organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-Chloro-4-meth­­oxy-3-nitro­benzil

aDepartment of Chemistry, Vels Univeristy, Pallavaram, Chennai 600 117, Tamil Nadu, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, Tamil Nadu, India, and cDepartment of Chemistry, SRM Valliammai Engineering College, Kattankulathur 603 203, Tamil Nadu, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 23 May 2011; accepted 23 May 2011; online 28 May 2011)

In the title compound, C15H10ClNO5, the dihedral angle between the aromatic rings is 87.99 (5)°. The O—C—C—O torsion angle between the two carbonyl units is −119.03 (16)°. The crystal structure is stabilized by a weak intermolecular C—H⋯O hydrogen bond.

Related literature

For the biological activity of benzil derivatives, see: Mousset et al. (2008[Mousset, C., Giraud, A., Provot, O., Hamze, A., Bignon, J., Liu, J.-M., Thoret, S., Dubois, J., Brion, J.-D. & Alami, M. (2008). Bioorg. Med. Chem. Lett. 18, 3266-3271.]); Mahabusarakam et al. (2004[Mahabusarakam, W., Deachathai, S., Phongpaichit, S., Jansakul, C. & Taylor, W. C. (2004). Phytochemistry, 65, 1185-1191.]); Ganapaty et al. (2009[Ganapaty, S., Srilakshmi, G. V. K., Pannakal, S. T., Rahman, H., Laatsch, H. & Brun, R. (2009). Phytochemistry, 70, 95-99.]). For bond-length data and related structures, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Fun & Kia (2008a[Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, o1615-o1616.],b[Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, o1617-o1618.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO5

  • Mr = 319.69

  • Triclinic, [P \overline 1]

  • a = 7.8559 (2) Å

  • b = 8.1003 (2) Å

  • c = 12.4961 (3) Å

  • α = 74.893 (1)°

  • β = 74.809 (2)°

  • γ = 68.593 (1)°

  • V = 702.32 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.917, Tmax = 0.943

  • 17487 measured reflections

  • 3937 independent reflections

  • 3150 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.128

  • S = 1.06

  • 3937 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.53 3.318 (2) 143
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzil derivates exhibit radical scavenging, antibacterial and hypertensive (Mahabusarakam et al., 2004), antiprotozoal (Ganapaty et al., 2009), antiproliferative and antimitotic (Mousset et al., 2008) activities.

The geometric parameters of the title compound (Fig. 1) agree with those in the reported structures (Fun & Kia, 2008a,b) and the literature values (Allen et al., 1987). The dihedral angle between the two rings is 87.99 (5)°. The mean plane of methoxy and nitro groups are twisted at an angle of 4.95 (8) and 32.19 (6)°, respectively, with the benzene ring (C9—C14).

The dicarbonyl unit has s-trans conformation as can be indicated by the torsion angles of O1–C7–C6–C1, and O2–C8–C9–C14 being -145.86 (16) and -171.77 (15)°, respectively. This conformation is authenticated by the torsion angle of O1–C7–C8–O2, being -119.03 (16)°.

The crystal structure exhibit weak C—H···O (Table 1 & Fig. 2) and π···π [Cg1···Cg1 (-x,1 - y,2 - z) distance of 3.8904 (9)Å and Cg2···Cg2 (1 - x,2 - y,1 - z) distance of 4.2891 (9) Å; Cg1 and Cg2 are the centroids of the rings (C1—C6) and (C9—C14), respectively] interactions.

Related literature top

For the biological activity of benzil derivatives, see: Mousset et al. (2008); Mahabusarakam et al. (2004); Ganapaty et al. (2009). For bond-length data and related structures, see: Allen et al. (1987); Fun & Kia (2008a,b).

Experimental top

The title compound was synthesized in two steps. The first step involves the benzoin condensation. 4 g of KCN was dissolved in 75cc of water in a one litre flask. To this was added 6.8 g (0.05 mole) of anisaldehyde, 7 g (0.05mole) of 2-chloro benzaldeyde and 75 cc of 95% ethanol. The mixture formed a solution at the boiling temperature and was refluxed for one and half hours. Steam was then passed through the solution until all the alcohol and nearly all the unchanged aldehyde were removed. The condensed water was decanted from the product and later set away to crystallize. The product was then pressed as free as possible from oily material on a suction funnel and washed with cold alcohol. In this way about 9 g of crude product was obtained. The crude mixture was dissolved in hot alcohol and allowed to crystallize slowly. The 2'chloro-4-methoxy benzoin crystallizes out as colourless, hexagonal crystals. From the benzoin about 1 gram was taken and treated with concentrated nitric acid by heating in a water bath inside a fume cupboard for about 3 h until it is free from the smell of nitrogen dioxide. It is then cooled and crystallized using hot ethanol. The obtained benzil is recrystallized using chloroform / acetone in the ratio 3:1. Pure crystals of benzil separates out. The yield is about 70–80%.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
1-(2-chlorophenyl)-2-(4-methoxy-3-nitrophenyl)ethane-1,2-dione top
Crystal data top
C15H10ClNO5Z = 2
Mr = 319.69F(000) = 328
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8559 (2) ÅCell parameters from 8570 reflections
b = 8.1003 (2) Åθ = 2.7–29.0°
c = 12.4961 (3) ŵ = 0.30 mm1
α = 74.893 (1)°T = 295 K
β = 74.809 (2)°Block, colourless
γ = 68.593 (1)°0.30 × 0.20 × 0.20 mm
V = 702.32 (3) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
3937 independent reflections
Radiation source: fine-focus sealed tube3150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 29.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.917, Tmax = 0.943k = 1110
17487 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
3937 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C15H10ClNO5γ = 68.593 (1)°
Mr = 319.69V = 702.32 (3) Å3
Triclinic, P1Z = 2
a = 7.8559 (2) ÅMo Kα radiation
b = 8.1003 (2) ŵ = 0.30 mm1
c = 12.4961 (3) ÅT = 295 K
α = 74.893 (1)°0.30 × 0.20 × 0.20 mm
β = 74.809 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
3937 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3150 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.943Rint = 0.021
17487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.48 e Å3
3937 reflectionsΔρmin = 0.41 e Å3
200 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15981 (6)0.62735 (6)0.72481 (4)0.06164 (15)
O10.66183 (15)0.31713 (16)0.83551 (11)0.0568 (3)
O20.39794 (18)0.70912 (17)0.88704 (10)0.0583 (3)
O30.82025 (17)0.96590 (15)0.40294 (9)0.0523 (3)
O40.5354 (2)1.23772 (19)0.64274 (14)0.0786 (5)
O50.7972 (2)1.19529 (19)0.52797 (13)0.0714 (4)
N10.6714 (2)1.14290 (17)0.58676 (11)0.0457 (3)
C10.17355 (19)0.45206 (19)0.83978 (12)0.0404 (3)
C20.0214 (2)0.3912 (2)0.88416 (15)0.0505 (4)
H20.08770.44860.85520.061*
C30.0327 (2)0.2455 (2)0.97122 (17)0.0571 (4)
H30.06930.20461.00120.069*
C40.1931 (3)0.1598 (2)1.01429 (16)0.0587 (4)
H40.19970.06111.07300.070*
C50.3451 (2)0.2209 (2)0.96994 (14)0.0480 (3)
H50.45370.16270.99930.058*
C60.33717 (18)0.36820 (18)0.88208 (12)0.0376 (3)
C70.50704 (19)0.4244 (2)0.83798 (12)0.0402 (3)
C80.4875 (2)0.6252 (2)0.81244 (12)0.0411 (3)
C90.59015 (19)0.70248 (18)0.70630 (12)0.0384 (3)
C100.59340 (19)0.87676 (18)0.69408 (12)0.0383 (3)
H100.53920.93860.75400.046*
C110.67654 (19)0.95783 (17)0.59376 (12)0.0370 (3)
C120.7569 (2)0.87131 (19)0.50031 (12)0.0397 (3)
C130.7560 (2)0.6947 (2)0.51480 (13)0.0471 (3)
H130.81190.63150.45560.057*
C140.6734 (2)0.61296 (19)0.61536 (13)0.0453 (3)
H140.67320.49580.62280.054*
C150.8938 (3)0.8816 (3)0.30568 (15)0.0650 (5)
H15A1.00080.77840.31920.098*
H15B0.92920.96600.24160.098*
H15C0.80080.84410.29110.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0595 (3)0.0632 (3)0.0616 (3)0.0207 (2)0.0251 (2)0.0054 (2)
O10.0354 (5)0.0565 (7)0.0711 (8)0.0172 (5)0.0089 (5)0.0038 (6)
O20.0625 (7)0.0654 (7)0.0542 (7)0.0350 (6)0.0107 (5)0.0236 (6)
O30.0677 (7)0.0483 (6)0.0396 (5)0.0255 (5)0.0027 (5)0.0083 (4)
O40.0917 (11)0.0534 (7)0.0943 (11)0.0305 (7)0.0123 (8)0.0384 (8)
O50.0858 (10)0.0603 (8)0.0791 (9)0.0483 (7)0.0052 (7)0.0153 (7)
N10.0600 (8)0.0395 (6)0.0464 (7)0.0238 (6)0.0113 (6)0.0094 (5)
C10.0379 (7)0.0413 (7)0.0461 (7)0.0148 (6)0.0065 (5)0.0128 (6)
C20.0344 (7)0.0574 (9)0.0682 (10)0.0180 (6)0.0040 (7)0.0265 (8)
C30.0434 (8)0.0594 (10)0.0749 (11)0.0309 (7)0.0117 (8)0.0246 (9)
C40.0578 (10)0.0507 (9)0.0641 (10)0.0294 (8)0.0054 (8)0.0036 (8)
C50.0434 (7)0.0443 (8)0.0538 (9)0.0187 (6)0.0059 (6)0.0013 (6)
C60.0344 (6)0.0384 (6)0.0425 (7)0.0170 (5)0.0023 (5)0.0088 (5)
C70.0368 (7)0.0461 (7)0.0403 (7)0.0199 (6)0.0060 (5)0.0035 (6)
C80.0387 (7)0.0463 (7)0.0448 (7)0.0226 (6)0.0046 (6)0.0090 (6)
C90.0385 (6)0.0377 (7)0.0431 (7)0.0180 (5)0.0054 (5)0.0080 (5)
C100.0406 (7)0.0397 (7)0.0398 (7)0.0175 (6)0.0045 (5)0.0122 (5)
C110.0419 (7)0.0333 (6)0.0414 (7)0.0174 (5)0.0090 (5)0.0070 (5)
C120.0412 (7)0.0403 (7)0.0388 (7)0.0158 (6)0.0040 (5)0.0084 (5)
C130.0570 (9)0.0404 (7)0.0447 (8)0.0172 (7)0.0010 (6)0.0173 (6)
C140.0535 (8)0.0352 (7)0.0510 (8)0.0191 (6)0.0041 (6)0.0126 (6)
C150.0772 (12)0.0696 (11)0.0423 (8)0.0258 (10)0.0097 (8)0.0175 (8)
Geometric parameters (Å, º) top
Cl1—C11.7315 (16)C5—H50.9300
O1—C71.2072 (18)C6—C71.4894 (18)
O2—C81.2098 (18)C7—C81.531 (2)
O3—C121.3379 (17)C8—C91.4755 (19)
O3—C151.4329 (19)C9—C101.3888 (18)
O4—N11.2288 (19)C9—C141.392 (2)
O5—N11.2081 (18)C10—C111.3727 (19)
N1—C111.4649 (17)C10—H100.9300
C1—C21.386 (2)C11—C121.4039 (19)
C1—C61.387 (2)C12—C131.397 (2)
C2—C31.375 (3)C13—C141.375 (2)
C2—H20.9300C13—H130.9300
C3—C41.371 (3)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.386 (2)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.390 (2)
C12—O3—C15118.41 (13)O2—C8—C7116.30 (13)
O5—N1—O4123.29 (13)C9—C8—C7120.11 (12)
O5—N1—C11119.95 (13)C10—C9—C14118.62 (13)
O4—N1—C11116.76 (13)C10—C9—C8118.39 (12)
C2—C1—C6120.96 (14)C14—C9—C8122.86 (12)
C2—C1—Cl1118.46 (12)C11—C10—C9120.09 (12)
C6—C1—Cl1120.49 (11)C11—C10—H10120.0
C3—C2—C1119.54 (15)C9—C10—H10120.0
C3—C2—H2120.2C10—C11—C12122.04 (12)
C1—C2—H2120.2C10—C11—N1116.88 (12)
C4—C3—C2120.65 (14)C12—C11—N1121.04 (12)
C4—C3—H3119.7O3—C12—C13124.79 (13)
C2—C3—H3119.7O3—C12—C11118.04 (12)
C3—C4—C5119.75 (16)C13—C12—C11117.09 (13)
C3—C4—H4120.1C14—C13—C12120.92 (13)
C5—C4—H4120.1C14—C13—H13119.5
C4—C5—C6120.75 (16)C12—C13—H13119.5
C4—C5—H5119.6C13—C14—C9121.19 (13)
C6—C5—H5119.6C13—C14—H14119.4
C1—C6—C5118.35 (12)C9—C14—H14119.4
C1—C6—C7124.05 (13)O3—C15—H15A109.5
C5—C6—C7117.59 (13)O3—C15—H15B109.5
O1—C7—C6122.20 (13)H15A—C15—H15B109.5
O1—C7—C8117.75 (12)O3—C15—H15C109.5
C6—C7—C8119.31 (12)H15A—C15—H15C109.5
O2—C8—C9123.30 (13)H15B—C15—H15C109.5
C6—C1—C2—C30.1 (2)O2—C8—C9—C14171.77 (15)
Cl1—C1—C2—C3176.25 (12)C7—C8—C9—C1414.6 (2)
C1—C2—C3—C40.1 (3)C14—C9—C10—C110.4 (2)
C2—C3—C4—C50.2 (3)C8—C9—C10—C11175.55 (13)
C3—C4—C5—C60.1 (3)C9—C10—C11—C121.3 (2)
C2—C1—C6—C50.3 (2)C9—C10—C11—N1178.94 (12)
Cl1—C1—C6—C5176.05 (11)O5—N1—C11—C10148.61 (15)
C2—C1—C6—C7179.26 (13)O4—N1—C11—C1031.4 (2)
Cl1—C1—C6—C73.0 (2)O5—N1—C11—C1233.7 (2)
C4—C5—C6—C10.2 (2)O4—N1—C11—C12146.30 (16)
C4—C5—C6—C7179.23 (15)C15—O3—C12—C130.3 (2)
C1—C6—C7—O1145.86 (16)C15—O3—C12—C11176.86 (15)
C5—C6—C7—O133.2 (2)C10—C11—C12—O3174.20 (14)
C1—C6—C7—C844.2 (2)N1—C11—C12—O33.4 (2)
C5—C6—C7—C8136.81 (14)C10—C11—C12—C132.6 (2)
O1—C7—C8—O2119.03 (16)N1—C11—C12—C13179.86 (14)
C6—C7—C8—O251.37 (19)O3—C12—C13—C14174.26 (15)
O1—C7—C8—C955.0 (2)C11—C12—C13—C142.3 (2)
C6—C7—C8—C9134.60 (14)C12—C13—C14—C90.7 (3)
O2—C8—C9—C104.0 (2)C10—C9—C14—C130.6 (2)
C7—C8—C9—C10169.64 (13)C8—C9—C14—C13175.07 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.318 (2)143
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H10ClNO5
Mr319.69
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.8559 (2), 8.1003 (2), 12.4961 (3)
α, β, γ (°)74.893 (1), 74.809 (2), 68.593 (1)
V3)702.32 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.917, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
17487, 3937, 3150
Rint0.021
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.128, 1.06
No. of reflections3937
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.318 (2)143
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

GC acknowledges Vels University for providing laboratory facilities as well the opportunity to do the research work and members of the Chemistry Department of SRM Valliammai Engineering College for useful discussions.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, o1615–o1616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, o1617–o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGanapaty, S., Srilakshmi, G. V. K., Pannakal, S. T., Rahman, H., Laatsch, H. & Brun, R. (2009). Phytochemistry, 70, 95–99.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMahabusarakam, W., Deachathai, S., Phongpaichit, S., Jansakul, C. & Taylor, W. C. (2004). Phytochemistry, 65, 1185–1191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMousset, C., Giraud, A., Provot, O., Hamze, A., Bignon, J., Liu, J.-M., Thoret, S., Dubois, J., Brion, J.-D. & Alami, M. (2008). Bioorg. Med. Chem. Lett. 18, 3266–3271.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds