organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl N-(4-nitro­phen­yl)carbamate

aKey Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: caiqun275885586@163.com

(Received 12 April 2011; accepted 17 May 2011; online 25 May 2011)

In the title mol­ecule, C8H8N2O4, the nitro and meth­oxy­carbonyl groups are twisted from the plane of aromatic ring by 5.1 (1) and 6.2 (1)°, respectively. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules related by translation along the b axis into chains. Weak inter­molecular C—H⋯O inter­actions link further these chains into sheets parallel to the bc plane.

Related literature

For the preparation of the title compound, see: Wilshire (1990[Wilshire, J. F. K. (1990). Aust. J. Chem. 43, 1817-1826.]). For a related structure, see: Yakimanski et al. (1997[Yakimanski, A. V., Kolb, U., Matveeva, G. N., Voigt-Martin, I. G. & Tenkovtsev, A. V. (1997). Acta Cryst. A53, 603-614.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N2O4

  • Mr = 196.16

  • Triclinic, [P \overline 1]

  • a = 7.4269 (11) Å

  • b = 8.1003 (12) Å

  • c = 8.5376 (12) Å

  • α = 101.634 (2)°

  • β = 97.914 (2)°

  • γ = 116.660 (2)°

  • V = 434.04 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 4507 measured reflections

  • 1686 independent reflections

  • 1539 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.162

  • S = 1.26

  • 1686 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.57 3.471 (3) 163
C1—H1B⋯O4ii 0.96 2.53 3.324 (4) 140
N1—H1⋯O3iii 0.82 (3) 2.20 (4) 3.016 (3) 170 (3)
Symmetry codes: (i) x, y, z-1; (ii) x, y-1, z+1; (iii) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4-Nitrophenylhexyl derivatives are studied in the crystal engineering and design of nonlinear optical (NLO) materials (Yakimanski et al., 1997). Herewith we report the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in 4-nitrophenyl-hexyl-urethane (Yakimanski et al., 1997). The nitro and methoxycarbonyl groups are twisted from the plane of aromatic ring at 5.1 (1) and 6.2 (1)°, respectively. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules related by translation along axis b<ι> into chains. Weak intermolecular C—H···O interactions (Table 1) link further these chains into sheets parallel to bc<ι> plane.

Related literature top

For the preparation of the title compound, see: Wilshire (1990). For a related structure, see: Yakimanski et al. (1997).

Experimental top

The title compound was synthesized according to Wilshire (1990). Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a chloroform-methanol (2:1) solution of the title compound under 293 K.

Refinement top

C-bound H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C). Atom H1 was located on difference map and isotropically refined.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.
Methyl N-(4-nitrophenyl)carbamate top
Crystal data top
C8H8N2O4Z = 2
Mr = 196.16F(000) = 204
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4269 (11) ÅCell parameters from 2193 reflections
b = 8.1003 (12) Åθ = 2.5–28.2°
c = 8.5376 (12) ŵ = 0.12 mm1
α = 101.634 (2)°T = 298 K
β = 97.914 (2)°Block, yellow
γ = 116.660 (2)°0.40 × 0.30 × 0.04 mm
V = 434.04 (11) Å3
Data collection top
Bruker SMART APEX
diffractometer
1539 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 99
4507 measured reflectionsk = 99
1686 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.047P)2 + 0.2842P]
where P = (Fo2 + 2Fc2)/3
1686 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C8H8N2O4γ = 116.660 (2)°
Mr = 196.16V = 434.04 (11) Å3
Triclinic, P1Z = 2
a = 7.4269 (11) ÅMo Kα radiation
b = 8.1003 (12) ŵ = 0.12 mm1
c = 8.5376 (12) ÅT = 298 K
α = 101.634 (2)°0.40 × 0.30 × 0.04 mm
β = 97.914 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1539 reflections with I > 2σ(I)
4507 measured reflectionsRint = 0.051
1686 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.26Δρmax = 0.21 e Å3
1686 reflectionsΔρmin = 0.32 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2798 (6)0.1171 (5)0.4095 (4)0.0645 (10)
H1A0.40240.22830.48460.097*
H1B0.28710.00230.41220.097*
H1C0.15820.10950.44190.097*
C20.2591 (4)0.2904 (4)0.2229 (3)0.0400 (6)
C30.2433 (4)0.4234 (4)0.0116 (3)0.0351 (6)
C40.2670 (4)0.5997 (4)0.0750 (3)0.0391 (6)
H40.28530.63180.18910.047*
C50.2633 (4)0.7260 (4)0.0091 (3)0.0399 (6)
H50.27960.84450.04810.048*
C60.2355 (4)0.6774 (4)0.1782 (3)0.0377 (6)
C70.2141 (5)0.5042 (4)0.2666 (3)0.0427 (7)
H70.19790.47390.38040.051*
C80.2173 (4)0.3786 (4)0.1826 (3)0.0415 (7)
H80.20180.26070.24050.050*
N20.2288 (4)0.8111 (4)0.2670 (3)0.0479 (6)
N10.2450 (4)0.2846 (4)0.0624 (3)0.0436 (6)
O10.2673 (4)0.1340 (3)0.2437 (2)0.0538 (6)
O20.2635 (4)0.4136 (3)0.3310 (2)0.0545 (6)
O30.2327 (4)0.9584 (3)0.1911 (3)0.0695 (7)
O40.2176 (4)0.7718 (4)0.4139 (3)0.0733 (8)
H10.235 (5)0.187 (5)0.001 (4)0.059 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.089 (3)0.073 (2)0.0476 (18)0.045 (2)0.0229 (17)0.0351 (17)
C20.0426 (16)0.0416 (16)0.0391 (14)0.0211 (13)0.0138 (12)0.0152 (13)
C30.0356 (14)0.0342 (14)0.0388 (14)0.0188 (12)0.0108 (11)0.0128 (11)
C40.0481 (16)0.0400 (15)0.0286 (12)0.0224 (13)0.0106 (11)0.0064 (11)
C50.0458 (16)0.0310 (14)0.0441 (15)0.0224 (13)0.0101 (12)0.0061 (11)
C60.0362 (14)0.0361 (15)0.0429 (14)0.0185 (12)0.0089 (11)0.0150 (12)
C70.0567 (18)0.0455 (17)0.0338 (14)0.0307 (15)0.0129 (12)0.0129 (12)
C80.0562 (18)0.0350 (15)0.0365 (14)0.0271 (14)0.0122 (12)0.0051 (11)
N20.0539 (15)0.0430 (15)0.0545 (15)0.0282 (13)0.0137 (12)0.0194 (12)
N10.0675 (17)0.0398 (14)0.0324 (12)0.0334 (13)0.0155 (11)0.0101 (10)
O10.0864 (16)0.0512 (13)0.0429 (11)0.0426 (12)0.0242 (11)0.0254 (10)
O20.0838 (16)0.0558 (13)0.0366 (11)0.0421 (12)0.0224 (10)0.0157 (10)
O30.106 (2)0.0434 (13)0.0709 (16)0.0476 (14)0.0179 (14)0.0174 (11)
O40.120 (2)0.0758 (17)0.0552 (15)0.0635 (17)0.0334 (14)0.0378 (13)
Geometric parameters (Å, º) top
C1—O11.444 (3)C4—H40.9300
C1—H1A0.9600C5—C61.378 (4)
C1—H1B0.9600C5—H50.9300
C1—H1C0.9600C6—C71.379 (4)
C2—O21.200 (3)C6—N21.456 (3)
C2—O11.340 (3)C7—C81.364 (4)
C2—N11.350 (3)C7—H70.9300
C3—C41.390 (4)C8—H80.9300
C3—C81.394 (4)N2—O41.211 (3)
C3—N11.400 (3)N2—O31.223 (3)
C4—C51.370 (4)N1—H10.82 (3)
O1—C1—H1A109.5C6—C5—H5120.0
O1—C1—H1B109.5C5—C6—C7121.6 (2)
H1A—C1—H1B109.5C5—C6—N2119.7 (2)
O1—C1—H1C109.5C7—C6—N2118.7 (2)
H1A—C1—H1C109.5C8—C7—C6118.3 (2)
H1B—C1—H1C109.5C8—C7—H7120.9
O2—C2—O1124.7 (3)C6—C7—H7120.9
O2—C2—N1126.5 (3)C7—C8—C3121.3 (2)
O1—C2—N1108.8 (2)C7—C8—H8119.3
C4—C3—C8119.3 (2)C3—C8—H8119.3
C4—C3—N1124.0 (2)O4—N2—O3122.3 (3)
C8—C3—N1116.7 (2)O4—N2—C6118.9 (2)
C5—C4—C3119.5 (2)O3—N2—C6118.9 (2)
C5—C4—H4120.3C2—N1—C3127.9 (2)
C3—C4—H4120.3C2—N1—H1116 (2)
C4—C5—C6120.0 (2)C3—N1—H1116 (2)
C4—C5—H5120.0C2—O1—C1115.7 (2)
C8—C3—C4—C50.4 (4)C5—C6—N2—O4175.4 (3)
N1—C3—C4—C5179.9 (3)C7—C6—N2—O44.5 (4)
C3—C4—C5—C60.2 (4)C5—C6—N2—O35.3 (4)
C4—C5—C6—C71.0 (4)C7—C6—N2—O3174.8 (3)
C4—C5—C6—N2179.2 (2)O2—C2—N1—C33.5 (5)
C5—C6—C7—C81.2 (4)O1—C2—N1—C3176.5 (3)
N2—C6—C7—C8179.0 (2)C4—C3—N1—C23.4 (5)
C6—C7—C8—C30.6 (4)C8—C3—N1—C2177.0 (3)
C4—C3—C8—C70.2 (4)O2—C2—O1—C10.8 (4)
N1—C3—C8—C7179.8 (3)N1—C2—O1—C1179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.573.471 (3)163
C4—H4···O20.932.302.892 (3)121
C1—H1B···O4ii0.962.533.324 (4)140
N1—H1···O3iii0.82 (3)2.20 (4)3.016 (3)170 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H8N2O4
Mr196.16
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4269 (11), 8.1003 (12), 8.5376 (12)
α, β, γ (°)101.634 (2), 97.914 (2), 116.660 (2)
V3)434.04 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.30 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4507, 1686, 1539
Rint0.051
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.162, 1.26
No. of reflections1686
No. of parameters132
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.573.471 (3)163
C1—H1B···O4ii0.962.533.324 (4)140
N1—H1···O3iii0.82 (3)2.20 (4)3.016 (3)170 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y1, z+1; (iii) x, y1, z.
 

Acknowledgements

The author are grateful to the Central China Normal University for financial support and thank Dr Xiang-Gao Meng for the X-ray data collection.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilshire, J. F. K. (1990). Aust. J. Chem. 43, 1817–1826.  CrossRef CAS Google Scholar
First citationYakimanski, A. V., Kolb, U., Matveeva, G. N., Voigt-Martin, I. G. & Tenkovtsev, A. V. (1997). Acta Cryst. A53, 603–614.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds