organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-(2-Chloro­benzyl­­idene)aniline N-oxide

aKey Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, An'ning East Road No. 967, Gansu Province 730070, People's Republic of China
*Correspondence e-mail: fu_yingmail@126.com

(Received 16 March 2011; accepted 27 April 2011; online 7 May 2011)

In the title compound, C13H10ClNO, the central C—N bond has considerable double-bond character and the N—O bond indicates a formal negative charge on the O atom. The mol­ecule is stabilized by an intra­molecular C—H⋯O hydrogen bond. The geometry about the C=N bond is Z [C—C—N—O torsion angle = −4.2 (3)°] and the phenyl and benzene rings are trans-oriented around the C=N bond. The phenyl and benzene rings make a dihedral angle of 56.99 (2)°.

Related literature

For the crystal structures of diphenyl nitrone derivatives, see: Vijayalakshmi et al. (1997[Vijayalakshmi, L., Parthasarathi, V. & Manishanker, P. (1997). Acta Cryst. C53, 1343-1344.], 2000[Vijayalakshmi, L., Parthasarathi, V. & Manishanker, P. (2000). Acta Cryst. C56, e403-e404.]); Kang et al. (2000[Kang, J.-G., Hong, J.-P. & Suh, I.-H. (2000). Acta Cryst. C56, 231-232.]); Bedford et al. (1991[Bedford, R. B., Chaloner, P. A. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2484-2485.]); Mothi Mohamed et al. (2003[Mothi Mohamed, E., Chandrasekar, S. & Panchanatheswaran, K. (2003). Acta Cryst. E59, o234-o236.]); Brown & Trefonas (1973[Brown, J. N. & Trefonas, L. M. (1973). Acta Cryst. B29, 237-241.]); Chandrasekar & Panchanatheswaran (2000[Chandrasekar, S. & Panchanatheswaran, K. (2000). Acta Cryst. C56, 1442-1443.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO

  • Mr = 231.67

  • Monoclinic, P 21 /c

  • a = 9.7302 (3) Å

  • b = 9.7389 (3) Å

  • c = 11.7460 (3) Å

  • β = 104.093 (1)°

  • V = 1079.57 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.45 × 0.42 × 0.41 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.866, Tmax = 0.877

  • 6083 measured reflections

  • 2232 independent reflections

  • 1904 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.136

  • S = 1.05

  • 2232 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.93 2.26 2.857 (2) 121

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the crystal structure of the title compound, (I) the bond lenghts C=N and N—O are 1.304 (2) and 1.2933 (16) Å respectively which are similar to the values observed in other nitrones compounds (Vijayalakshmi, et al., 1997 and 2000). The central moiety is planar as seen in the C6—C7—N1—C8 torsion angle of 178.20 (14)° . The phenyl and benzene substituents are twisted out of this plane by 47.4 (2) ) and 14.3( 2)° respectively and are oriented trans conformation respect to the C=N bond. Two short intermolecular contact are observed, Cl···H3i 2.884 Å and C12···C6i 3.382 (2)Å [symmetry code: (i) x, 1.5-y, -1/2+z].

Related literature top

For the crystal structures of diphenyl nitrone derivatives, see: Vijayalakshmi et al. (1997, 2000); Kang et al. (2000); Bedford et al. (1991); Mothi Mohamed et al. (2003); Brown & Trefonas (1973); Chandrasekar & Panchanatheswaran (2000).

Experimental top

A solution of 2-chlorobenzaldehyde (2.80 g) was added dropwise with stirring to a solution of N-phenylhydroxylamine (2.1 g) in ethanol (20 ml). The mixture was heated for about 1 h at 333 K. The crystals were crystallized from ethanol [m.p. 426 K; yield 1.90 g (82%)].

Refinement top

H atoms bonded to C atoms were located in a difference map and refined with distance restraints and refined using a riding model with C—H = 0.93Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
(Z)-N-(2-Chlorobenzylidene)aniline N-oxide top
Crystal data top
C13H10ClNOF(000) = 480
Mr = 231.67Dx = 1.425 Mg m3
Monoclinic, P21/cMelting point: 362 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7302 (3) ÅCell parameters from 2703 reflections
b = 9.7389 (3) Åθ = 2.8–29.3°
c = 11.7460 (3) ŵ = 0.33 mm1
β = 104.093 (1)°T = 296 K
V = 1079.57 (5) Å3Block, yellow
Z = 40.45 × 0.42 × 0.41 mm
Data collection top
Bruker APEXII CCD
diffractometer
2232 independent reflections
Radiation source: fine-focus sealed tube1904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1212
Tmin = 0.866, Tmax = 0.877k = 1112
6083 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2232 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H10ClNOV = 1079.57 (5) Å3
Mr = 231.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7302 (3) ŵ = 0.33 mm1
b = 9.7389 (3) ÅT = 296 K
c = 11.7460 (3) Å0.45 × 0.42 × 0.41 mm
β = 104.093 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2232 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1904 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.877Rint = 0.027
6083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2232 reflectionsΔρmin = 0.28 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59092 (15)0.85392 (16)1.09921 (12)0.0398 (4)
C20.55547 (18)0.86628 (18)1.20546 (14)0.0493 (4)
H20.48950.80701.22450.059*
C30.6185 (2)0.96710 (19)1.28344 (15)0.0544 (4)
H30.59410.97661.35480.065*
C40.7169 (2)1.05308 (19)1.25583 (14)0.0558 (5)
H40.76101.11921.30950.067*
C50.75133 (19)1.04225 (18)1.14841 (13)0.0482 (4)
H50.81721.10241.13040.058*
C60.68853 (15)0.94220 (16)1.06663 (12)0.0387 (3)
C70.72415 (16)0.92349 (15)0.95480 (13)0.0409 (4)
H70.69400.84230.91470.049*
C80.82470 (16)0.97275 (16)0.79355 (13)0.0401 (4)
C90.80082 (18)1.07137 (17)0.70579 (14)0.0490 (4)
H90.76391.15670.71810.059*
C100.8323 (2)1.0418 (2)0.60028 (15)0.0566 (5)
H100.81571.10680.54040.068*
C110.88845 (18)0.9152 (2)0.58376 (15)0.0546 (5)
H110.90960.89530.51250.066*
C120.91332 (18)0.8187 (2)0.67115 (16)0.0523 (4)
H120.95190.73420.65910.063*
C130.88125 (16)0.84651 (17)0.77743 (14)0.0465 (4)
H130.89760.78110.83690.056*
Cl10.51025 (5)0.72300 (5)1.00632 (4)0.0567 (2)
N10.79421 (14)1.00909 (12)0.90471 (11)0.0434 (3)
O10.83697 (18)1.12972 (13)0.94397 (11)0.0729 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (7)0.0398 (8)0.0400 (8)0.0037 (6)0.0119 (6)0.0026 (6)
C20.0545 (9)0.0499 (9)0.0490 (9)0.0006 (7)0.0230 (7)0.0042 (7)
C30.0740 (11)0.0569 (10)0.0386 (8)0.0025 (9)0.0254 (8)0.0026 (8)
C40.0775 (12)0.0533 (10)0.0367 (8)0.0070 (9)0.0140 (8)0.0028 (8)
C50.0608 (10)0.0469 (9)0.0389 (8)0.0080 (8)0.0161 (7)0.0020 (7)
C60.0421 (7)0.0386 (8)0.0361 (7)0.0033 (6)0.0111 (6)0.0049 (6)
C70.0458 (8)0.0403 (8)0.0383 (7)0.0029 (6)0.0132 (6)0.0007 (6)
C80.0415 (8)0.0437 (8)0.0381 (8)0.0054 (6)0.0152 (6)0.0007 (6)
C90.0598 (10)0.0455 (9)0.0457 (9)0.0042 (7)0.0207 (8)0.0052 (7)
C100.0655 (11)0.0657 (11)0.0422 (9)0.0025 (9)0.0196 (8)0.0061 (8)
C110.0540 (10)0.0695 (12)0.0454 (9)0.0114 (8)0.0219 (7)0.0129 (8)
C120.0464 (9)0.0498 (9)0.0644 (11)0.0030 (7)0.0208 (8)0.0153 (8)
C130.0477 (8)0.0439 (8)0.0506 (9)0.0010 (7)0.0175 (7)0.0016 (7)
Cl10.0618 (3)0.0572 (3)0.0559 (3)0.01765 (19)0.0235 (2)0.01032 (18)
N10.0543 (8)0.0394 (7)0.0406 (7)0.0058 (5)0.0192 (6)0.0017 (5)
O10.1234 (12)0.0490 (8)0.0603 (8)0.0311 (8)0.0496 (8)0.0134 (6)
Geometric parameters (Å, º) top
C1—C21.379 (2)C8—C131.379 (2)
C1—C61.402 (2)C8—C91.387 (2)
C1—Cl11.7364 (16)C8—N11.451 (2)
C2—C31.380 (3)C9—C101.377 (2)
C2—H20.9300C9—H90.9300
C3—C41.369 (3)C10—C111.381 (3)
C3—H30.9300C10—H100.9300
C4—C51.386 (2)C11—C121.369 (3)
C4—H40.9300C11—H110.9300
C5—C61.400 (2)C12—C131.385 (2)
C5—H50.9300C12—H120.9300
C6—C71.449 (2)C13—H130.9300
C7—N11.304 (2)N1—O11.2933 (16)
C7—H70.9300
C2—C1—C6121.95 (14)C13—C8—C9121.05 (15)
C2—C1—Cl1117.28 (12)C13—C8—N1121.12 (13)
C6—C1—Cl1120.77 (11)C9—C8—N1117.77 (14)
C1—C2—C3119.60 (16)C10—C9—C8119.38 (17)
C1—C2—H2120.2C10—C9—H9120.3
C3—C2—H2120.2C8—C9—H9120.3
C4—C3—C2120.09 (16)C9—C10—C11119.67 (17)
C4—C3—H3120.0C9—C10—H10120.2
C2—C3—H3120.0C11—C10—H10120.2
C3—C4—C5120.47 (16)C12—C11—C10120.74 (16)
C3—C4—H4119.8C12—C11—H11119.6
C5—C4—H4119.8C10—C11—H11119.6
C4—C5—C6121.05 (16)C11—C12—C13120.26 (17)
C4—C5—H5119.5C11—C12—H12119.9
C6—C5—H5119.5C13—C12—H12119.9
C5—C6—C1116.82 (14)C8—C13—C12118.89 (16)
C5—C6—C7123.27 (14)C8—C13—H13120.6
C1—C6—C7119.85 (13)C12—C13—H13120.6
N1—C7—C6126.52 (14)O1—N1—C7125.30 (14)
N1—C7—H7116.7O1—N1—C8115.07 (12)
C6—C7—H7116.7C7—N1—C8119.58 (13)
C6—C1—C2—C30.8 (2)N1—C8—C9—C10178.21 (15)
Cl1—C1—C2—C3178.84 (13)C8—C9—C10—C110.7 (3)
C1—C2—C3—C40.8 (3)C9—C10—C11—C120.0 (3)
C2—C3—C4—C51.7 (3)C10—C11—C12—C130.5 (3)
C3—C4—C5—C61.1 (3)C9—C8—C13—C120.5 (2)
C4—C5—C6—C10.5 (2)N1—C8—C13—C12177.63 (14)
C4—C5—C6—C7177.88 (16)C11—C12—C13—C80.3 (2)
C2—C1—C6—C51.4 (2)C6—C7—N1—O14.2 (3)
Cl1—C1—C6—C5178.22 (12)C6—C7—N1—C8178.20 (14)
C2—C1—C6—C7178.92 (14)C13—C8—N1—O1133.68 (16)
Cl1—C1—C6—C70.7 (2)C9—C8—N1—O143.6 (2)
C5—C6—C7—N114.5 (2)C13—C8—N1—C748.5 (2)
C1—C6—C7—N1168.21 (15)C9—C8—N1—C7134.23 (16)
C13—C8—C9—C100.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.262.857 (2)121
C7—H7···Cl10.932.583.0206 (16)110

