolate ligands are of great interest due to their intriguing structures and topology (Zhao et al., 2008), promising applications in magnetism (Yang et al. 2011), luminscence (Feng et al. 2010), and gas storage (Panda et al. 2011) as well as the effectiveness, simplicity, and environmental friendliness of the in situ synthetic route. Up to date, lots of tetrazolyl-based MOFs have been reported with special interest on the tuning of the organic nitrile and metal ions (Xu et al. 2009; Wang et al., 2008). Herein, as our continuing investigations on the coordination chemistry of the tetrazolyl ligand, we report the crystal structure of a diaquazinc(II) complex with an in situ generated 5-(2-pyridylmethyl)-tetrazolate ligand.
The molecular structure of the title mononuclear complex is show Figure 1. The ZnII ion in the mononuclear structure of I, locating on an inversion center, exhibits a slightly distorted octahedral geometry involoving four N donors from two in situ generated 5-(pyridin-2-ylmethyl)tetrazolate ligands, and two O atoms from a pair of coordinated water molecules. The flexible 5-(pyridin-2-ylmethyl)tetrazolate anion acts as a bidentate chelating ligand to coordinate with ZnII through pyridyl and tetrazolyl N donors.
In the crystal structure, intermolecular O—H···N hydrogen bonds between the coordinated water molecules and the tetrazolyl group of 5-(2-pyridylmethyl)- tetrazolate ligand (Table 2) lead to the formation of a three-dimensional network (Figure 2).