metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m732-m733

Chloridotris(3,5-di­methyl-1H-pyrazole-κN2)(formato-κO)copper(II)–di­chlorido­bis­(3,5-di­methyl-1H-pyrazole-κN2)copper(II) (2/1)

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kiev, Ukraine, and bInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
*Correspondence e-mail: mihaylichenko85@mail.ru

(Received 19 April 2011; accepted 1 May 2011; online 7 May 2011)

The asymmetric unit of the title compound, [Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2] or 2[A]·[B], contains one A mol­ecule and one half-molecule of B, located on a centre of inversion. The CuII environments in A and B are different. In A, the CuII atom is coordinated by three N atoms from three 3,5-dimethyl-1H-pyrazole (L) ligands, one O atom from a formate ligand and a chloride anion in an axial position [Cu—Cl = 2.4275 (7) Å] in a distorted tetra­gonal–pyramidal geometry. The CuII atom in B is coordinated by two N atoms from two L ligands and two chloride anions [Cu—Cl = 2.2524 (6) Å] in a distorted square-planar geometry. In the crystal, inter­molecular N—H⋯O hydrogen bonds link mol­ecules A into centrosymmetric dimers. Inter­molecular N—H⋯Cl hydrogen bonds further link these dimers with the B mol­ecules, forming chains propagating in [101].

Related literature

For metal complexes with pyrazole and its derivatives, see: Trofimenko (1972)[Trofimenko, S. (1972). Chem. Rev. 93, 943-980.]; La Monica & Ardizzoia (1997[La Monica, G. & Ardizzoia, G. A. (1997). Prog. Inorg. Chem. 46, 151-238.]); Casarin et al. (2005[Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.]); Davydenko et al. (2009[Davydenko, Y. M., Fritsky, I. O., Pavlenko, V. O., Meyer, F. & Dechert, S. (2009). Acta Cryst. E65, m691-m692.]). For details of the bio­inorganic chemistry of copper complexes with pyrazole, see: Krämer (1999[Krämer, R. (1999). Coord. Chem. Rev. 182, 211-243.]); Raptis et al. (1999[Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632-1634.]). For applications of copper complexes with pyrazole in mol­ecular magnetism and supra­molecular chemistry, see: Krämer et al. (2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kowbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]); Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2]

  • Mr = 1191.53

  • Monoclinic, P 21 /c

  • a = 11.4457 (3) Å

  • b = 14.4720 (5) Å

  • c = 17.0313 (5) Å

  • β = 106.650 (2)°

  • V = 2702.82 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 120 K

  • 0.50 × 0.27 × 0.19 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.554, Tmax = 0.763

  • 36108 measured reflections

  • 5749 independent reflections

  • 4611 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.01

  • 5749 reflections

  • 333 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.82 (4) 2.74 (4) 3.270 (2) 124 (3)
N2—H2⋯Cl2 0.82 (4) 2.66 (4) 3.348 (2) 143 (3)
N9—H9⋯Cl1 0.79 (4) 2.30 (4) 3.081 (2) 168 (4)
N7—H7⋯O2i 0.72 (4) 2.19 (4) 2.903 (3) 170 (4)
N4—H4⋯O2i 0.87 (4) 1.98 (4) 2.850 (3) 176 (4)
N4—H4⋯O1i 0.87 (4) 2.59 (4) 3.208 (3) 128 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal complexes with pyrazole and its derivatives have attracted much research interest for their versatile coordination chemistry and specific properties (Trofimenko, 1972; La Monica et al., 1997). Pyrazole and its derivatives exhibit several coordination modes, particularly as the 1,2-bringing form, often utilized to prevent accumulation of positive charges in metal ion assembled compounds. Due to the presence of N—N bridging function in the pyrazole ring these ligands can form polynuclear complexes with specific molecular topology (Casarin et al., 2005; La Monica et al., 1997). In addition, neutral 1H-pyrazole ligands are usually bound to metal ions via the pyridine-type nitrogen atom thus providing formation of the mononuclear complexes (Davydenko et al., 2009). Copper (II) complexes containing pyrazole-based ligands are of particular interest in bioinorganic chemistry, as they can be used as models for the active sites of copper proteins like hemocyanine and tyrosinase (Krämer, 1999; Raptis et al., 1999). These compounds have been widely used in molecular magnetism as they can exhibit specific magnetic properties and in supramolecular chemistry as they can be used as building blocks for the preparation of polynuclear complexes or coordination polymers (Krämer et al., 2002; Seredyuk et al., 2007).