Experimental details

Crystal data
Chemical formulaC13H10ClNO
Mr231.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.7302 (3), 9.7389 (3), 11.7460 (3)
β (°) 104.093 (1)
V3)1079.57 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.45 × 0.42 × 0.41
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.866, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
6083, 2232, 1904
Rint0.027
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.136, 1.05
No. of reflections2232
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.262.857 (2)121
C7—H7···Cl10.932.583.0206 (16)110
 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 20962017) and the Natural Science Foundation of Gansu Province, China (No. 2007GS03630)

References

First citationBedford, R. B., Chaloner, P. A. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2484–2485.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, J. N. & Trefonas, L. M. (1973). Acta Cryst. B29, 237–241.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2008). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekar, S. & Panchanatheswaran, K. (2000). Acta Cryst. C56, 1442–1443.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKang, J.-G., Hong, J.-P. & Suh, I.-H. (2000). Acta Cryst. C56, 231–232.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMothi Mohamed, E., Chandrasekar, S. & Panchanatheswaran, K. (2003). Acta Cryst. E59, o234–o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayalakshmi, L., Parthasarathi, V. & Manishanker, P. (1997). Acta Cryst. C53, 1343–1344.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVijayalakshmi, L., Parthasarathi, V. & Manishanker, P. (2000). Acta Cryst. C56, e403–e404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds