metal-organic compounds
Chloridotris(3,5-dimethyl-1H-pyrazole-κN2)(formato-κO)copper(II)–dichloridobis(3,5-dimethyl-1H-pyrazole-κN2)copper(II) (2/1)
aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kiev, Ukraine, and bInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
*Correspondence e-mail: mihaylichenko85@mail.ru
The 2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2] or 2[A]·[B], contains one A molecule and one half-molecule of B, located on a centre of inversion. The CuII environments in A and B are different. In A, the CuII atom is coordinated by three N atoms from three 3,5-dimethyl-1H-pyrazole (L) ligands, one O atom from a formate ligand and a chloride anion in an axial position [Cu—Cl = 2.4275 (7) Å] in a distorted tetragonal–pyramidal geometry. The CuII atom in B is coordinated by two N atoms from two L ligands and two chloride anions [Cu—Cl = 2.2524 (6) Å] in a distorted square-planar geometry. In the crystal, intermolecular N—H⋯O hydrogen bonds link molecules A into centrosymmetric dimers. Intermolecular N—H⋯Cl hydrogen bonds further link these dimers with the B molecules, forming chains propagating in [101].
of the title compound, [Cu(CHORelated literature
For metal complexes with pyrazole and its derivatives, see: Trofimenko (1972); La Monica & Ardizzoia (1997); Casarin et al. (2005); Davydenko et al. (2009). For details of the bioinorganic chemistry of copper complexes with pyrazole, see: Krämer (1999); Raptis et al. (1999). For applications of copper complexes with pyrazole in molecular magnetism and supramolecular chemistry, see: Krämer et al. (2002); Seredyuk et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811016461/cv5078sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811016461/cv5078Isup2.hkl
Compound (I) was synthesized by oxidative dissolution method at free access of air oxygen. The mixture of 3,5-dimethyl-1H-pyrazole (0.96 g; 0.01 mol), ammonium chloride (0.535 g; 0.01 mol) in dimethyformamide solution (15 ml) was stirred with copper powder (0.64 g; 0.01 mol) at ambient temperature until complete dissolving of solid. The resulting dark-green solution was filtered and the filtrate was left to stand at room temperature for crystallization in air. Slow evaporation of the solvent in 5 days yielded green crystals of (I) suitable for X-ray analysis.
N-bound H atoms were located from the difference Fourier map and refined freely with Uiso (H) fixed to 0.08. The rest H atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.93-0.96 Å and with Uiso(H) fixed to 0.08.
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and the copper coordination environment [symmetry codes: (i) 2 - x, 1 - y, 2 - z]. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines denote hydrogen bonds. C-bound H atoms omitted for clarity. | |
Fig. 2. A portion of the crystal packing showing hydrogen bonds as dashed lines. |
[Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2] | F(000) = 1234 |
Mr = 1191.53 | Dx = 1.464 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 36108 reflections |
a = 11.4457 (3) Å | θ = 1.9–26.8° |
b = 14.4720 (5) Å | µ = 1.42 mm−1 |
c = 17.0313 (5) Å | T = 120 K |
β = 106.650 (2)° | Block, blue |
V = 2702.82 (14) Å3 | 0.50 × 0.27 × 0.19 mm |
Z = 2 |
Stoe IPDS II diffractometer | 5749 independent reflections |
Radiation source: fine-focus sealed tube | 4611 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 26.8°, θmin = 1.9° |
Absorption correction: numerical (X-RED32; Stoe & Cie, 2002) | h = −14→14 |
Tmin = 0.554, Tmax = 0.763 | k = −18→18 |
36108 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0609P)2] where P = (Fo2 + 2Fc2)/3 |
5749 reflections | (Δ/σ)max = 0.001 |
333 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.83 e Å−3 |
[Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2] | V = 2702.82 (14) Å3 |
Mr = 1191.53 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.4457 (3) Å | µ = 1.42 mm−1 |
b = 14.4720 (5) Å | T = 120 K |
c = 17.0313 (5) Å | 0.50 × 0.27 × 0.19 mm |
β = 106.650 (2)° |
Stoe IPDS II diffractometer | 5749 independent reflections |
Absorption correction: numerical (X-RED32; Stoe & Cie, 2002) | 4611 reflections with I > 2σ(I) |
Tmin = 0.554, Tmax = 0.763 | Rint = 0.031 |
36108 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.72 e Å−3 |
5749 reflections | Δρmin = −0.83 e Å−3 |
333 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.73059 (2) | 0.426309 (19) | 0.646481 (16) | 0.03259 (9) | |
Cu2 | 1.0000 | 0.5000 | 1.0000 | 0.03732 (11) | |
Cl1 | 0.80389 (6) | 0.51219 (4) | 0.77357 (4) | 0.04438 (15) | |
Cl2 | 1.02066 (6) | 0.36400 (4) | 0.94106 (4) | 0.04571 (15) | |
N1 | 0.87868 (17) | 0.34752 (14) | 0.66725 (12) | 0.0360 (4) | |
N2 | 0.97024 (19) | 0.34221 (15) | 0.73835 (13) | 0.0386 (4) | |
N3 | 0.78754 (18) | 0.50097 (14) | 0.56033 (12) | 0.0377 (4) | |
N4 | 0.7119 (2) | 0.50467 (16) | 0.48203 (13) | 0.0413 (5) | |
N6 | 0.62439 (18) | 0.31213 (14) | 0.65350 (13) | 0.0393 (4) | |
N7 | 0.5235 (2) | 0.29562 (16) | 0.58991 (15) | 0.0436 (5) | |
N8 | 0.83090 (19) | 0.46420 (15) | 1.00220 (13) | 0.0392 (4) | |
N9 | 0.7440 (2) | 0.44923 (17) | 0.93053 (14) | 0.0448 (5) | |
C1 | 1.0239 (2) | 0.25280 (18) | 0.65202 (17) | 0.0442 (6) | |
H1 | 1.0668 | 0.2121 | 0.6284 | 0.080* | |
C2 | 0.9111 (2) | 0.29314 (16) | 0.61396 (15) | 0.0372 (5) | |
C3 | 1.0590 (2) | 0.28477 (17) | 0.73078 (16) | 0.0407 (5) | |
C4 | 0.8330 (3) | 0.2839 (2) | 0.52783 (17) | 0.0491 (6) | |
H4A | 0.7488 | 0.2820 | 0.5271 | 0.080* | |
H4B | 0.8535 | 0.2279 | 0.5046 | 0.080* | |
H4C | 0.8462 | 0.3358 | 0.4963 | 0.080* | |
C5 | 1.1709 (3) | 0.2667 (2) | 0.79957 (19) | 0.0563 (7) | |
H5A | 1.2286 | 0.3156 | 0.8024 | 0.080* | |
H5B | 1.2063 | 0.2090 | 0.7905 | 0.080* | |
H5C | 1.1499 | 0.2638 | 0.8502 | 0.080* | |
C6 | 0.8677 (3) | 0.5884 (2) | 0.48219 (18) | 0.0547 (7) | |
H6 | 0.9216 | 0.6269 | 0.4661 | 0.080* | |
C7 | 0.8829 (2) | 0.55265 (17) | 0.56019 (15) | 0.0385 (5) | |
C8 | 0.7589 (2) | 0.55637 (19) | 0.43374 (16) | 0.0443 (6) | |
C9 | 0.9877 (2) | 0.5650 (2) | 0.63566 (18) | 0.0543 (7) | |
H9A | 0.9576 | 0.5687 | 0.6827 | 0.080* | |
H9B | 1.0305 | 0.6209 | 0.6311 | 0.080* | |
H9C | 1.0421 | 0.5133 | 0.6415 | 0.080* | |
C11 | 0.6941 (3) | 0.5685 (3) | 0.34459 (17) | 0.0650 (9) | |
H11A | 0.7164 | 0.5193 | 0.3139 | 0.080* | |
H11B | 0.7169 | 0.6267 | 0.3261 | 0.080* | |
H11C | 0.6076 | 0.5674 | 0.3365 | 0.080* | |
C12 | 0.5155 (3) | 0.19598 (19) | 0.68291 (19) | 0.0517 (7) | |
H12 | 0.4911 | 0.1484 | 0.7114 | 0.080* | |
C13 | 0.6201 (2) | 0.25102 (17) | 0.71056 (16) | 0.0423 (6) | |
C14 | 0.4565 (2) | 0.22632 (18) | 0.60563 (19) | 0.0492 (6) | |
C15 | 0.7171 (3) | 0.2453 (2) | 0.79031 (18) | 0.0579 (7) | |
H15A | 0.7810 | 0.2052 | 0.7847 | 0.080* | |
H15B | 0.6830 | 0.2213 | 0.8315 | 0.080* | |
H15C | 0.7498 | 0.3058 | 0.8061 | 0.080* | |
C16 | 0.3415 (3) | 0.1954 (2) | 0.5443 (3) | 0.0763 (11) | |
H16A | 0.3058 | 0.2464 | 0.5097 | 0.080* | |
H16B | 0.2853 | 0.1733 | 0.5724 | 0.080* | |
H16C | 0.3597 | 0.1465 | 0.5115 | 0.080* | |
C17 | 0.6545 (3) | 0.4272 (2) | 1.02527 (18) | 0.0501 (6) | |
H17 | 0.5969 | 0.4145 | 1.0527 | 0.080* | |
C18 | 0.7763 (2) | 0.45062 (17) | 1.06020 (16) | 0.0406 (5) | |
C19 | 0.6368 (2) | 0.4267 (2) | 0.94247 (18) | 0.0491 (6) | |
C20 | 0.8437 (3) | 0.4582 (2) | 1.14949 (17) | 0.0557 (7) | |
H20A | 0.9297 | 0.4616 | 1.1560 | 0.080* | |
H20B | 0.8265 | 0.4050 | 1.1780 | 0.080* | |
H20C | 0.8179 | 0.5130 | 1.1717 | 0.080* | |
C21 | 0.5268 (3) | 0.4061 (3) | 0.8719 (2) | 0.0783 (11) | |
H21A | 0.5397 | 0.4290 | 0.8221 | 0.080* | |
H21B | 0.4566 | 0.4357 | 0.8808 | 0.080* | |
H21C | 0.5138 | 0.3406 | 0.8676 | 0.080* | |
C22 | 0.5712 (2) | 0.57910 (18) | 0.60437 (17) | 0.0472 (6) | |
H22 | 0.6418 | 0.6111 | 0.6312 | 0.080* | |
O1 | 0.57534 (15) | 0.49305 (11) | 0.60884 (11) | 0.0400 (4) | |
O2 | 0.48246 (17) | 0.62519 (13) | 0.56778 (12) | 0.0514 (5) | |
H2 | 0.966 (3) | 0.371 (3) | 0.779 (2) | 0.080* | |
H4 | 0.650 (4) | 0.467 (3) | 0.467 (2) | 0.080* | |
H7 | 0.515 (4) | 0.318 (3) | 0.551 (2) | 0.080* | |
H9 | 0.753 (4) | 0.459 (3) | 0.887 (3) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02773 (14) | 0.03492 (15) | 0.03263 (15) | 0.00171 (11) | 0.00467 (11) | 0.00305 (11) |
Cu2 | 0.0337 (2) | 0.0406 (2) | 0.0404 (2) | −0.00253 (17) | 0.01504 (18) | −0.00089 (17) |
Cl1 | 0.0514 (4) | 0.0500 (3) | 0.0289 (3) | 0.0016 (3) | 0.0069 (3) | −0.0006 (2) |
Cl2 | 0.0451 (3) | 0.0447 (3) | 0.0490 (4) | −0.0002 (3) | 0.0162 (3) | −0.0035 (3) |
N1 | 0.0305 (10) | 0.0389 (10) | 0.0353 (10) | 0.0008 (8) | 0.0043 (8) | 0.0000 (8) |
N2 | 0.0339 (10) | 0.0426 (11) | 0.0360 (11) | 0.0053 (8) | 0.0048 (9) | 0.0021 (9) |
N3 | 0.0307 (10) | 0.0482 (11) | 0.0299 (10) | −0.0041 (8) | 0.0016 (8) | 0.0045 (8) |
N4 | 0.0347 (11) | 0.0536 (13) | 0.0306 (10) | −0.0059 (9) | 0.0015 (8) | 0.0066 (9) |
N6 | 0.0320 (10) | 0.0388 (10) | 0.0422 (11) | −0.0006 (8) | 0.0028 (8) | 0.0047 (9) |
N7 | 0.0330 (11) | 0.0440 (12) | 0.0471 (13) | −0.0031 (9) | 0.0009 (10) | 0.0044 (10) |
N8 | 0.0363 (11) | 0.0455 (11) | 0.0360 (11) | −0.0069 (9) | 0.0104 (9) | −0.0047 (9) |
N9 | 0.0426 (12) | 0.0569 (13) | 0.0358 (11) | −0.0059 (10) | 0.0128 (10) | −0.0056 (10) |
C1 | 0.0409 (14) | 0.0433 (13) | 0.0503 (15) | 0.0070 (11) | 0.0163 (12) | 0.0002 (11) |
C2 | 0.0360 (12) | 0.0344 (11) | 0.0423 (13) | −0.0010 (9) | 0.0129 (10) | −0.0023 (10) |
C3 | 0.0318 (12) | 0.0401 (12) | 0.0494 (14) | 0.0051 (10) | 0.0103 (11) | 0.0093 (11) |
C4 | 0.0466 (15) | 0.0544 (15) | 0.0444 (15) | −0.0014 (12) | 0.0099 (12) | −0.0135 (12) |
C5 | 0.0424 (15) | 0.0629 (18) | 0.0571 (18) | 0.0138 (13) | 0.0037 (13) | 0.0100 (14) |
C6 | 0.0412 (15) | 0.075 (2) | 0.0484 (15) | −0.0128 (14) | 0.0142 (12) | 0.0134 (14) |
C7 | 0.0308 (12) | 0.0460 (13) | 0.0384 (12) | −0.0018 (10) | 0.0096 (10) | −0.0004 (10) |
C8 | 0.0412 (14) | 0.0568 (16) | 0.0355 (13) | 0.0047 (11) | 0.0118 (11) | 0.0084 (11) |
C9 | 0.0361 (14) | 0.077 (2) | 0.0465 (15) | −0.0117 (13) | 0.0062 (12) | −0.0054 (14) |
C11 | 0.0569 (19) | 0.102 (3) | 0.0348 (14) | 0.0057 (17) | 0.0115 (13) | 0.0173 (16) |
C12 | 0.0530 (17) | 0.0415 (14) | 0.0631 (18) | −0.0055 (12) | 0.0205 (14) | 0.0070 (13) |
C13 | 0.0449 (14) | 0.0368 (12) | 0.0453 (14) | 0.0025 (10) | 0.0131 (11) | 0.0039 (10) |
C14 | 0.0389 (14) | 0.0405 (13) | 0.0656 (18) | −0.0046 (11) | 0.0106 (13) | −0.0041 (13) |
C15 | 0.066 (2) | 0.0556 (17) | 0.0450 (16) | −0.0010 (14) | 0.0052 (14) | 0.0090 (13) |
C16 | 0.0484 (18) | 0.0609 (19) | 0.102 (3) | −0.0152 (15) | −0.0063 (18) | −0.0046 (19) |
C17 | 0.0449 (15) | 0.0578 (16) | 0.0528 (16) | −0.0035 (12) | 0.0226 (13) | −0.0044 (13) |
C18 | 0.0435 (14) | 0.0404 (12) | 0.0403 (13) | −0.0034 (10) | 0.0160 (11) | −0.0014 (10) |
C19 | 0.0377 (14) | 0.0598 (16) | 0.0485 (15) | −0.0013 (12) | 0.0103 (12) | −0.0095 (13) |
C20 | 0.0581 (18) | 0.0687 (18) | 0.0406 (15) | −0.0085 (15) | 0.0145 (13) | −0.0011 (13) |
C21 | 0.0467 (18) | 0.111 (3) | 0.069 (2) | −0.0045 (19) | 0.0029 (16) | −0.025 (2) |
C22 | 0.0368 (13) | 0.0419 (14) | 0.0519 (15) | −0.0009 (11) | −0.0048 (11) | 0.0017 (12) |
O1 | 0.0300 (8) | 0.0390 (9) | 0.0474 (10) | 0.0006 (7) | 0.0055 (7) | 0.0020 (7) |
O2 | 0.0421 (11) | 0.0473 (10) | 0.0548 (11) | 0.0111 (8) | −0.0022 (9) | 0.0037 (9) |
Cu1—O1 | 1.9618 (16) | C6—C8 | 1.363 (4) |
Cu1—N1 | 1.989 (2) | C6—C7 | 1.389 (4) |
Cu1—N3 | 2.072 (2) | C6—H6 | 0.9300 |
Cu1—N6 | 2.075 (2) | C7—C9 | 1.496 (4) |
Cu1—Cl1 | 2.4275 (7) | C8—C11 | 1.497 (4) |
Cu2—N8i | 2.014 (2) | C9—H9A | 0.9600 |
Cu2—N8 | 2.014 (2) | C9—H9B | 0.9600 |
Cu2—Cl2 | 2.2524 (6) | C9—H9C | 0.9600 |
Cu2—Cl2i | 2.2524 (6) | C11—H11A | 0.9600 |
N1—C2 | 1.332 (3) | C11—H11B | 0.9600 |
N1—N2 | 1.358 (3) | C11—H11C | 0.9600 |
N2—C3 | 1.347 (3) | C12—C14 | 1.368 (4) |
N2—H2 | 0.82 (4) | C12—C13 | 1.403 (4) |
N3—C7 | 1.324 (3) | C12—H12 | 0.9300 |
N3—N4 | 1.367 (3) | C13—C15 | 1.490 (4) |
N4—C8 | 1.334 (3) | C14—C16 | 1.495 (4) |
N4—H4 | 0.87 (4) | C15—H15A | 0.9600 |
N6—C13 | 1.325 (3) | C15—H15B | 0.9600 |
N6—N7 | 1.359 (3) | C15—H15C | 0.9600 |
N7—C14 | 1.336 (4) | C16—H16A | 0.9600 |
N7—H7 | 0.72 (4) | C16—H16B | 0.9600 |
N8—C18 | 1.326 (3) | C16—H16C | 0.9600 |
N8—N9 | 1.353 (3) | C17—C19 | 1.366 (4) |
N9—C19 | 1.340 (4) | C17—C18 | 1.392 (4) |
N9—H9 | 0.79 (4) | C17—H17 | 0.9300 |
C1—C3 | 1.366 (4) | C18—C20 | 1.499 (4) |
C1—C2 | 1.395 (4) | C19—C21 | 1.500 (4) |
C1—H1 | 0.9300 | C20—H20A | 0.9600 |
C2—C4 | 1.489 (4) | C20—H20B | 0.9600 |
C3—C5 | 1.491 (4) | C20—H20C | 0.9600 |
C4—H4A | 0.9600 | C21—H21A | 0.9600 |
C4—H4B | 0.9600 | C21—H21B | 0.9600 |
C4—H4C | 0.9600 | C21—H21C | 0.9600 |
C5—H5A | 0.9600 | C22—O2 | 1.226 (3) |
C5—H5B | 0.9600 | C22—O1 | 1.248 (3) |
C5—H5C | 0.9600 | C22—H22 | 0.9300 |
O1—Cu1—N1 | 170.57 (8) | N3—C7—C6 | 109.5 (2) |
O1—Cu1—N3 | 87.20 (8) | N3—C7—C9 | 121.6 (2) |
N1—Cu1—N3 | 89.99 (8) | C6—C7—C9 | 128.8 (2) |
O1—Cu1—N6 | 85.42 (7) | N4—C8—C6 | 106.1 (2) |
N1—Cu1—N6 | 90.96 (8) | N4—C8—C11 | 121.4 (3) |
N3—Cu1—N6 | 139.85 (8) | C6—C8—C11 | 132.5 (3) |
O1—Cu1—Cl1 | 95.08 (5) | C7—C9—H9A | 109.5 |
N1—Cu1—Cl1 | 94.34 (6) | C7—C9—H9B | 109.5 |
N3—Cu1—Cl1 | 105.43 (6) | H9A—C9—H9B | 109.5 |
N6—Cu1—Cl1 | 114.51 (6) | C7—C9—H9C | 109.5 |
N8i—Cu2—N8 | 180.0 | H9A—C9—H9C | 109.5 |
N8i—Cu2—Cl2 | 89.56 (6) | H9B—C9—H9C | 109.5 |
N8—Cu2—Cl2 | 90.44 (6) | C8—C11—H11A | 109.5 |
N8i—Cu2—Cl2i | 90.44 (6) | C8—C11—H11B | 109.5 |
N8—Cu2—Cl2i | 89.56 (6) | H11A—C11—H11B | 109.5 |
Cl2—Cu2—Cl2i | 180.000 (1) | C8—C11—H11C | 109.5 |
C2—N1—N2 | 106.2 (2) | H11A—C11—H11C | 109.5 |
C2—N1—Cu1 | 127.41 (17) | H11B—C11—H11C | 109.5 |
N2—N1—Cu1 | 126.29 (16) | C14—C12—C13 | 106.2 (2) |
C3—N2—N1 | 111.1 (2) | C14—C12—H12 | 126.9 |
C3—N2—H2 | 128 (3) | C13—C12—H12 | 126.9 |
N1—N2—H2 | 120 (3) | N6—C13—C12 | 109.9 (2) |
C7—N3—N4 | 105.55 (19) | N6—C13—C15 | 122.1 (2) |
C7—N3—Cu1 | 136.28 (17) | C12—C13—C15 | 128.0 (2) |
N4—N3—Cu1 | 118.13 (15) | N7—C14—C12 | 106.3 (2) |
C8—N4—N3 | 111.7 (2) | N7—C14—C16 | 121.8 (3) |
C8—N4—H4 | 127 (3) | C12—C14—C16 | 132.0 (3) |
N3—N4—H4 | 120 (3) | C13—C15—H15A | 109.5 |
C13—N6—N7 | 105.4 (2) | C13—C15—H15B | 109.5 |
C13—N6—Cu1 | 135.97 (18) | H15A—C15—H15B | 109.5 |
N7—N6—Cu1 | 118.17 (16) | C13—C15—H15C | 109.5 |
C14—N7—N6 | 112.2 (2) | H15A—C15—H15C | 109.5 |
C14—N7—H7 | 126 (3) | H15B—C15—H15C | 109.5 |
N6—N7—H7 | 121 (3) | C14—C16—H16A | 109.5 |
C18—N8—N9 | 105.5 (2) | C14—C16—H16B | 109.5 |
C18—N8—Cu2 | 135.42 (18) | H16A—C16—H16B | 109.5 |
N9—N8—Cu2 | 119.08 (15) | C14—C16—H16C | 109.5 |
C19—N9—N8 | 111.7 (2) | H16A—C16—H16C | 109.5 |
C19—N9—H9 | 124 (3) | H16B—C16—H16C | 109.5 |
N8—N9—H9 | 124 (3) | C19—C17—C18 | 106.1 (2) |
C3—C1—C2 | 106.7 (2) | C19—C17—H17 | 127.0 |
C3—C1—H1 | 126.7 | C18—C17—H17 | 127.0 |
C2—C1—H1 | 126.7 | N8—C18—C17 | 110.2 (2) |
N1—C2—C1 | 109.4 (2) | N8—C18—C20 | 122.0 (2) |
N1—C2—C4 | 121.2 (2) | C17—C18—C20 | 127.8 (2) |
C1—C2—C4 | 129.4 (2) | N9—C19—C17 | 106.5 (2) |
N2—C3—C1 | 106.6 (2) | N9—C19—C21 | 121.4 (3) |
N2—C3—C5 | 122.3 (2) | C17—C19—C21 | 132.1 (3) |
C1—C3—C5 | 131.1 (2) | C18—C20—H20A | 109.5 |
C2—C4—H4A | 109.5 | C18—C20—H20B | 109.5 |
C2—C4—H4B | 109.5 | H20A—C20—H20B | 109.5 |
H4A—C4—H4B | 109.5 | C18—C20—H20C | 109.5 |
C2—C4—H4C | 109.5 | H20A—C20—H20C | 109.5 |
H4A—C4—H4C | 109.5 | H20B—C20—H20C | 109.5 |
H4B—C4—H4C | 109.5 | C19—C21—H21A | 109.5 |
C3—C5—H5A | 109.5 | C19—C21—H21B | 109.5 |
C3—C5—H5B | 109.5 | H21A—C21—H21B | 109.5 |
H5A—C5—H5B | 109.5 | C19—C21—H21C | 109.5 |
C3—C5—H5C | 109.5 | H21A—C21—H21C | 109.5 |
H5A—C5—H5C | 109.5 | H21B—C21—H21C | 109.5 |
H5B—C5—H5C | 109.5 | O2—C22—O1 | 125.9 (2) |
C8—C6—C7 | 107.2 (2) | O2—C22—H22 | 117.1 |
C8—C6—H6 | 126.4 | O1—C22—H22 | 117.1 |
C7—C6—H6 | 126.4 | C22—O1—Cu1 | 121.76 (16) |
N3—Cu1—N1—C2 | −61.4 (2) | C3—C1—C2—C4 | 178.6 (3) |
N6—Cu1—N1—C2 | 78.5 (2) | N1—N2—C3—C1 | 0.6 (3) |
Cl1—Cu1—N1—C2 | −166.9 (2) | N1—N2—C3—C5 | 179.6 (2) |
N3—Cu1—N1—N2 | 115.12 (19) | C2—C1—C3—N2 | −0.4 (3) |
N6—Cu1—N1—N2 | −105.02 (19) | C2—C1—C3—C5 | −179.2 (3) |
Cl1—Cu1—N1—N2 | 9.65 (19) | N4—N3—C7—C6 | −0.2 (3) |
C2—N1—N2—C3 | −0.6 (3) | Cu1—N3—C7—C6 | −177.8 (2) |
Cu1—N1—N2—C3 | −177.71 (17) | N4—N3—C7—C9 | −179.3 (2) |
O1—Cu1—N3—C7 | 128.2 (3) | Cu1—N3—C7—C9 | 3.1 (4) |
N1—Cu1—N3—C7 | −60.8 (3) | C8—C6—C7—N3 | −0.2 (3) |
N6—Cu1—N3—C7 | −152.3 (2) | C8—C6—C7—C9 | 178.7 (3) |
Cl1—Cu1—N3—C7 | 33.7 (3) | N3—N4—C8—C6 | −0.8 (3) |
O1—Cu1—N3—N4 | −49.16 (18) | N3—N4—C8—C11 | 178.3 (3) |
N1—Cu1—N3—N4 | 121.84 (18) | C7—C6—C8—N4 | 0.6 (3) |
N6—Cu1—N3—N4 | 30.4 (2) | C7—C6—C8—C11 | −178.3 (3) |
Cl1—Cu1—N3—N4 | −143.66 (16) | N7—N6—C13—C12 | −0.3 (3) |
C7—N3—N4—C8 | 0.7 (3) | Cu1—N6—C13—C12 | 171.4 (2) |
Cu1—N3—N4—C8 | 178.75 (18) | N7—N6—C13—C15 | 178.8 (2) |
O1—Cu1—N6—C13 | −125.8 (3) | Cu1—N6—C13—C15 | −9.4 (4) |
N1—Cu1—N6—C13 | 62.9 (3) | C14—C12—C13—N6 | 0.4 (3) |
N3—Cu1—N6—C13 | 154.0 (2) | C14—C12—C13—C15 | −178.7 (3) |
Cl1—Cu1—N6—C13 | −32.3 (3) | N6—N7—C14—C12 | 0.1 (3) |
O1—Cu1—N6—N7 | 45.19 (18) | N6—N7—C14—C16 | −179.6 (3) |
N1—Cu1—N6—N7 | −126.09 (19) | C13—C12—C14—N7 | −0.3 (3) |
N3—Cu1—N6—N7 | −35.0 (2) | C13—C12—C14—C16 | 179.4 (3) |
Cl1—Cu1—N6—N7 | 138.70 (17) | N9—N8—C18—C17 | −0.2 (3) |
C13—N6—N7—C14 | 0.1 (3) | Cu2—N8—C18—C17 | 179.3 (2) |
Cu1—N6—N7—C14 | −173.38 (18) | N9—N8—C18—C20 | 178.3 (2) |
Cl2—Cu2—N8—C18 | 117.9 (3) | Cu2—N8—C18—C20 | −2.2 (4) |
Cl2i—Cu2—N8—C18 | −62.1 (3) | C19—C17—C18—N8 | 0.2 (3) |
Cl2—Cu2—N8—N9 | −62.61 (18) | C19—C17—C18—C20 | −178.1 (3) |
Cl2i—Cu2—N8—N9 | 117.39 (18) | N8—N9—C19—C17 | 0.2 (3) |
C18—N8—N9—C19 | 0.0 (3) | N8—N9—C19—C21 | −179.5 (3) |
Cu2—N8—N9—C19 | −179.60 (19) | C18—C17—C19—N9 | −0.2 (3) |
N2—N1—C2—C1 | 0.3 (3) | C18—C17—C19—C21 | 179.4 (4) |
Cu1—N1—C2—C1 | 177.43 (17) | O2—C22—O1—Cu1 | 165.4 (2) |
N2—N1—C2—C4 | −178.4 (2) | N3—Cu1—O1—C22 | −51.9 (2) |
Cu1—N1—C2—C4 | −1.3 (3) | N6—Cu1—O1—C22 | 167.6 (2) |
C3—C1—C2—N1 | 0.0 (3) | Cl1—Cu1—O1—C22 | 53.3 (2) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl1 | 0.82 (4) | 2.74 (4) | 3.270 (2) | 124 (3) |
N2—H2···Cl2 | 0.82 (4) | 2.66 (4) | 3.348 (2) | 143 (3) |
N9—H9···Cl1 | 0.79 (4) | 2.30 (4) | 3.081 (2) | 168 (4) |
N7—H7···O2ii | 0.72 (4) | 2.19 (4) | 2.903 (3) | 170 (4) |
N4—H4···O2ii | 0.87 (4) | 1.98 (4) | 2.850 (3) | 176 (4) |
N4—H4···O1ii | 0.87 (4) | 2.59 (4) | 3.208 (3) | 128 (3) |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2] |
Mr | 1191.53 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 11.4457 (3), 14.4720 (5), 17.0313 (5) |
β (°) | 106.650 (2) |
V (Å3) | 2702.82 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.42 |
Crystal size (mm) | 0.50 × 0.27 × 0.19 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | Numerical (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.554, 0.763 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36108, 5749, 4611 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.634 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.091, 1.01 |
No. of reflections | 5749 |
No. of parameters | 333 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.72, −0.83 |
Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl1 | 0.82 (4) | 2.74 (4) | 3.270 (2) | 124 (3) |
N2—H2···Cl2 | 0.82 (4) | 2.66 (4) | 3.348 (2) | 143 (3) |
N9—H9···Cl1 | 0.79 (4) | 2.30 (4) | 3.081 (2) | 168 (4) |
N7—H7···O2i | 0.72 (4) | 2.19 (4) | 2.903 (3) | 170 (4) |
N4—H4···O2i | 0.87 (4) | 1.98 (4) | 2.850 (3) | 176 (4) |
N4—H4···O1i | 0.87 (4) | 2.59 (4) | 3.208 (3) | 128 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Footnotes
‡c/o Professor Franc Meyer.
Acknowledgements
Financial support by the Visby Program through the Swedish Institute is gratefully acknowledged.
References
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276. Web of Science CrossRef PubMed CAS Google Scholar
Davydenko, Y. M., Fritsky, I. O., Pavlenko, V. O., Meyer, F. & Dechert, S. (2009). Acta Cryst. E65, m691–m692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krämer, R. (1999). Coord. Chem. Rev. 182, 211–243. Google Scholar
Krämer, R., Fritsky, I. O., Pritzkow, H. & Kowbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314. Google Scholar
La Monica, G. & Ardizzoia, G. A. (1997). Prog. Inorg. Chem. 46, 151–238. CAS Google Scholar
Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632–1634. CrossRef CAS Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Trofimenko, S. (1972). Chem. Rev. 93, 943–980. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal complexes with pyrazole and its derivatives have attracted much research interest for their versatile coordination chemistry and specific properties (Trofimenko, 1972; La Monica et al., 1997). Pyrazole and its derivatives exhibit several coordination modes, particularly as the 1,2-bringing form, often utilized to prevent accumulation of positive charges in metal ion assembled compounds. Due to the presence of N—N bridging function in the pyrazole ring these ligands can form polynuclear complexes with specific molecular topology (Casarin et al., 2005; La Monica et al., 1997). In addition, neutral 1H-pyrazole ligands are usually bound to metal ions via the pyridine-type nitrogen atom thus providing formation of the mononuclear complexes (Davydenko et al., 2009). Copper (II) complexes containing pyrazole-based ligands are of particular interest in bioinorganic chemistry, as they can be used as models for the active sites of copper proteins like hemocyanine and tyrosinase (Krämer, 1999; Raptis et al., 1999). These compounds have been widely used in molecular magnetism as they can exhibit specific magnetic properties and in supramolecular chemistry as they can be used as building blocks for the preparation of polynuclear complexes or coordination polymers (Krämer et al., 2002; Seredyuk et al., 2007).
The title compound 2[A].[B], (I), reported here, contains one molecule A (= chloro-tris(3,5-dimethyl-1H-pyrazole-κN)- formato-κO-cooper(II)) and one-half of B (= dichloro-bis(3,5-dimethyl-1H-pyrazole-κN)-cooper(II)) located on centre of inversion (Fig. 1).
In A, the Cu1 atom has a distorted tetragonal-pyramidal geometry with equatorial plane formed by three N atoms belonging to 3,5-dimethyl-1H-pyrazole ligands [Cu1—N = 1.989 (2) - 2.075 (2) Å] and one O atom from formato ligand [Cu1—O1 = 1.961 (16) Å]. The axial position is occupied by chloro anion [Cu1—Cl1 = 2.427 (7) Å]. The N—H group from one molecule of 3,5-dimethyl-1H-pyrazole forms an intramolecular hydrogen bond with neighboring an atom of chlorine N2–H2···Cl1 = 3.270 (2) Å. Hence, two N,H, Cl and Cu atoms form the five-membered cycle.
The Cu2 center in B is coordinated by two N atoms from two ligands L [Cu2–N = 2.014 (2) Å] and two chloro anions [Cu2—Cl 2.252 (6) Å] in a distorted square-planar geometry. The ligands of each sort are trans-oriented with respect to each other.
In the crystal structure (Fig. 2), intermolecular N—H···O hydrogen bonds (Table 1) link molecules A into centrosymmetric dimers. Intermolecular N—H···Cl hydrogen bonds link further these dimers with the molecules B into chains propagated in [101].