The title compound 2[A].[B], (I), reported here, contains one molecule A (= chloro-tris(3,5-dimethyl-1H-pyrazole-κN)- formato-κO-cooper(II)) and one-half of B (= dichloro-bis(3,5-dimethyl-1H-pyrazole-κN)-cooper(II)) located on centre of inversion (Fig. 1).

In A, the Cu1 atom has a distorted tetragonal-pyramidal geometry with equatorial plane formed by three N atoms belonging to 3,5-dimethyl-1H-pyrazole ligands [Cu1—N = 1.989 (2) - 2.075 (2) Å] and one O atom from formato ligand [Cu1—O1 = 1.961 (16) Å]. The axial position is occupied by chloro anion [Cu1—Cl1 = 2.427 (7) Å]. The N—H group from one molecule of 3,5-dimethyl-1H-pyrazole forms an intramolecular hydrogen bond with neighboring an atom of chlorine N2–H2···Cl1 = 3.270 (2) Å. Hence, two N,H, Cl and Cu atoms form the five-membered cycle.

The Cu2 center in B is coordinated by two N atoms from two ligands L [Cu2–N = 2.014 (2) Å] and two chloro anions [Cu2—Cl 2.252 (6) Å] in a distorted square-planar geometry. The ligands of each sort are trans-oriented with respect to each other.

In the crystal structure (Fig. 2), intermolecular N—H···O hydrogen bonds (Table 1) link molecules A into centrosymmetric dimers. Intermolecular N—H···Cl hydrogen bonds link further these dimers with the molecules B into chains propagated in [101].

Related literature top

For metal complexes with pyrazole and its derivatives, see: Trofimenko (1972); La Monica & Ardizzoia (1997); Casarin et al. (2005); Davydenko et al. (2009). For details of the bioinorganic chemistry of copper complexes with pyrazole, see: Krämer (1999); Raptis et al. (1999). For applications of copper complexes with pyrazole in molecular magnetism and supramolecular chemistry, see: Krämer et al. (2002); Seredyuk et al. (2007).

Experimental top

Compound (I) was synthesized by oxidative dissolution method at free access of air oxygen. The mixture of 3,5-dimethyl-1H-pyrazole (0.96 g; 0.01 mol), ammonium chloride (0.535 g; 0.01 mol) in dimethyformamide solution (15 ml) was stirred with copper powder (0.64 g; 0.01 mol) at ambient temperature until complete dissolving of solid. The resulting dark-green solution was filtered and the filtrate was left to stand at room temperature for crystallization in air. Slow evaporation of the solvent in 5 days yielded green crystals of (I) suitable for X-ray analysis.

Refinement top

N-bound H atoms were located from the difference Fourier map and refined freely with Uiso (H) fixed to 0.08. The rest H atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.93-0.96 Å and with Uiso(H) fixed to 0.08.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and the copper coordination environment [symmetry codes: (i) 2 - x, 1 - y, 2 - z]. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines denote hydrogen bonds. C-bound H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen bonds as dashed lines.
Chloridotris(3,5-dimethyl-1H-pyrazole-κN2)- (formato-κO)copper(II)– dichloridobis(3,5-dimethyl-1H-pyrazole-κN2)copper(II) (2/1) top
Crystal data top
[Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2]F(000) = 1234
Mr = 1191.53Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 36108 reflections
a = 11.4457 (3) Åθ = 1.9–26.8°
b = 14.4720 (5) ŵ = 1.42 mm1
c = 17.0313 (5) ÅT = 120 K
β = 106.650 (2)°Block, blue
V = 2702.82 (14) Å30.50 × 0.27 × 0.19 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
5749 independent reflections
Radiation source: fine-focus sealed tube4611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.8°, θmin = 1.9°
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2002)
h = 1414
Tmin = 0.554, Tmax = 0.763k = 1818
36108 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
5749 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2]V = 2702.82 (14) Å3
Mr = 1191.53Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.4457 (3) ŵ = 1.42 mm1
b = 14.4720 (5) ÅT = 120 K
c = 17.0313 (5) Å0.50 × 0.27 × 0.19 mm
β = 106.650 (2)°
Data collection top
Stoe IPDS II
diffractometer
5749 independent reflections
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2002)
4611 reflections with I > 2σ(I)
Tmin = 0.554, Tmax = 0.763Rint = 0.031
36108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.72 e Å3
5749 reflectionsΔρmin = 0.83 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73059 (2)0.426309 (19)0.646481 (16)0.03259 (9)
Cu21.00000.50001.00000.03732 (11)
Cl10.80389 (6)0.51219 (4)0.77357 (4)0.04438 (15)
Cl21.02066 (6)0.36400 (4)0.94106 (4)0.04571 (15)
N10.87868 (17)0.34752 (14)0.66725 (12)0.0360 (4)
N20.97024 (19)0.34221 (15)0.73835 (13)0.0386 (4)
N30.78754 (18)0.50097 (14)0.56033 (12)0.0377 (4)
N40.7119 (2)0.50467 (16)0.48203 (13)0.0413 (5)
N60.62439 (18)0.31213 (14)0.65350 (13)0.0393 (4)
N70.5235 (2)0.29562 (16)0.58991 (15)0.0436 (5)
N80.83090 (19)0.46420 (15)1.00220 (13)0.0392 (4)
N90.7440 (2)0.44923 (17)0.93053 (14)0.0448 (5)
C11.0239 (2)0.25280 (18)0.65202 (17)0.0442 (6)
H11.06680.21210.62840.080*
C20.9111 (2)0.29314 (16)0.61396 (15)0.0372 (5)
C31.0590 (2)0.28477 (17)0.73078 (16)0.0407 (5)
C40.8330 (3)0.2839 (2)0.52783 (17)0.0491 (6)
H4A0.74880.28200.52710.080*
H4B0.85350.22790.50460.080*
H4C0.84620.33580.49630.080*
C51.1709 (3)0.2667 (2)0.79957 (19)0.0563 (7)
H5A1.22860.31560.80240.080*
H5B1.20630.20900.79050.080*
H5C1.14990.26380.85020.080*
C60.8677 (3)0.5884 (2)0.48219 (18)0.0547 (7)
H60.92160.62690.46610.080*
C70.8829 (2)0.55265 (17)0.56019 (15)0.0385 (5)
C80.7589 (2)0.55637 (19)0.43374 (16)0.0443 (6)
C90.9877 (2)0.5650 (2)0.63566 (18)0.0543 (7)
H9A0.95760.56870.68270.080*
H9B1.03050.62090.63110.080*
H9C1.04210.51330.64150.080*
C110.6941 (3)0.5685 (3)0.34459 (17)0.0650 (9)
H11A0.71640.51930.31390.080*
H11B0.71690.62670.32610.080*
H11C0.60760.56740.33650.080*
C120.5155 (3)0.19598 (19)0.68291 (19)0.0517 (7)
H120.49110.14840.71140.080*
C130.6201 (2)0.25102 (17)0.71056 (16)0.0423 (6)
C140.4565 (2)0.22632 (18)0.60563 (19)0.0492 (6)
C150.7171 (3)0.2453 (2)0.79031 (18)0.0579 (7)
H15A0.78100.20520.78470.080*
H15B0.68300.22130.83150.080*
H15C0.74980.30580.80610.080*
C160.3415 (3)0.1954 (2)0.5443 (3)0.0763 (11)
H16A0.30580.24640.50970.080*
H16B0.28530.17330.57240.080*
H16C0.35970.14650.51150.080*
C170.6545 (3)0.4272 (2)1.02527 (18)0.0501 (6)
H170.59690.41451.05270.080*
C180.7763 (2)0.45062 (17)1.06020 (16)0.0406 (5)
C190.6368 (2)0.4267 (2)0.94247 (18)0.0491 (6)
C200.8437 (3)0.4582 (2)1.14949 (17)0.0557 (7)
H20A0.92970.46161.15600.080*
H20B0.82650.40501.17800.080*
H20C0.81790.51301.17170.080*
C210.5268 (3)0.4061 (3)0.8719 (2)0.0783 (11)
H21A0.53970.42900.82210.080*
H21B0.45660.43570.88080.080*
H21C0.51380.34060.86760.080*
C220.5712 (2)0.57910 (18)0.60437 (17)0.0472 (6)
H220.64180.61110.63120.080*
O10.57534 (15)0.49305 (11)0.60884 (11)0.0400 (4)
O20.48246 (17)0.62519 (13)0.56778 (12)0.0514 (5)
H20.966 (3)0.371 (3)0.779 (2)0.080*
H40.650 (4)0.467 (3)0.467 (2)0.080*
H70.515 (4)0.318 (3)0.551 (2)0.080*
H90.753 (4)0.459 (3)0.887 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02773 (14)0.03492 (15)0.03263 (15)0.00171 (11)0.00467 (11)0.00305 (11)
Cu20.0337 (2)0.0406 (2)0.0404 (2)0.00253 (17)0.01504 (18)0.00089 (17)
Cl10.0514 (4)0.0500 (3)0.0289 (3)0.0016 (3)0.0069 (3)0.0006 (2)
Cl20.0451 (3)0.0447 (3)0.0490 (4)0.0002 (3)0.0162 (3)0.0035 (3)
N10.0305 (10)0.0389 (10)0.0353 (10)0.0008 (8)0.0043 (8)0.0000 (8)
N20.0339 (10)0.0426 (11)0.0360 (11)0.0053 (8)0.0048 (9)0.0021 (9)
N30.0307 (10)0.0482 (11)0.0299 (10)0.0041 (8)0.0016 (8)0.0045 (8)
N40.0347 (11)0.0536 (13)0.0306 (10)0.0059 (9)0.0015 (8)0.0066 (9)
N60.0320 (10)0.0388 (10)0.0422 (11)0.0006 (8)0.0028 (8)0.0047 (9)
N70.0330 (11)0.0440 (12)0.0471 (13)0.0031 (9)0.0009 (10)0.0044 (10)
N80.0363 (11)0.0455 (11)0.0360 (11)0.0069 (9)0.0104 (9)0.0047 (9)
N90.0426 (12)0.0569 (13)0.0358 (11)0.0059 (10)0.0128 (10)0.0056 (10)
C10.0409 (14)0.0433 (13)0.0503 (15)0.0070 (11)0.0163 (12)0.0002 (11)
C20.0360 (12)0.0344 (11)0.0423 (13)0.0010 (9)0.0129 (10)0.0023 (10)
C30.0318 (12)0.0401 (12)0.0494 (14)0.0051 (10)0.0103 (11)0.0093 (11)
C40.0466 (15)0.0544 (15)0.0444 (15)0.0014 (12)0.0099 (12)0.0135 (12)
C50.0424 (15)0.0629 (18)0.0571 (18)0.0138 (13)0.0037 (13)0.0100 (14)
C60.0412 (15)0.075 (2)0.0484 (15)0.0128 (14)0.0142 (12)0.0134 (14)
C70.0308 (12)0.0460 (13)0.0384 (12)0.0018 (10)0.0096 (10)0.0004 (10)
C80.0412 (14)0.0568 (16)0.0355 (13)0.0047 (11)0.0118 (11)0.0084 (11)
C90.0361 (14)0.077 (2)0.0465 (15)0.0117 (13)0.0062 (12)0.0054 (14)
C110.0569 (19)0.102 (3)0.0348 (14)0.0057 (17)0.0115 (13)0.0173 (16)
C120.0530 (17)0.0415 (14)0.0631 (18)0.0055 (12)0.0205 (14)0.0070 (13)
C130.0449 (14)0.0368 (12)0.0453 (14)0.0025 (10)0.0131 (11)0.0039 (10)
C140.0389 (14)0.0405 (13)0.0656 (18)0.0046 (11)0.0106 (13)0.0041 (13)
C150.066 (2)0.0556 (17)0.0450 (16)0.0010 (14)0.0052 (14)0.0090 (13)
C160.0484 (18)0.0609 (19)0.102 (3)0.0152 (15)0.0063 (18)0.0046 (19)
C170.0449 (15)0.0578 (16)0.0528 (16)0.0035 (12)0.0226 (13)0.0044 (13)
C180.0435 (14)0.0404 (12)0.0403 (13)0.0034 (10)0.0160 (11)0.0014 (10)
C190.0377 (14)0.0598 (16)0.0485 (15)0.0013 (12)0.0103 (12)0.0095 (13)
C200.0581 (18)0.0687 (18)0.0406 (15)0.0085 (15)0.0145 (13)0.0011 (13)
C210.0467 (18)0.111 (3)0.069 (2)0.0045 (19)0.0029 (16)0.025 (2)
C220.0368 (13)0.0419 (14)0.0519 (15)0.0009 (11)0.0048 (11)0.0017 (12)
O10.0300 (8)0.0390 (9)0.0474 (10)0.0006 (7)0.0055 (7)0.0020 (7)
O20.0421 (11)0.0473 (10)0.0548 (11)0.0111 (8)0.0022 (9)0.0037 (9)
Geometric parameters (Å, º) top
Cu1—O11.9618 (16)C6—C81.363 (4)
Cu1—N11.989 (2)C6—C71.389 (4)
Cu1—N32.072 (2)C6—H60.9300
Cu1—N62.075 (2)C7—C91.496 (4)
Cu1—Cl12.4275 (7)C8—C111.497 (4)
Cu2—N8i2.014 (2)C9—H9A0.9600
Cu2—N82.014 (2)C9—H9B0.9600
Cu2—Cl22.2524 (6)C9—H9C0.9600
Cu2—Cl2i2.2524 (6)C11—H11A0.9600
N1—C21.332 (3)C11—H11B0.9600
N1—N21.358 (3)C11—H11C0.9600
N2—C31.347 (3)C12—C141.368 (4)
N2—H20.82 (4)C12—C131.403 (4)
N3—C71.324 (3)C12—H120.9300
N3—N41.367 (3)C13—C151.490 (4)
N4—C81.334 (3)C14—C161.495 (4)
N4—H40.87 (4)C15—H15A0.9600
N6—C131.325 (3)C15—H15B0.9600
N6—N71.359 (3)C15—H15C0.9600
N7—C141.336 (4)C16—H16A0.9600
N7—H70.72 (4)C16—H16B0.9600
N8—C181.326 (3)C16—H16C0.9600
N8—N91.353 (3)C17—C191.366 (4)
N9—C191.340 (4)C17—C181.392 (4)
N9—H90.79 (4)C17—H170.9300
C1—C31.366 (4)C18—C201.499 (4)
C1—C21.395 (4)C19—C211.500 (4)
C1—H10.9300C20—H20A0.9600
C2—C41.489 (4)C20—H20B0.9600
C3—C51.491 (4)C20—H20C0.9600
C4—H4A0.9600C21—H21A0.9600
C4—H4B0.9600C21—H21B0.9600
C4—H4C0.9600C21—H21C0.9600
C5—H5A0.9600C22—O21.226 (3)
C5—H5B0.9600C22—O11.248 (3)
C5—H5C0.9600C22—H220.9300
O1—Cu1—N1170.57 (8)N3—C7—C6109.5 (2)
O1—Cu1—N387.20 (8)N3—C7—C9121.6 (2)
N1—Cu1—N389.99 (8)C6—C7—C9128.8 (2)
O1—Cu1—N685.42 (7)N4—C8—C6106.1 (2)
N1—Cu1—N690.96 (8)N4—C8—C11121.4 (3)
N3—Cu1—N6139.85 (8)C6—C8—C11132.5 (3)
O1—Cu1—Cl195.08 (5)C7—C9—H9A109.5
N1—Cu1—Cl194.34 (6)C7—C9—H9B109.5
N3—Cu1—Cl1105.43 (6)H9A—C9—H9B109.5
N6—Cu1—Cl1114.51 (6)C7—C9—H9C109.5
N8i—Cu2—N8180.0H9A—C9—H9C109.5
N8i—Cu2—Cl289.56 (6)H9B—C9—H9C109.5
N8—Cu2—Cl290.44 (6)C8—C11—H11A109.5
N8i—Cu2—Cl2i90.44 (6)C8—C11—H11B109.5
N8—Cu2—Cl2i89.56 (6)H11A—C11—H11B109.5
Cl2—Cu2—Cl2i180.000 (1)C8—C11—H11C109.5
C2—N1—N2106.2 (2)H11A—C11—H11C109.5
C2—N1—Cu1127.41 (17)H11B—C11—H11C109.5
N2—N1—Cu1126.29 (16)C14—C12—C13106.2 (2)
C3—N2—N1111.1 (2)C14—C12—H12126.9
C3—N2—H2128 (3)C13—C12—H12126.9
N1—N2—H2120 (3)N6—C13—C12109.9 (2)
C7—N3—N4105.55 (19)N6—C13—C15122.1 (2)
C7—N3—Cu1136.28 (17)C12—C13—C15128.0 (2)
N4—N3—Cu1118.13 (15)N7—C14—C12106.3 (2)
C8—N4—N3111.7 (2)N7—C14—C16121.8 (3)
C8—N4—H4127 (3)C12—C14—C16132.0 (3)
N3—N4—H4120 (3)C13—C15—H15A109.5
C13—N6—N7105.4 (2)C13—C15—H15B109.5
C13—N6—Cu1135.97 (18)H15A—C15—H15B109.5
N7—N6—Cu1118.17 (16)C13—C15—H15C109.5
C14—N7—N6112.2 (2)H15A—C15—H15C109.5
C14—N7—H7126 (3)H15B—C15—H15C109.5
N6—N7—H7121 (3)C14—C16—H16A109.5
C18—N8—N9105.5 (2)C14—C16—H16B109.5
C18—N8—Cu2135.42 (18)H16A—C16—H16B109.5
N9—N8—Cu2119.08 (15)C14—C16—H16C109.5
C19—N9—N8111.7 (2)H16A—C16—H16C109.5
C19—N9—H9124 (3)H16B—C16—H16C109.5
N8—N9—H9124 (3)C19—C17—C18106.1 (2)
C3—C1—C2106.7 (2)C19—C17—H17127.0
C3—C1—H1126.7C18—C17—H17127.0
C2—C1—H1126.7N8—C18—C17110.2 (2)
N1—C2—C1109.4 (2)N8—C18—C20122.0 (2)
N1—C2—C4121.2 (2)C17—C18—C20127.8 (2)
C1—C2—C4129.4 (2)N9—C19—C17106.5 (2)
N2—C3—C1106.6 (2)N9—C19—C21121.4 (3)
N2—C3—C5122.3 (2)C17—C19—C21132.1 (3)
C1—C3—C5131.1 (2)C18—C20—H20A109.5
C2—C4—H4A109.5C18—C20—H20B109.5
C2—C4—H4B109.5H20A—C20—H20B109.5
H4A—C4—H4B109.5C18—C20—H20C109.5
C2—C4—H4C109.5H20A—C20—H20C109.5
H4A—C4—H4C109.5H20B—C20—H20C109.5
H4B—C4—H4C109.5C19—C21—H21A109.5
C3—C5—H5A109.5C19—C21—H21B109.5
C3—C5—H5B109.5H21A—C21—H21B109.5
H5A—C5—H5B109.5C19—C21—H21C109.5
C3—C5—H5C109.5H21A—C21—H21C109.5
H5A—C5—H5C109.5H21B—C21—H21C109.5
H5B—C5—H5C109.5O2—C22—O1125.9 (2)
C8—C6—C7107.2 (2)O2—C22—H22117.1
C8—C6—H6126.4O1—C22—H22117.1
C7—C6—H6126.4C22—O1—Cu1121.76 (16)
N3—Cu1—N1—C261.4 (2)C3—C1—C2—C4178.6 (3)
N6—Cu1—N1—C278.5 (2)N1—N2—C3—C10.6 (3)
Cl1—Cu1—N1—C2166.9 (2)N1—N2—C3—C5179.6 (2)
N3—Cu1—N1—N2115.12 (19)C2—C1—C3—N20.4 (3)
N6—Cu1—N1—N2105.02 (19)C2—C1—C3—C5179.2 (3)
Cl1—Cu1—N1—N29.65 (19)N4—N3—C7—C60.2 (3)
C2—N1—N2—C30.6 (3)Cu1—N3—C7—C6177.8 (2)
Cu1—N1—N2—C3177.71 (17)N4—N3—C7—C9179.3 (2)
O1—Cu1—N3—C7128.2 (3)Cu1—N3—C7—C93.1 (4)
N1—Cu1—N3—C760.8 (3)C8—C6—C7—N30.2 (3)
N6—Cu1—N3—C7152.3 (2)C8—C6—C7—C9178.7 (3)
Cl1—Cu1—N3—C733.7 (3)N3—N4—C8—C60.8 (3)
O1—Cu1—N3—N449.16 (18)N3—N4—C8—C11178.3 (3)
N1—Cu1—N3—N4121.84 (18)C7—C6—C8—N40.6 (3)
N6—Cu1—N3—N430.4 (2)C7—C6—C8—C11178.3 (3)
Cl1—Cu1—N3—N4143.66 (16)N7—N6—C13—C120.3 (3)
C7—N3—N4—C80.7 (3)Cu1—N6—C13—C12171.4 (2)
Cu1—N3—N4—C8178.75 (18)N7—N6—C13—C15178.8 (2)
O1—Cu1—N6—C13125.8 (3)Cu1—N6—C13—C159.4 (4)
N1—Cu1—N6—C1362.9 (3)C14—C12—C13—N60.4 (3)
N3—Cu1—N6—C13154.0 (2)C14—C12—C13—C15178.7 (3)
Cl1—Cu1—N6—C1332.3 (3)N6—N7—C14—C120.1 (3)
O1—Cu1—N6—N745.19 (18)N6—N7—C14—C16179.6 (3)
N1—Cu1—N6—N7126.09 (19)C13—C12—C14—N70.3 (3)
N3—Cu1—N6—N735.0 (2)C13—C12—C14—C16179.4 (3)
Cl1—Cu1—N6—N7138.70 (17)N9—N8—C18—C170.2 (3)
C13—N6—N7—C140.1 (3)Cu2—N8—C18—C17179.3 (2)
Cu1—N6—N7—C14173.38 (18)N9—N8—C18—C20178.3 (2)
Cl2—Cu2—N8—C18117.9 (3)Cu2—N8—C18—C202.2 (4)
Cl2i—Cu2—N8—C1862.1 (3)C19—C17—C18—N80.2 (3)
Cl2—Cu2—N8—N962.61 (18)C19—C17—C18—C20178.1 (3)
Cl2i—Cu2—N8—N9117.39 (18)N8—N9—C19—C170.2 (3)
C18—N8—N9—C190.0 (3)N8—N9—C19—C21179.5 (3)
Cu2—N8—N9—C19179.60 (19)C18—C17—C19—N90.2 (3)
N2—N1—C2—C10.3 (3)C18—C17—C19—C21179.4 (4)
Cu1—N1—C2—C1177.43 (17)O2—C22—O1—Cu1165.4 (2)
N2—N1—C2—C4178.4 (2)N3—Cu1—O1—C2251.9 (2)
Cu1—N1—C2—C41.3 (3)N6—Cu1—O1—C22167.6 (2)
C3—C1—C2—N10.0 (3)Cl1—Cu1—O1—C2253.3 (2)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.82 (4)2.74 (4)3.270 (2)124 (3)
N2—H2···Cl20.82 (4)2.66 (4)3.348 (2)143 (3)
N9—H9···Cl10.79 (4)2.30 (4)3.081 (2)168 (4)
N7—H7···O2ii0.72 (4)2.19 (4)2.903 (3)170 (4)
N4—H4···O2ii0.87 (4)1.98 (4)2.850 (3)176 (4)
N4—H4···O1ii0.87 (4)2.59 (4)3.208 (3)128 (3)
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2]
Mr1191.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.4457 (3), 14.4720 (5), 17.0313 (5)
β (°) 106.650 (2)
V3)2702.82 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.50 × 0.27 × 0.19
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.554, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
36108, 5749, 4611
Rint0.031
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.01
No. of reflections5749
No. of parameters333
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.83

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.82 (4)2.74 (4)3.270 (2)124 (3)
N2—H2···Cl20.82 (4)2.66 (4)3.348 (2)143 (3)
N9—H9···Cl10.79 (4)2.30 (4)3.081 (2)168 (4)
N7—H7···O2i0.72 (4)2.19 (4)2.903 (3)170 (4)
N4—H4···O2i0.87 (4)1.98 (4)2.850 (3)176 (4)
N4—H4···O1i0.87 (4)2.59 (4)3.208 (3)128 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

c/o Professor Franc Meyer.

Acknowledgements

Financial support by the Visby Program through the Swedish Institute is gratefully acknowledged.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCasarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDavydenko, Y. M., Fritsky, I. O., Pavlenko, V. O., Meyer, F. & Dechert, S. (2009). Acta Cryst. E65, m691–m692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrämer, R. (1999). Coord. Chem. Rev. 182, 211–243.  Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kowbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Google Scholar
First citationLa Monica, G. & Ardizzoia, G. A. (1997). Prog. Inorg. Chem. 46, 151–238.  CAS Google Scholar
First citationRaptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632–1634.  CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTrofimenko, S. (1972). Chem. Rev. 93, 943–980.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m732-m733
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds