organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E,E,E)-2,3,5,6-Tetra­kis{2-[4-(di­methyl­amino)­phen­yl]ethen­yl}pyrazine

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 23 May 2011; accepted 24 May 2011; online 28 May 2011)

In the title compound, C44H48N6, the essentially planar mol­ecule [maximum deviation from the mean plane of the π system of 0.271 (3) Å] is located on a crystallographic centre of inversion. The almost planar (angle sums at N atoms = 357.6 and 357.1°) dimethyl­amino groups and short C—N bonds of the aniline groups [both 1.379 (4) Å] indicate strong electronic coupling between these groups and the central pyrazine ring.

Related literature

For similar tetra­styryl­pyrazines prepared by acid- or base-catalysed condensations, see: Takahashi & Satake (1952[Takahashi, T. & Satake, K. (1952). Yakugaku Zasshi, 8, 1188-1192.]). For photochemical properties of tetra­styryl­pyrazines, see: Collette & Harper (2003[Collette, J. C. & Harper, A. W. (2003). Proc. SPIE, 5212, 184-192.]); Rumi et al. (2008[Rumi, M., Pond, S. J. K., Meyer-Friedrichsen, T., Zhang, Q., Bishop, M., Zhang, Y., Barlow, S., Marder, S. R. & Perry, J. W. (2008). J. Phys. Chem. C, 112, 8061-8071.]) For star-shaped chromo­phores, see: Detert et al. (2010[Detert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218-3330.]); Detert & Sugiono (2005[Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372-376.]); Strehmel et al. (2003[Strehmel, B., Sarker, A. M. & Detert, H. (2003). ChemPhysChem, 4, 249-259.]); Nemkovich et al. (2010[Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37-41.]). For a two-dimensional homologue of the linear distyryl­pyrazine, see: Fischer et al. (2011[Fischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.]). For cruciforms with a central benzene ring and phenyl­ene­vinyl­ene arms, see: Niazimbetova et al. (2002[Niazimbetova, Z. I., Menon, A., Galvin, M. E. & Evans, D. H. (2002). J. Electroanal. Chem. 529, 43-50.]), Hauck et al. (2007[Hauck, M., Schoenhaber, J., Zucchero, A. J., Hardcastle, K. I., Mueller, T. J. & Bunz, U. H. F. (2007). J. Org. Chem. 72, 6714-6725.]), Zucchero et al. (2010[Zucchero, A. J., McGrier, P. & Bunz, U. H. F. (2010). Acc. Chem. Res. 43, 397-408.]). For probes for thrombine detection, see: Yan et al. (2011[Yan, S., Huang, R., Zhou, Y., Zhang, M., Deng, M., Wang, X., Weng, X. & Zhou, X. (2011). Chem. Commun. 47, 1273-1275.]).

[Scheme 1]

Experimental

Crystal data
  • C44H48N6

  • Mr = 660.88

  • Monoclinic, P 21 /c

  • a = 10.763 (2) Å

  • b = 16.6751 (19) Å

  • c = 10.755 (3) Å

  • β = 101.109 (9)°

  • V = 1894.1 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.53 mm−1

  • T = 193 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3778 measured reflections

  • 3584 independent reflections

  • 2384 reflections with I > 2σ(I)

  • Rint = 0.073

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.239

  • S = 1.11

  • 3584 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as a part of a project focusing on star-shaped chromophores and acidochromic fluorophores, see: Detert & Sugiono (2005), Strehmel et al. (2003), and Nemkovich et al. (2010). In the crystal, the cruciform adopts a a nearly planar and centrosymmetric conformation. The two linear distyrylpyrazine subunits are not equivalent, one shows small dihedral angles between the aromatic rings and the vinylene groups of -0.3 (5)° (N1—C2—C3—C4) and -177.7 (3)° (C3—C4—C5—C6). The other distyrylpyrazine axis is more distorted. Torsion angles of 8.6°(5) (N1—C14—C15—C16) and -174.4 (3)° (C15—C16—C17—C18) have been measured. Similarly, the torsion angles of 178.2 (3) (C9—C8—N11—C13), -2.2 (5)° (C7—C8—N11—C13) between the the dimethylamino group and the phenylene ring of the more planar arm are significantly smaller than those of the other distyrylpyrazine unit: 156.6 (4)° (C19—C20—N23—C24) and -26.6 (6) (C21—C20—N23—C24). Nevertheless, the strong electronic coupling between all peripheral donors and the central pyrazine acceptor is visible as short C—N bond lengths of the aniline moieties of 1.379 (4)Å for C8—N4 and for C20—N23 and the sums of the bond angles around N11 and N23 of 357 - 358°. These aniline C—N bonds are slightly longer than those found on a linear distyrylpyrazine, (1.368 (2) Å; Fischer et al. (2011)), since the acceptor strength of the pyrazine is reduced by two additional donor groups in the title compound. The packing is characterized by sheets of molecules perpendicular to the (101)-direction.

Related literature top

For similar tetrastyrylpyrazines prepared by acid- or base-catalysed condensations, see: Takahashi & Satake (1952). For photochemical properties of tetrastyrylpyrazines, see: Collette & Harper (2003); Rumi et al. (2008) For star-shaped chromophores, see: Detert et al. (2010); Detert & Sugiono (2005); Strehmel et al. (2003); Nemkovich et al. (2010). For a two-dimensional homologue of the linear distyrylpyrazine, see: Fischer et al. (2011). For cruciforms with a central benzene ring and phenylenevinylene arms, see: Niazimbetova et al. (2002), Hauck et al. (2007), Zucchero et al. (2010). For probes for thrombine detection, see: Yan et al. (2011).

Experimental top

The title compound was prepared by adding potassium tert-butylate (9.0 g, 80.4 mmol) in small portions under nitrogen to a cooled (273 K) solution of p-N,N-dimethylaminobenzaldehyde (12.0 g, 80.4 mmol) and tetramethylpyrazine (2.5 g, 18.4 mmol) in DMF (anhyd., 100 ml). Stirring at 273 K was continued for 30 min at 273 K and for 1 week at ambient temperature. Water (200 ml) was added, the precipitate was collected and lower condensation products were extracted in a Soxhlet apparatus with methanol. The residue was recrystallized from methanol/dichloromethane to yield 545 mg (5%) of a dark red solid with m. p. > 670 K.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
(E,E,E,E)-2,3,5,6-Tetrakis{2- [4-(dimethylamino)phenyl]ethenyl}pyrazine top
Crystal data top
C44H48N6F(000) = 708
Mr = 660.88Dx = 1.159 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3 reflections
a = 10.763 (2) Åθ = 36–47°
b = 16.6751 (19) ŵ = 0.53 mm1
c = 10.755 (3) ÅT = 193 K
β = 101.109 (9)°Needle, red
V = 1894.1 (7) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.073
Radiation source: rotating anodeθmax = 69.9°, θmin = 4.2°
Graphite monochromatorh = 013
ω/2θ scansk = 020
3778 measured reflectionsl = 1312
3584 independent reflections3 standard reflections every 60 min
2384 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1104P)2 + 0.8327P]
where P = (Fo2 + 2Fc2)/3
3584 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C44H48N6V = 1894.1 (7) Å3
Mr = 660.88Z = 2
Monoclinic, P21/cCu Kα radiation
a = 10.763 (2) ŵ = 0.53 mm1
b = 16.6751 (19) ÅT = 193 K
c = 10.755 (3) Å0.30 × 0.20 × 0.10 mm
β = 101.109 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.073
3778 measured reflections3 standard reflections every 60 min
3584 independent reflections intensity decay: 2%
2384 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.239H-atom parameters constrained
S = 1.11Δρmax = 0.44 e Å3
3584 reflectionsΔρmin = 0.31 e Å3
230 parameters
Special details top

Experimental. 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 7.88 (d, 3J = 15.4 Hz, 4H, 2-H ethenyl), 7.58 (d, 3J = 8.8 Hz, 8H, 2-H, 6-H phenyl), 7.38 (d, 3J = 15.4 Hz, 4H, 1-H ethenyl), 6.75 (d, 3J = 8.8 Hz, 8H, 3-H, 6-H phenyl), 3.03 (s, 24H, CH3). 13C-NMR (CDCl3, 75 MHz): δ (ppm) = 150.5 (C-4 phenyl), 144.8 (C-2, C-3, C-4, C-5 pyrazine), 134.8 (C-2 ethenyl), 128.6 (C-3, C-5 phenyl), 125.7 (C-1 phenyl), 118.5 (C-1 ethenyl), 112.2 (C-2, C-6 phenyl), 40.4 (CH3). FD-MS: m/z (g/mol) = 220.1 (1.3 %) [M3+], 330.2 (10.8 %) [M2+], 660.2 (100 %) [M+]. IR (ATR): ν = 2852, 1595, 1519, 1430, 1356, 1322, 1153, 965, 946, 799 cm-1. UV-Vis (CH2Cl2): λmax = 448 nm, ε = 41446 cm2/mmol. Fluorescence (CH2Cl2): λmax = 580 nm. HR-ESI-MS (g/mol): Calcd. for C44H48N6: 660.3940, found: 660.3915.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4285 (2)0.53184 (16)0.5798 (2)0.0526 (7)
C20.4847 (3)0.57967 (17)0.5085 (3)0.0504 (7)
C30.4652 (3)0.66661 (19)0.5238 (3)0.0550 (8)
H30.50450.70230.47440.066*
C40.3983 (3)0.69750 (19)0.5996 (3)0.0546 (8)
H40.36250.66020.64940.066*
C50.3701 (3)0.78186 (17)0.6194 (3)0.0476 (7)
C60.2997 (3)0.80216 (18)0.7090 (3)0.0519 (8)
H60.27130.76040.75680.062*
C70.2687 (3)0.87950 (19)0.7326 (3)0.0524 (8)
H70.21960.89010.79530.063*
C80.3084 (3)0.94316 (17)0.6651 (3)0.0498 (7)
C90.3792 (3)0.92395 (18)0.5729 (3)0.0548 (8)
H90.40750.96560.52480.066*
C100.4085 (3)0.84511 (18)0.5509 (3)0.0504 (7)
H100.45610.83370.48730.060*
N110.2801 (3)1.02172 (16)0.6882 (3)0.0671 (8)
C120.3545 (4)1.08608 (19)0.6484 (4)0.0746 (11)
H12A0.44421.07760.68460.112*
H12B0.32701.13750.67790.112*
H12C0.34241.08660.55570.112*
C130.2042 (3)1.0400 (2)0.7805 (4)0.0731 (11)
H13A0.12761.00680.76490.110*
H13B0.18041.09680.77420.110*
H13C0.25281.02890.86560.110*
C140.4417 (3)0.45242 (19)0.5724 (3)0.0506 (7)
C150.3762 (3)0.40327 (19)0.6534 (3)0.0556 (8)
H150.39380.34740.65850.067*
C160.2959 (3)0.4313 (2)0.7183 (3)0.0564 (8)
H160.28030.48740.71160.068*
C170.2262 (3)0.38681 (18)0.8010 (3)0.0490 (7)
C180.1360 (3)0.4262 (2)0.8539 (3)0.0553 (8)
H180.12270.48180.83700.066*
C190.0648 (3)0.3888 (2)0.9297 (3)0.0595 (8)
H190.00290.41840.96250.071*
C200.0826 (3)0.3074 (2)0.9590 (3)0.0596 (9)
C210.1750 (3)0.2668 (2)0.9072 (3)0.0590 (8)
H210.18970.21140.92530.071*
C220.2444 (3)0.30536 (19)0.8310 (3)0.0546 (8)
H220.30640.27610.79770.065*
N230.0169 (3)0.2693 (2)1.0401 (4)0.0948 (12)
C240.0001 (5)0.1823 (3)1.0311 (5)0.1053 (17)
H24A0.04890.16830.94740.158*
H24B0.04520.16401.09670.158*
H24C0.08310.15621.04330.158*
C250.0672 (4)0.3125 (3)1.1036 (4)0.0988 (16)
H25A0.02530.36121.14160.148*
H25B0.09040.27871.17020.148*
H25C0.14380.32711.04260.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0507 (14)0.0585 (16)0.0480 (14)0.0022 (12)0.0079 (12)0.0034 (12)
C20.0549 (17)0.0391 (16)0.0507 (17)0.0038 (13)0.0061 (14)0.0016 (13)
C30.0572 (18)0.0496 (18)0.0590 (19)0.0042 (14)0.0131 (15)0.0023 (15)
C40.0517 (17)0.0487 (18)0.0616 (19)0.0010 (13)0.0068 (15)0.0002 (15)
C50.0466 (15)0.0420 (15)0.0532 (17)0.0028 (12)0.0071 (13)0.0003 (13)
C60.0524 (17)0.0450 (17)0.0604 (19)0.0010 (13)0.0163 (15)0.0080 (14)
C70.0548 (17)0.0517 (17)0.0539 (18)0.0016 (14)0.0189 (14)0.0023 (14)
C80.0513 (17)0.0402 (16)0.0555 (17)0.0021 (13)0.0045 (14)0.0014 (13)
C90.0589 (18)0.0446 (17)0.0617 (19)0.0071 (14)0.0134 (15)0.0078 (14)
C100.0514 (17)0.0476 (17)0.0551 (18)0.0031 (13)0.0179 (14)0.0038 (14)
N110.081 (2)0.0423 (15)0.078 (2)0.0051 (13)0.0160 (17)0.0054 (14)
C120.097 (3)0.0389 (18)0.079 (2)0.0035 (17)0.006 (2)0.0002 (16)
C130.068 (2)0.063 (2)0.083 (3)0.0145 (17)0.002 (2)0.0182 (19)
C140.0511 (16)0.0507 (18)0.0476 (16)0.0105 (13)0.0033 (13)0.0066 (14)
C150.0636 (19)0.0481 (17)0.0553 (18)0.0025 (15)0.0119 (15)0.0016 (14)
C160.0555 (18)0.0558 (19)0.0569 (19)0.0053 (15)0.0086 (15)0.0011 (15)
C170.0479 (16)0.0498 (17)0.0484 (16)0.0038 (13)0.0071 (13)0.0003 (13)
C180.0544 (18)0.0520 (18)0.0596 (19)0.0074 (14)0.0112 (15)0.0000 (15)
C190.0494 (17)0.071 (2)0.061 (2)0.0080 (15)0.0173 (15)0.0014 (17)
C200.0519 (18)0.073 (2)0.0561 (19)0.0061 (16)0.0153 (15)0.0104 (17)
C210.067 (2)0.0506 (18)0.061 (2)0.0041 (15)0.0174 (17)0.0063 (15)
C220.0586 (18)0.0529 (18)0.0558 (18)0.0003 (14)0.0200 (15)0.0054 (14)
N230.089 (2)0.107 (3)0.101 (3)0.005 (2)0.049 (2)0.031 (2)
C240.091 (3)0.110 (4)0.114 (4)0.020 (3)0.019 (3)0.057 (3)
C250.062 (2)0.168 (5)0.074 (3)0.008 (3)0.031 (2)0.013 (3)
Geometric parameters (Å, º) top
N1—C21.330 (4)C13—H13C0.9800
N1—C141.336 (4)C14—C2i1.392 (4)
C2—C14i1.392 (4)C14—C151.471 (4)
C2—C31.479 (4)C15—C161.299 (4)
C3—C41.294 (4)C15—H150.9500
C3—H30.9500C16—C171.470 (4)
C4—C51.463 (4)C16—H160.9500
C4—H40.9500C17—C181.382 (4)
C5—C61.379 (4)C17—C221.401 (4)
C5—C101.393 (4)C18—C191.371 (4)
C6—C71.368 (4)C18—H180.9500
C6—H60.9500C19—C201.398 (5)
C7—C81.399 (4)C19—H190.9500
C7—H70.9500C20—N231.379 (4)
C8—N111.379 (4)C20—C211.404 (5)
C8—C91.399 (4)C21—C221.371 (4)
C9—C101.383 (4)C21—H210.9500
C9—H90.9500C22—H220.9500
C10—H100.9500N23—C251.430 (6)
N11—C131.434 (5)N23—C241.463 (6)
N11—C121.452 (4)C24—H24A0.9800
C12—H12A0.9800C24—H24B0.9800
C12—H12B0.9800C24—H24C0.9800
C12—H12C0.9800C25—H25A0.9800
C13—H13A0.9800C25—H25B0.9800
C13—H13B0.9800C25—H25C0.9800
C2—N1—C14119.6 (3)N1—C14—C2i119.9 (3)
N1—C2—C14i120.5 (3)N1—C14—C15116.7 (3)
N1—C2—C3115.7 (3)C2i—C14—C15123.5 (3)
C14i—C2—C3123.8 (3)C16—C15—C14124.2 (3)
C4—C3—C2124.6 (3)C16—C15—H15117.9
C4—C3—H3117.7C14—C15—H15117.9
C2—C3—H3117.7C15—C16—C17127.9 (3)
C3—C4—C5129.1 (3)C15—C16—H16116.1
C3—C4—H4115.5C17—C16—H16116.1
C5—C4—H4115.5C18—C17—C22116.4 (3)
C6—C5—C10116.2 (3)C18—C17—C16119.3 (3)
C6—C5—C4119.7 (3)C22—C17—C16124.3 (3)
C10—C5—C4124.1 (3)C19—C18—C17123.0 (3)
C7—C6—C5123.2 (3)C19—C18—H18118.5
C7—C6—H6118.4C17—C18—H18118.5
C5—C6—H6118.4C18—C19—C20120.5 (3)
C6—C7—C8120.6 (3)C18—C19—H19119.7
C6—C7—H7119.7C20—C19—H19119.7
C8—C7—H7119.7N23—C20—C19121.7 (3)
N11—C8—C9121.0 (3)N23—C20—C21121.2 (3)
N11—C8—C7121.8 (3)C19—C20—C21117.1 (3)
C9—C8—C7117.2 (3)C22—C21—C20121.3 (3)
C10—C9—C8120.8 (3)C22—C21—H21119.3
C10—C9—H9119.6C20—C21—H21119.3
C8—C9—H9119.6C21—C22—C17121.6 (3)
C9—C10—C5122.0 (3)C21—C22—H22119.2
C9—C10—H10119.0C17—C22—H22119.2
C5—C10—H10119.0C20—N23—C25121.3 (4)
C8—N11—C13120.2 (3)C20—N23—C24119.2 (4)
C8—N11—C12119.7 (3)C25—N23—C24116.7 (4)
C13—N11—C12117.8 (3)N23—C24—H24A109.5
N11—C12—H12A109.5N23—C24—H24B109.5
N11—C12—H12B109.5H24A—C24—H24B109.5
H12A—C12—H12B109.5N23—C24—H24C109.5
N11—C12—H12C109.5H24A—C24—H24C109.5
H12A—C12—H12C109.5H24B—C24—H24C109.5
H12B—C12—H12C109.5N23—C25—H25A109.5
N11—C13—H13A109.5N23—C25—H25B109.5
N11—C13—H13B109.5H25A—C25—H25B109.5
H13A—C13—H13B109.5N23—C25—H25C109.5
N11—C13—H13C109.5H25A—C25—H25C109.5
H13A—C13—H13C109.5H25B—C25—H25C109.5
H13B—C13—H13C109.5
C14—N1—C2—C14i0.8 (5)C2—N1—C14—C2i0.7 (5)
C14—N1—C2—C3179.7 (3)C2—N1—C14—C15179.6 (3)
N1—C2—C3—C40.3 (5)N1—C14—C15—C168.6 (5)
C14i—C2—C3—C4179.2 (3)C2i—C14—C15—C16171.8 (3)
C2—C3—C4—C5178.2 (3)C14—C15—C16—C17179.9 (3)
C3—C4—C5—C6177.7 (3)C15—C16—C17—C18174.4 (3)
C3—C4—C5—C103.4 (5)C15—C16—C17—C225.5 (5)
C10—C5—C6—C70.6 (5)C22—C17—C18—C191.4 (5)
C4—C5—C6—C7179.5 (3)C16—C17—C18—C19178.5 (3)
C5—C6—C7—C80.2 (5)C17—C18—C19—C201.1 (5)
C6—C7—C8—N11179.0 (3)C18—C19—C20—N23176.6 (3)
C6—C7—C8—C90.6 (4)C18—C19—C20—C210.3 (5)
N11—C8—C9—C10179.3 (3)N23—C20—C21—C22177.1 (3)
C7—C8—C9—C100.3 (5)C19—C20—C21—C220.2 (5)
C8—C9—C10—C50.5 (5)C20—C21—C22—C170.2 (5)
C6—C5—C10—C90.9 (4)C18—C17—C22—C210.9 (5)
C4—C5—C10—C9179.8 (3)C16—C17—C22—C21178.9 (3)
C9—C8—N11—C13178.2 (3)C19—C20—N23—C253.6 (6)
C7—C8—N11—C132.2 (5)C21—C20—N23—C25173.2 (4)
C9—C8—N11—C1219.6 (5)C19—C20—N23—C24156.6 (4)
C7—C8—N11—C12160.1 (3)C21—C20—N23—C2426.6 (6)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC44H48N6
Mr660.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)10.763 (2), 16.6751 (19), 10.755 (3)
β (°) 101.109 (9)
V3)1894.1 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.53
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3778, 3584, 2384
Rint0.073
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.239, 1.11
No. of reflections3584
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCollette, J. C. & Harper, A. W. (2003). Proc. SPIE, 5212, 184–192.  CrossRef CAS Google Scholar
First citationDetert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218–3330.  Web of Science CrossRef CAS Google Scholar
First citationDetert, H. & Sugiono, E. (2005). J. Lumin. 112, 372–376.  Web of Science CrossRef CAS Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHauck, M., Schoenhaber, J., Zucchero, A. J., Hardcastle, K. I., Mueller, T. J. & Bunz, U. H. F. (2007). J. Org. Chem. 72, 6714–6725.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41.  Web of Science CrossRef CAS Google Scholar
First citationNiazimbetova, Z. I., Menon, A., Galvin, M. E. & Evans, D. H. (2002). J. Electroanal. Chem. 529, 43–50.  CrossRef CAS Google Scholar
First citationRumi, M., Pond, S. J. K., Meyer-Friedrichsen, T., Zhang, Q., Bishop, M., Zhang, Y., Barlow, S., Marder, S. R. & Perry, J. W. (2008). J. Phys. Chem. C, 112, 8061–8071.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrehmel, B., Sarker, A. M. & Detert, H. (2003). ChemPhysChem, 4, 249–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTakahashi, T. & Satake, K. (1952). Yakugaku Zasshi, 8, 1188–1192.  CAS Google Scholar
First citationYan, S., Huang, R., Zhou, Y., Zhang, M., Deng, M., Wang, X., Weng, X. & Zhou, X. (2011). Chem. Commun. 47, 1273–1275.  CrossRef CAS Google Scholar
First citationZucchero, A. J., McGrier, P. & Bunz, U. H. F. (2010). Acc. Chem. Res. 43, 397–408.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds