metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[hexa­aqua­bis­­(μ3-hepta­nedioato-κ3O:O′:O′′)dimagnesium]

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 12 April 2011; accepted 25 April 2011; online 7 May 2011)

In the title compound, [Mg2(C7H10O4)2(H2O)6]n, the MgII ion is coordinated by three aqua ligands and three O atoms from three heptanedioato ligands in a distorted octa­hedral geometry. Each heptanedioato ligand bridges three Mg atoms, generating polymeric layers parallel to the bc plane. The polymeric layers related by translation along the a axis inter­act further via O—H⋯O hydrogen bonds, which consolidate the crystal packing.

Related literature

For general background to microporous coordination polymers, see: Borkowski & Cahill (2006[Borkowski, L. A. & Cahill, C. L. (2006). Cryst. Growth Des. 6, 2241-2247]); Dimos et al. (2002[Dimos, A., Tsaousis, D., Michaelides, A., Skoulika, S., Golhen, S., Ouahab, L., Didierjean, C. & Aubry, A. (2002). Chem. Mater. 14, 2616-2622]); Kim et al. (2001[Kim, Y. J., Lee, E. W. & Jung, D. Y. (2001). Chem. Mater. 13, 2684-2690]). For related structures, see: Liu et al. (2009[Liu, H. K., Tsao, T. H., Zhang, Y. T. & Lin, C. H. (2009). CrystEngComm, 11, 1462-1468.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg2(C7H10O4)2(H2O)6]

  • Mr = 236.51

  • Monoclinic, P 21 /c

  • a = 14.311 (3) Å

  • b = 8.2080 (16) Å

  • c = 9.1280 (18) Å

  • β = 96.22 (3)°

  • V = 1065.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.982

  • 8118 measured reflections

  • 1880 independent reflections

  • 1440 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.16

  • 1880 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O2i 0.84 1.92 2.741 (3) 165
O5—H5D⋯O6ii 0.84 1.99 2.818 (3) 168
O6—H6C⋯O2iii 0.82 2.07 2.882 (3) 170
O6—H6D⋯O5iii 0.82 2.06 2.879 (3) 171
O7—H7A⋯O4iv 0.83 1.94 2.725 (3) 158
O7—H7B⋯O2v 0.79 2.26 2.798 (3) 127
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z; (iv) -x+1, -y, -z; (v) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The past decade has witnessed enormous expansion of research on robust microporous coordination polymers (Borkowski et al., 2006; Dimos et al., 2002; Kim et al., 2001). For such purpose, design and synthesis of novel coordination polymers have been focused on organic ligands, others have reported lists of complexs used dicarboxylic acids. In this contribution, we report the crystal structure of the title compound (I).

In (I) (Fig. 1), two carboxylate groups of pimelato (pim2–) ligand display different coordination behaviour - in the O1–C1–O2 group only one O1 atom coordinate one Mg center, while the O3–C7–O4 carboxylate group coordinate two Mg centers in an syn/anti mode. The Mg atoms are six-coordinated by three oxygen atoms from three pim2– anions and three aqua ligands to complete a distorted MgO6 octahedra with the Mg–O distances in the range of 1.999 (3)–2.156 (2) Å. The trans– and cisoid– O–Mg–O angles lie in the region 81.4 (1)–98.7 (1)° and 168.5 (1)– 171.8 (1)°.The Mg coordination sphere in (I) is similar to that observed in Mg2(H2O)6(BTEC) (Liu et al., 2009). The Mg2+ ions are bridged by the pimelate anions, forming the polymeric layers parallel to (100) (Fig. 2). When the Mg atom and the pim2– anions are treated as 3– nodes, the two-dimensional layers can be best described as (4.82) topological network. Intermolecular O—H···O hydrogen bonds (Table 1) between the aqua ligand and carboxylate oxygen atoms make a contribution to stabilization of the three-dimensional framework.

Related literature top

For general background to microporous coordination polymers, see: Borkowski & Cahill (2006); Dimos et al. (2002); Kim et al., (2001). For related structures, see: Liu et al. (2009)

Experimental top

Dropwise addition of 1 M NaOH (1.0 ml) to a stirred aqueous solution of (0.1248 g, 0.5 mmol) MgSO4.7H2O in 5.0 ml H2O produced pale-white Mg(OH)2.xH2O precipitate, which was separated by centrifugation and washed with distilled water several times until no detectable SO42– anions in the supernatant. Subsequently, the 0.0815 g (0.5 mmol) pimelic acid was dissolved completely with 15 ml H2O, and then the precipitate was added. The resulting mixture was further stirred for 30 min and then filtered. The white filtrate (pH = 5.70) was allowed to stand at room temperature. Slow evaporation for several days afforded colourless platelet-like crystals.

Refinement top

H atoms bounded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing the atomic numbering and 45% probabilty dispalcement ellipsoids [wymmetry codes: (i)-x + 1, -y, -z;(ii)-x + 1, y + 1/2, -z - 1/2;(iii)-x + 1, y - 1/2, -z - 1/2.]
[Figure 2] Fig. 2. Two-dimensional polymeric layer in (I) viewed along the axis a.
Poly[hexaaquabis(µ3-heptanedioato- κ3O:O':O'')dimagnesium] top
Crystal data top
[Mg2(C7H10O4)2(H2O)6]F(000) = 504
Mr = 236.51Dx = 1.474 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6164 reflections
a = 14.311 (3) Åθ = 3.4–27.4°
b = 8.2080 (16) ŵ = 0.18 mm1
c = 9.1280 (18) ÅT = 293 K
β = 96.22 (3)°Platelet, colourless
V = 1065.9 (4) Å30.1 × 0.1 × 0.1 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1880 independent reflections
Radiation source: fine-focus sealed tube1440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 1617
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.982, Tmax = 0.982l = 1010
8118 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0228P)2 + 2.4599P]
where P = (Fo2 + 2Fc2)/3
1880 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mg2(C7H10O4)2(H2O)6]V = 1065.9 (4) Å3
Mr = 236.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.311 (3) ŵ = 0.18 mm1
b = 8.2080 (16) ÅT = 293 K
c = 9.1280 (18) Å0.1 × 0.1 × 0.1 mm
β = 96.22 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1880 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1440 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.982Rint = 0.040
8118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.16Δρmax = 0.34 e Å3
1880 reflectionsΔρmin = 0.46 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.83863 (7)0.14609 (13)0.01196 (11)0.0200 (3)
O10.84242 (17)0.0886 (3)0.0455 (3)0.0360 (6)
O20.87832 (17)0.3395 (3)0.0967 (3)0.0329 (6)
C10.8253 (2)0.2167 (4)0.1155 (4)0.0236 (7)
C20.7382 (2)0.2240 (5)0.2254 (4)0.0300 (8)
H2A0.73490.32990.27290.036*
H2B0.74290.14220.30100.036*
C30.6484 (2)0.1956 (5)0.1530 (4)0.0328 (8)
H3A0.64180.28150.08200.039*
H3B0.65360.09300.10000.039*
C40.5610 (2)0.1918 (5)0.2641 (4)0.0331 (9)
H4A0.56390.09660.32650.040*
H4B0.56090.28740.32650.040*
C50.4696 (2)0.1871 (5)0.1933 (4)0.0325 (9)
H5A0.46680.28150.13000.039*
H5B0.46900.09060.13210.039*
C60.3837 (2)0.1858 (5)0.3061 (4)0.0315 (9)
H6A0.38970.27280.37640.038*
H6B0.38230.08360.35970.038*
C70.2909 (2)0.2061 (4)0.2417 (3)0.0228 (7)
O30.28052 (15)0.1400 (3)0.1210 (2)0.0258 (5)
O40.22845 (16)0.2917 (3)0.3134 (2)0.0334 (6)
O50.92533 (15)0.0681 (3)0.2049 (2)0.0235 (5)
H5C0.90430.00860.25290.028*
H5D0.94620.13970.26500.028*
O60.96828 (14)0.1863 (3)0.0827 (2)0.0248 (5)
H6C1.01610.22420.03850.030*
H6D0.99570.11650.12710.030*
O70.86395 (18)0.3864 (3)0.0818 (3)0.0362 (6)
H7A0.84430.37790.16340.043*
H7B0.89410.46660.07950.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0191 (5)0.0224 (6)0.0185 (5)0.0025 (4)0.0021 (4)0.0003 (4)
O10.0318 (14)0.0282 (14)0.0459 (15)0.0026 (11)0.0047 (12)0.0147 (12)
O20.0375 (14)0.0289 (14)0.0314 (13)0.0097 (12)0.0004 (11)0.0011 (11)
C10.0207 (16)0.0225 (18)0.0287 (17)0.0000 (14)0.0071 (14)0.0023 (15)
C20.0237 (17)0.037 (2)0.0285 (18)0.0024 (16)0.0003 (14)0.0087 (16)
C30.0236 (18)0.042 (2)0.0330 (19)0.0024 (16)0.0022 (15)0.0051 (17)
C40.0214 (17)0.045 (2)0.0327 (19)0.0045 (16)0.0038 (15)0.0068 (17)
C50.0204 (17)0.044 (2)0.0332 (19)0.0015 (16)0.0028 (15)0.0064 (18)
C60.0221 (17)0.049 (2)0.0247 (18)0.0026 (16)0.0076 (14)0.0054 (17)
C70.0187 (16)0.0303 (19)0.0191 (16)0.0001 (14)0.0000 (13)0.0031 (15)
O30.0221 (12)0.0362 (14)0.0192 (11)0.0031 (10)0.0033 (9)0.0069 (10)
O40.0239 (12)0.0552 (17)0.0210 (12)0.0119 (12)0.0022 (10)0.0101 (12)
O50.0267 (12)0.0217 (12)0.0217 (11)0.0028 (10)0.0004 (9)0.0009 (10)
O60.0176 (11)0.0317 (13)0.0251 (12)0.0046 (10)0.0017 (9)0.0006 (10)
O70.0553 (17)0.0227 (13)0.0338 (14)0.0023 (12)0.0204 (12)0.0000 (11)
Geometric parameters (Å, º) top
Mg—O11.999 (3)C4—H4B0.9700
Mg—O4i2.023 (2)C5—C61.517 (5)
Mg—O3ii2.066 (2)C5—H5A0.9700
Mg—O72.093 (3)C5—H5B0.9700
Mg—O52.140 (2)C6—C71.518 (4)
Mg—O62.156 (2)C6—H6A0.9700
Mg—H7A2.3478C6—H6B0.9700
O1—C11.241 (4)C7—O31.251 (4)
O2—C11.263 (4)C7—O41.263 (4)
C1—C21.514 (5)O3—Mgii2.066 (2)
C2—C31.525 (5)O4—Mgiii2.023 (2)
C2—H2A0.9700O5—H5C0.8407
C2—H2B0.9700O5—H5D0.8365
C3—C41.523 (5)O6—H6C0.8177
C3—H3A0.9700O6—H6D0.8245
C3—H3B0.9700O7—H7A0.8268
C4—C51.521 (4)O7—H7B0.7876
C4—H4A0.9700
O1—Mg—O4i91.82 (12)C2—C3—H3B109.1
O1—Mg—O3ii98.66 (11)H3A—C3—H3B107.8
O4i—Mg—O3ii95.83 (10)C5—C4—C3113.6 (3)
O1—Mg—O7168.45 (11)C5—C4—H4A108.8
O4i—Mg—O794.85 (11)C3—C4—H4A108.8
O3ii—Mg—O790.04 (10)C5—C4—H4B108.8
O1—Mg—O584.14 (10)C3—C4—H4B108.8
O4i—Mg—O5171.83 (10)H4A—C4—H4B107.7
O3ii—Mg—O591.81 (9)C6—C5—C4112.5 (3)
O7—Mg—O588.03 (10)C6—C5—H5A109.1
O1—Mg—O689.61 (10)C4—C5—H5A109.1
O4i—Mg—O686.98 (10)C6—C5—H5B109.1
O3ii—Mg—O6171.16 (11)C4—C5—H5B109.1
O7—Mg—O681.36 (10)H5A—C5—H5B107.8
O5—Mg—O685.89 (9)C5—C6—C7114.5 (3)
O1—Mg—H7A159.3C5—C6—H6A108.6
O4i—Mg—H7A107.8C7—C6—H6A108.6
O3ii—Mg—H7A73.4C5—C6—H6B108.6
O7—Mg—H7A20.4C7—C6—H6B108.6
O5—Mg—H7A77.2H6A—C6—H6B107.6
O6—Mg—H7A97.8O3—C7—O4123.5 (3)
C1—O1—Mg160.5 (2)O3—C7—C6119.1 (3)
O1—C1—O2121.7 (3)O4—C7—C6117.4 (3)
O1—C1—C2118.5 (3)C7—O3—Mgii126.7 (2)
O2—C1—C2119.9 (3)C7—O4—Mgiii147.7 (2)
C1—C2—C3112.2 (3)Mg—O5—H5C116.3
C1—C2—H2A109.2Mg—O5—H5D117.6
C3—C2—H2A109.2H5C—O5—H5D107.9
C1—C2—H2B109.2Mg—O6—H6C124.8
C3—C2—H2B109.2Mg—O6—H6D124.5
H2A—C2—H2B107.9H6C—O6—H6D95.2
C4—C3—C2112.6 (3)Mg—O7—H7A97.5
C4—C3—H3A109.1Mg—O7—H7B148.9
C2—C3—H3A109.1H7A—O7—H7B109.5
C4—C3—H3B109.1
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O2iv0.841.922.741 (3)165
O5—H5D···O6v0.841.992.818 (3)168
O6—H6C···O2vi0.822.072.882 (3)170
O6—H6D···O5vi0.822.062.879 (3)171
O7—H7A···O4ii0.831.942.725 (3)158
O7—H7B···O2vii0.792.262.798 (3)127
Symmetry codes: (ii) x+1, y, z; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+2, y, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mg2(C7H10O4)2(H2O)6]
Mr236.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.311 (3), 8.2080 (16), 9.1280 (18)
β (°) 96.22 (3)
V3)1065.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.982, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8118, 1880, 1440
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.16
No. of reflections1880
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.46

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O2i0.841.922.741 (3)165
O5—H5D···O6ii0.841.992.818 (3)168
O6—H6C···O2iii0.822.072.882 (3)170
O6—H6D···O5iii0.822.062.879 (3)171
O7—H7A···O4iv0.831.942.725 (3)158
O7—H7B···O2v0.792.262.798 (3)127
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y, z; (iv) x+1, y, z; (v) x, y+1, z.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Ningbo University (grant No. XKL069) and the Education Department of Zhejiang Province. Grateful thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationBorkowski, L. A. & Cahill, C. L. (2006). Cryst. Growth Des. 6, 2241–2247  CrossRef CAS Google Scholar
First citationDimos, A., Tsaousis, D., Michaelides, A., Skoulika, S., Golhen, S., Ouahab, L., Didierjean, C. & Aubry, A. (2002). Chem. Mater. 14, 2616–2622  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKim, Y. J., Lee, E. W. & Jung, D. Y. (2001). Chem. Mater. 13, 2684–2690  CrossRef CAS Google Scholar
First citationLiu, H. K., Tsao, T. H., Zhang, Y. T. & Lin, C. H. (2009). CrystEngComm, 11, 1462–1468.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds