organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phen­yl)-1-[(2R,4aR,8aR)-4a,8-di­methyl-1,2,3,4,4a,5,6,8a-octa­hydro­naphthalen-2-yl]prop-2-en-1-one

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22 BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and cUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: mtebbaa@yahoo.com

(Received 22 April 2011; accepted 4 May 2011; online 7 May 2011)

The title compound, C21H25ClO, was semi-synthesized from isocostic acid, isolated from the aerial part of Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter]. The cyclo­hexene ring has a half-chair conformation, whereas the cyclo­hexane ring displays a chair conformation.

Related literature

For background to the medicinal inter­est in Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970[Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.]); Bohlman & Gupta (1982[Bohlman, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443-1445.]); Azoulay et al. (1986[Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345-352.]); Bohlman et al. (1977[Bohlman, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-1334.]); Ceccherelli et al. (1988[Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006-1009.]). For the synthesis, see: Kutney & Singh (1984[Kutney, J. P. & Singh, A. (1984). Can. J. Chem. 62, 1407-1409.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25ClO

  • Mr = 328.86

  • Monoclinic, P 21

  • a = 10.9869 (5) Å

  • b = 7.0054 (3) Å

  • c = 12.1883 (6) Å

  • β = 105.726 (2)°

  • V = 902.99 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.28 × 0.20 × 0.16 mm

Data collection
  • Bruker X8 APEX CCD area-detector diffractometer

  • 6963 measured reflections

  • 3358 independent reflections

  • 2713 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.08

  • 3358 reflections

  • 210 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1373 Friedel pairs

  • Flack parameter: −0.11 (7)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isocostic acid is the main constituent of the dichloromethane extract of the aerial part of Inula viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Bohlman & Gupta, 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has undergone a chemical study in order to isolate sesquiterpene lactones (Bohlman et al., 1977) and sesquiterpene acids (Ceccherelli et al., 1988). The literature does not report any article on the transformation of this acid. In order to prepare products with high added value, we studied the reactivity of this acid. Thus, from this acid, we have prepared by reaction of Curtius the 1-(4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)-ethanone which was synthesized by Kutney et al.(1984). The condensation of this sesquiterpene ketone with p-chlorbenzaldehyde in the presence of sodium hydroxide allows us to obtain the 3-(4-chlorophenyl)-1-(4a,8-dimethyl- 1,2,3,4,4a,5,6, 8a-octahydro-naphthalen-2-yl)prop-2-en-1-one with a good yield of 90%. The structure of this new derivative of isocostic acid was established by NMR spectral analysis of 1H, 13 C and mass spectroscopy and confirmed by its single-crystal X-ray structure.

In the title molecule (Fig. 1), the cyclohexane ring adopts a chair conformation, as indicated by the total puckering amplitude Q(T) = 0.574 (2) Å and spherical polar angle θ = 180.0 (2)° with ϕ = 48 (13)°. The cyclohexene ring has a half-chair conformation with QT = 0.525 (2) Å, θ =129.8 (2)°, ϕ = 191.1 (3)° (Cremer & Pople, 1975). Owing to the presence of Cl atom, the absolute configuration could be fully confirmed, by refining the Flack (1983) parameter as C2(R), C4a(R) and C8a(R).

Related literature top

For background to the medicinal interest in Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Bohlman & Gupta (1982); Azoulay et al. (1986); Bohlman et al. (1977); Ceccherelli et al. (1988). For the synthesis, see: Kutney & Singh (1984). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

p-Chlorobenzaldehyde dissolved in ethanol (20 ml) was added drop by drop to a mixture of 1-(4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen- 2-yl)ethanone (1 g, 4.84 mmol), anhydrous ethanol (40 ml), and 2 ml of a solution of sodium hydroxide (2 N, 667 mg, 4.84 mmol). The mixture was stirred for 3 h at room temperature. After neutralization, it was extracted three times with 40 ml of dichloromethane, the organic phase was dried over sodium sulfate and then evaporated under vacuum. The residue was subjected to chromatography on a column of silica gel with hexane-ethyl acetate (97:4) as eluent, to obtain 3-(4-chlorphenyl)-1-(4a, 8-dimethyl-1,2,3,4,4a,5,6,8a- octahydronaphthalen-2-yl)prop-2-en-1-one with a yield of 90%. The title compound was recrystallized in hexane-ethyl acetate (7:3).

Refinement top

All H atoms were positioned geometrically and treated as riding with C-H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
3-(4-Chlorophenyl)-1-[(2R,4aR,8aR)-4a,8-dimethyl- 1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl]prop-2-en-1-one top
Crystal data top
C21H25ClOF(000) = 352
Mr = 328.86Dx = 1.206 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3362 reflections
a = 10.9869 (5) Åθ = 3.5–26.3°
b = 7.0054 (3) ŵ = 0.21 mm1
c = 12.1883 (6) ÅT = 298 K
β = 105.726 (2)°Prism, colourless
V = 902.99 (7) Å30.28 × 0.20 × 0.16 mm
Z = 2
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
2713 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 26.3°, θmin = 4.1°
Detector resolution: 8.3333 pixels mm-1h = 1313
ω and ϕ scansk = 78
6963 measured reflectionsl = 1514
3358 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0579P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3358 reflectionsΔρmax = 0.18 e Å3
210 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1373 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (7)
Crystal data top
C21H25ClOV = 902.99 (7) Å3
Mr = 328.86Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.9869 (5) ŵ = 0.21 mm1
b = 7.0054 (3) ÅT = 298 K
c = 12.1883 (6) Å0.28 × 0.20 × 0.16 mm
β = 105.726 (2)°
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
2713 reflections with I > 2σ(I)
6963 measured reflectionsRint = 0.021
3358 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.18 e Å3
S = 1.08Δρmin = 0.21 e Å3
3358 reflectionsAbsolute structure: Flack (1983), 1373 Friedel pairs
210 parametersAbsolute structure parameter: 0.11 (7)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12078 (19)0.1716 (3)0.28143 (17)0.0460 (5)
H1A0.19450.24680.28260.055*
H1B0.08770.11490.35620.055*
C20.02074 (18)0.3009 (3)0.25507 (16)0.0436 (5)
H20.05310.22090.25750.052*
C30.06528 (19)0.3826 (3)0.13502 (16)0.0481 (5)
H3A0.00220.45730.11890.058*
H3B0.13680.46660.12990.058*
C40.1039 (2)0.2228 (3)0.04658 (17)0.0508 (5)
H4A0.03020.14630.04710.061*
H4B0.13470.27900.02860.061*
C4A0.20679 (16)0.0933 (3)0.06975 (15)0.0413 (4)
C50.2281 (2)0.0790 (3)0.01062 (18)0.0519 (5)
H5A0.25200.03440.08890.062*
H5B0.14950.14950.00150.062*
C60.3304 (2)0.2119 (3)0.00779 (19)0.0600 (6)
H6A0.41260.16190.03260.072*
H6B0.32100.33630.02390.072*
C70.3245 (2)0.2335 (3)0.13080 (19)0.0555 (6)
H70.37720.32410.14980.067*
C80.25005 (18)0.1339 (3)0.21527 (17)0.0466 (5)
C8A0.15912 (16)0.0137 (3)0.19227 (16)0.0407 (4)
H8A0.08110.05590.19450.049*
C90.02262 (19)0.4566 (3)0.34237 (17)0.0480 (5)
C100.12607 (19)0.5813 (3)0.32607 (18)0.0526 (5)
H100.17050.54380.27470.063*
C110.1570 (2)0.7435 (3)0.38210 (17)0.0502 (5)
H110.11460.77330.43630.060*
C120.25209 (19)0.8815 (3)0.36696 (17)0.0458 (5)
C130.3308 (2)0.8509 (4)0.2960 (2)0.0618 (6)
H130.32620.73530.25750.074*
C140.4147 (2)0.9871 (4)0.2817 (2)0.0669 (7)
H140.46620.96430.23380.080*
C150.4221 (2)1.1572 (3)0.33870 (19)0.0570 (6)
C160.3477 (2)1.1907 (3)0.4105 (2)0.0597 (6)
H160.35431.30560.44990.072*
C170.2636 (2)1.0548 (3)0.42400 (18)0.0540 (5)
H170.21311.07900.47250.065*
C180.2510 (2)0.1670 (4)0.33701 (18)0.0668 (6)
H18A0.31160.26450.33970.100*
H18B0.27360.05080.36840.100*
H18C0.16850.20690.38070.100*
C190.3293 (2)0.2045 (3)0.05233 (19)0.0544 (5)
H19A0.35720.24780.02520.082*
H19B0.31550.31240.10270.082*
H19C0.39280.12340.06850.082*
O0.02456 (15)0.4817 (2)0.42008 (13)0.0666 (5)
Cl10.52589 (7)1.33272 (12)0.31822 (6)0.0916 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0503 (11)0.0493 (11)0.0398 (10)0.0030 (9)0.0149 (9)0.0080 (9)
C20.0450 (10)0.0452 (12)0.0426 (10)0.0024 (8)0.0150 (9)0.0013 (9)
C30.0563 (12)0.0474 (12)0.0456 (11)0.0116 (9)0.0222 (9)0.0044 (9)
C40.0547 (12)0.0623 (14)0.0407 (11)0.0130 (10)0.0217 (10)0.0005 (10)
C4A0.0398 (9)0.0441 (10)0.0415 (10)0.0028 (8)0.0135 (8)0.0041 (9)
C50.0533 (12)0.0609 (13)0.0450 (11)0.0084 (10)0.0191 (9)0.0081 (10)
C60.0604 (13)0.0575 (14)0.0615 (14)0.0153 (11)0.0156 (11)0.0047 (11)
C70.0553 (13)0.0488 (12)0.0659 (14)0.0105 (10)0.0223 (11)0.0054 (11)
C80.0482 (11)0.0431 (11)0.0505 (11)0.0023 (9)0.0169 (9)0.0100 (9)
C8A0.0385 (9)0.0427 (11)0.0416 (10)0.0035 (8)0.0122 (8)0.0063 (8)
C90.0547 (12)0.0482 (11)0.0429 (11)0.0026 (9)0.0163 (9)0.0002 (9)
C100.0555 (12)0.0524 (12)0.0526 (12)0.0058 (10)0.0193 (10)0.0099 (10)
C110.0567 (12)0.0539 (13)0.0418 (11)0.0009 (10)0.0163 (10)0.0046 (10)
C120.0492 (11)0.0479 (12)0.0399 (10)0.0019 (9)0.0113 (9)0.0046 (9)
C130.0684 (14)0.0576 (13)0.0655 (14)0.0105 (12)0.0286 (12)0.0241 (12)
C140.0655 (14)0.0746 (16)0.0695 (15)0.0161 (13)0.0337 (12)0.0237 (14)
C150.0542 (12)0.0655 (14)0.0520 (13)0.0140 (11)0.0157 (10)0.0074 (11)
C160.0713 (15)0.0500 (13)0.0571 (13)0.0074 (11)0.0160 (12)0.0165 (11)
C170.0615 (13)0.0556 (13)0.0493 (12)0.0027 (11)0.0225 (10)0.0105 (10)
C180.0787 (16)0.0653 (14)0.0586 (13)0.0192 (13)0.0222 (12)0.0195 (13)
C190.0495 (12)0.0541 (13)0.0560 (13)0.0075 (10)0.0083 (10)0.0123 (10)
O0.0877 (11)0.0676 (10)0.0527 (9)0.0183 (9)0.0331 (8)0.0118 (8)
Cl10.0968 (5)0.0864 (5)0.0996 (5)0.0428 (4)0.0405 (4)0.0190 (4)
Geometric parameters (Å, º) top
C1—C21.524 (2)C8—C8A1.516 (3)
C1—C8A1.527 (3)C8A—H8A0.98
C1—H1A0.97C9—O1.209 (2)
C1—H1B0.97C9—C101.489 (3)
C2—C91.508 (3)C10—C111.322 (3)
C2—C31.523 (3)C10—H100.93
C2—H20.98C11—C121.471 (3)
C3—C41.532 (3)C11—H110.93
C3—H3A0.97C12—C171.388 (3)
C3—H3B0.97C12—C131.395 (3)
C4—C4A1.534 (2)C13—C141.370 (3)
C4—H4A0.97C13—H130.93
C4—H4B0.97C14—C151.371 (3)
C4A—C191.520 (3)C14—H140.93
C4A—C51.532 (3)C15—C161.370 (3)
C4A—C8A1.546 (2)C15—Cl11.740 (2)
C5—C61.522 (3)C16—C171.367 (3)
C5—H5A0.97C16—H160.93
C5—H5B0.97C17—H170.93
C6—C71.491 (3)C18—H18A0.96
C6—H6A0.97C18—H18B0.96
C6—H6B0.97C18—H18C0.96
C7—C81.326 (3)C19—H19A0.96
C7—H70.93C19—H19B0.96
C8—C181.505 (3)C19—H19C0.96
C2—C1—C8A110.86 (15)C18—C8—C8A117.95 (18)
C2—C1—H1A109.5C8—C8A—C1115.52 (16)
C8A—C1—H1A109.5C8—C8A—C4A110.91 (15)
C2—C1—H1B109.5C1—C8A—C4A112.44 (15)
C8A—C1—H1B109.5C8—C8A—H8A105.7
H1A—C1—H1B108.1C1—C8A—H8A105.7
C9—C2—C3111.35 (16)C4A—C8A—H8A105.7
C9—C2—C1112.90 (16)O—C9—C10121.57 (19)
C3—C2—C1111.31 (15)O—C9—C2122.51 (18)
C9—C2—H2107.0C10—C9—C2115.91 (18)
C3—C2—H2107.0C11—C10—C9122.3 (2)
C1—C2—H2107.0C11—C10—H10118.8
C2—C3—C4110.94 (16)C9—C10—H10118.8
C2—C3—H3A109.5C10—C11—C12126.3 (2)
C4—C3—H3A109.5C10—C11—H11116.8
C2—C3—H3B109.5C12—C11—H11116.8
C4—C3—H3B109.5C17—C12—C13117.22 (19)
H3A—C3—H3B108.0C17—C12—C11118.91 (19)
C3—C4—C4A112.32 (15)C13—C12—C11123.86 (18)
C3—C4—H4A109.1C14—C13—C12121.5 (2)
C4A—C4—H4A109.1C14—C13—H13119.2
C3—C4—H4B109.1C12—C13—H13119.2
C4A—C4—H4B109.1C13—C14—C15119.4 (2)
H4A—C4—H4B107.9C13—C14—H14120.3
C19—C4A—C5109.79 (16)C15—C14—H14120.3
C19—C4A—C4109.90 (17)C16—C15—C14120.6 (2)
C5—C4A—C4109.92 (15)C16—C15—Cl1119.90 (18)
C19—C4A—C8A112.03 (15)C14—C15—Cl1119.51 (18)
C5—C4A—C8A106.63 (16)C17—C16—C15119.8 (2)
C4—C4A—C8A108.51 (15)C17—C16—H16120.1
C6—C5—C4A112.23 (16)C15—C16—H16120.1
C6—C5—H5A109.2C16—C17—C12121.4 (2)
C4A—C5—H5A109.2C16—C17—H17119.3
C6—C5—H5B109.2C12—C17—H17119.3
C4A—C5—H5B109.2C8—C18—H18A109.5
H5A—C5—H5B107.9C8—C18—H18B109.5
C7—C6—C5112.20 (18)H18A—C18—H18B109.5
C7—C6—H6A109.2C8—C18—H18C109.5
C5—C6—H6A109.2H18A—C18—H18C109.5
C7—C6—H6B109.2H18B—C18—H18C109.5
C5—C6—H6B109.2C4A—C19—H19A109.5
H6A—C6—H6B107.9C4A—C19—H19B109.5
C8—C7—C6125.22 (19)H19A—C19—H19B109.5
C8—C7—H7117.4C4A—C19—H19C109.5
C6—C7—H7117.4H19A—C19—H19C109.5
C7—C8—C18121.11 (19)H19B—C19—H19C109.5
C7—C8—C8A120.92 (18)

Experimental details

Crystal data
Chemical formulaC21H25ClO
Mr328.86
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.9869 (5), 7.0054 (3), 12.1883 (6)
β (°) 105.726 (2)
V3)902.99 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.20 × 0.16
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6963, 3358, 2713
Rint0.021
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.08
No. of reflections3358
No. of parameters210
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21
Absolute structureFlack (1983), 1373 Friedel pairs
Absolute structure parameter0.11 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank the National Center of Scientific and Technological Research (CNRST) which supports our scientific research.

References

First citationAzoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352.  CAS PubMed Web of Science Google Scholar
First citationBohlman, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.  Google Scholar
First citationBohlman, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443–1445.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCeccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKutney, J. P. & Singh, A. (1984). Can. J. Chem. 62, 1407–1409.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds