metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2,2′-bi­pyridine)­manganese(II)]-μ3-4,4′-sulfonyl­dibenzoato]

aCollege of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: yanshiwei158@163.com

(Received 20 April 2011; accepted 29 April 2011; online 7 May 2011)

In the title compound, [Mn(C14H8O6S)(C10H8N2)]n, the MnII ion is coordinated by four O atoms from three 4,4′-sulfonyl­dibenzoate (sdba) ligands and two N atoms from one 2,2′-bipyridine (2,2′-bipy) ligand in a distorted octa­hedral geometry. The manganese atoms are alternately bridged either by two sdba ligands, with an Mn⋯Mn separation of 12.284 (1) Å, or by two carboxyl­ate groups from two sdba ligands, with an Mn⋯Mn separation of 4.064 (1) Å, thus producing polymeric chains propagated in [101]. Weak inter­molecular C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance of 3.730 (3) Å between the aromatic rings of neighbouring polymeric chains] further stabilize the crystal packing.

Related literature

For the crystal structures of related MnII complexes with sdba ligands, see: Li et al. (2010[Li, N., Chen, L., Lian, F., Jiang, F. & Hong, M. (2010). Inorg. Chim. Acta, 363, 3291-3301.]); Xiao et al. (2008[Xiao, D. R., Yuan, R., Chai, Y. & Wang, E. (2008). Eur. J. Inorg. Chem. pp. 2610-2615.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H8O6S)(C10H8N2)]

  • Mr = 515.39

  • Monoclinic, P 21 /c

  • a = 12.302 (3) Å

  • b = 15.386 (3) Å

  • c = 12.255 (3) Å

  • β = 111.06 (3)°

  • V = 2164.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 293 K

  • 0.52 × 0.47 × 0.23 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.696, Tmax = 0.846

  • 17821 measured reflections

  • 4193 independent reflections

  • 3209 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.130

  • S = 1.06

  • 4193 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O5i 0.93 2.44 3.123 (4) 131
C16—H16A⋯O6ii 0.93 2.59 3.424 (4) 149
C19—H19A⋯O2iii 0.93 2.54 3.210 (4) 129
C21—H21A⋯O5iv 0.93 2.51 3.337 (4) 148
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4,4'-Sulfonyldibenzoic acid (H2sdba) is a typical V-shaped dicarboxylate ligand, which is important in construction of some novel frameworks with Mn salts (Li et al., 2010; Xiao et al., 2008). Here we report the crystal structure of the title compound, [Mn(sdba)(2,2'-bipy)]n (I).

As shown in Figure 1, the crystallographically independent MnII atom exhibits a distorted octahedral geometry, being coordinated with two nitrogen atoms from one 2,2'-bipy ligand (Mn1—N1=2.230 (2) Å, Mn1—N1=2.315 (3) Å) and four oxygen atoms of three sdba ligands (Mn1—O1=2.159 (2) Å, Mn1—O2=2.445 (2) Å, Mn1—O3í=2.119 (2) Å, Mn—O4íí=2.125 (3) Å). The sdba ligand acts as a tetradentate ligand, as one carboxylate group adopts a bidentate bridging mode connecting two MnII ions, while the other carboxylate group adopts a bidentate chelating coordination mode connecting one MnII ion. Two MnII centers are bridged by two carboxylate groups of different sdba ligands to yield a dinuclear manganese core with Mn···Mn of 4.064 (1) Å. Then the dinuclear manganese units are extended by sdba ligands to generate a one-dimensional double-chain along c axis (Figure 2), and the 2,2'-bipy ligands are chelated on both sides of the double-chain. The one-dimensional double-chains are further linked by weak ππ stacking with the distance of 3.730 (3)Å between the centroids of aromatic rings from the neighbouring polymeric chains and intermolecular C—H···O hydrogen-bonding interactions (Table 1) to form a three-dimensional supramolecular network.

Related literature top

For the crystal structures of related MnII complexes with sdba ligands, see: Li et al. (2010); Xiao et al. (2008).

Experimental top

A mixture of Mn(CH3COO)2.4H2O (0.184 g, 0.75 mmol), H2sdba (0.153 g, 0.50 mmol), 2,2'-bipy (0.078 g, 0.5 mmol) and water (10 ml) was stirred about 15 min in air, then transferred and sealed in an 18 ml Teflon-lined autoclave, which was heated at 160 °C for 60 h. After slow cooling to the room temperature, paleyellow block crystals of I were filtered off, washed with distilled water, and dried at ambient temperature.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of MnII in (I) showing the atomic numbering and 30% probability displacement ellipsoids [symmetry codes: (i) -x + 2, -y, -z + 1; (ii) x - 1, y, z - 1]. H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the polymeric chain in (I) viewed along c axis.
catena-Poly[[(2,2'-bipyridine)manganese(II)]-µ3-4,4'- sulfonyldibenzoato] top
Crystal data top
[Mn(C14H8O6S)(C10H8N2)]F(000) = 1052
Mr = 515.39Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17821 reflections
a = 12.302 (3) Åθ = 3.2–26.0°
b = 15.386 (3) ŵ = 0.75 mm1
c = 12.255 (3) ÅT = 293 K
β = 111.06 (3)°Block, yellow
V = 2164.7 (10) Å30.52 × 0.47 × 0.23 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4193 independent reflections
Radiation source: fine-focus sealed tube3209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 100x100 microns pixels mm-1θmax = 26.0°, θmin = 3.2°
Oscillation scansh = 1415
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.696, Tmax = 0.846l = 1415
17821 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.073P)2]
where P = (Fo2 + 2Fc2)/3
4193 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Mn(C14H8O6S)(C10H8N2)]V = 2164.7 (10) Å3
Mr = 515.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.302 (3) ŵ = 0.75 mm1
b = 15.386 (3) ÅT = 293 K
c = 12.255 (3) Å0.52 × 0.47 × 0.23 mm
β = 111.06 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4193 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3209 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.846Rint = 0.071
17821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
4193 reflectionsΔρmin = 0.45 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.49352 (4)0.02781 (3)0.15966 (4)0.02695 (16)
S11.01353 (7)0.35180 (5)0.61927 (7)0.0286 (2)
O10.6349 (2)0.11853 (15)0.18823 (19)0.0401 (6)
O20.5179 (2)0.15851 (15)0.2796 (2)0.0443 (6)
O31.45788 (19)0.08393 (14)0.91298 (19)0.0345 (5)
O41.3476 (2)0.07830 (16)1.0213 (2)0.0424 (6)
O51.0677 (2)0.40116 (14)0.5534 (2)0.0388 (6)
O60.9747 (2)0.39560 (15)0.7020 (2)0.0411 (6)
N10.3794 (2)0.03320 (16)0.2443 (2)0.0304 (6)
N20.6113 (2)0.03030 (17)0.3370 (2)0.0333 (6)
C10.2629 (3)0.0305 (2)0.1955 (3)0.0359 (8)
H1A0.22910.00360.12320.043*
C20.1911 (3)0.0662 (2)0.2481 (4)0.0466 (9)
H2A0.11050.06290.21270.056*
C30.2424 (4)0.1066 (3)0.3542 (4)0.0549 (11)
H3A0.19650.13190.39150.066*
C40.3608 (4)0.1097 (2)0.4049 (3)0.0510 (10)
H4A0.39580.13640.47720.061*
C50.4288 (3)0.0729 (2)0.3485 (3)0.0340 (7)
C60.5580 (3)0.0731 (2)0.3980 (3)0.0361 (8)
C70.6211 (4)0.1156 (3)0.5023 (3)0.0588 (11)
H7A0.58340.14530.54450.071*
C80.7400 (4)0.1125 (3)0.5405 (4)0.0697 (13)
H8A0.78370.14060.60950.084*
C90.7959 (4)0.0685 (3)0.4788 (3)0.0536 (10)
H9A0.87680.06560.50480.064*
C100.7275 (3)0.0287 (2)0.3766 (3)0.0412 (8)
H10A0.76410.00080.33310.049*
C110.7107 (3)0.21431 (19)0.3492 (3)0.0285 (7)
C120.6908 (3)0.2744 (2)0.4254 (3)0.0321 (7)
H12A0.61480.28720.41870.039*
C130.7820 (3)0.3151 (2)0.5103 (3)0.0305 (7)
H13A0.76830.35490.56090.037*
C140.8948 (3)0.2955 (2)0.5190 (2)0.0262 (6)
C150.9163 (3)0.2374 (2)0.4434 (3)0.0338 (7)
H15A0.99240.22550.44950.041*
C160.8244 (3)0.1971 (2)0.3591 (3)0.0336 (7)
H16A0.83870.15780.30810.040*
C171.1132 (3)0.26961 (19)0.6961 (2)0.0260 (6)
C181.2271 (3)0.2711 (2)0.6983 (3)0.0305 (7)
H18A1.24840.30920.65060.037*
C191.3081 (3)0.2150 (2)0.7727 (3)0.0291 (7)
H19A1.38400.21460.77380.035*
C201.2769 (3)0.15883 (19)0.8460 (3)0.0284 (7)
C211.1625 (3)0.1570 (2)0.8407 (3)0.0338 (7)
H21A1.14100.11890.88830.041*
C221.0801 (3)0.2115 (2)0.7651 (3)0.0349 (8)
H22A1.00300.20930.76060.042*
C230.6138 (3)0.1627 (2)0.2652 (3)0.0332 (7)
C241.3668 (3)0.10263 (19)0.9323 (3)0.0300 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0240 (3)0.0330 (3)0.0205 (3)0.0005 (2)0.0039 (2)0.00292 (18)
S10.0243 (4)0.0299 (4)0.0269 (4)0.0003 (3)0.0035 (3)0.0001 (3)
O10.0451 (15)0.0457 (14)0.0293 (12)0.0120 (12)0.0130 (12)0.0043 (10)
O20.0273 (13)0.0462 (15)0.0557 (16)0.0033 (11)0.0103 (13)0.0072 (12)
O30.0287 (13)0.0368 (13)0.0346 (13)0.0064 (10)0.0071 (11)0.0001 (9)
O40.0376 (14)0.0558 (16)0.0307 (13)0.0051 (12)0.0084 (12)0.0147 (11)
O50.0340 (13)0.0359 (13)0.0423 (13)0.0044 (10)0.0085 (12)0.0096 (10)
O60.0385 (14)0.0440 (14)0.0378 (13)0.0024 (11)0.0101 (12)0.0103 (11)
N10.0351 (16)0.0321 (15)0.0237 (13)0.0026 (12)0.0104 (13)0.0033 (10)
N20.0330 (16)0.0319 (14)0.0277 (14)0.0032 (12)0.0021 (13)0.0042 (11)
C10.034 (2)0.0343 (18)0.0365 (19)0.0025 (15)0.0096 (17)0.0032 (14)
C20.041 (2)0.044 (2)0.061 (2)0.0047 (17)0.026 (2)0.0050 (18)
C30.063 (3)0.053 (2)0.061 (3)0.010 (2)0.037 (2)0.009 (2)
C40.063 (3)0.052 (2)0.042 (2)0.002 (2)0.023 (2)0.0146 (18)
C50.044 (2)0.0303 (17)0.0280 (16)0.0021 (15)0.0130 (16)0.0014 (13)
C60.044 (2)0.0348 (18)0.0235 (16)0.0024 (15)0.0051 (16)0.0065 (13)
C70.060 (3)0.068 (3)0.039 (2)0.007 (2)0.006 (2)0.0247 (19)
C80.062 (3)0.080 (3)0.046 (3)0.010 (3)0.007 (2)0.026 (2)
C90.039 (2)0.056 (2)0.046 (2)0.0076 (19)0.0093 (19)0.0027 (19)
C100.035 (2)0.043 (2)0.0373 (19)0.0025 (16)0.0027 (18)0.0021 (15)
C110.0275 (17)0.0286 (16)0.0259 (16)0.0025 (13)0.0051 (14)0.0048 (12)
C120.0255 (17)0.0351 (18)0.0340 (17)0.0016 (14)0.0086 (15)0.0032 (13)
C130.0268 (17)0.0313 (16)0.0318 (17)0.0047 (13)0.0087 (15)0.0026 (13)
C140.0219 (16)0.0326 (16)0.0198 (14)0.0002 (13)0.0022 (13)0.0029 (12)
C150.0238 (17)0.0431 (19)0.0352 (18)0.0014 (15)0.0115 (15)0.0003 (14)
C160.0306 (18)0.0398 (18)0.0292 (17)0.0008 (15)0.0093 (16)0.0057 (13)
C170.0220 (16)0.0310 (16)0.0208 (15)0.0010 (13)0.0025 (13)0.0013 (12)
C180.0305 (18)0.0329 (17)0.0291 (17)0.0033 (14)0.0118 (15)0.0022 (13)
C190.0220 (16)0.0342 (17)0.0308 (16)0.0031 (13)0.0092 (14)0.0008 (13)
C200.0298 (17)0.0326 (17)0.0203 (15)0.0005 (13)0.0059 (14)0.0007 (12)
C210.0296 (18)0.0421 (19)0.0273 (17)0.0027 (15)0.0070 (15)0.0087 (14)
C220.0224 (17)0.049 (2)0.0330 (18)0.0004 (15)0.0097 (15)0.0080 (15)
C230.0331 (19)0.0301 (17)0.0304 (17)0.0010 (14)0.0042 (16)0.0046 (13)
C240.0276 (17)0.0313 (17)0.0265 (16)0.0021 (14)0.0043 (14)0.0009 (13)
Geometric parameters (Å, º) top
Mn1—O3i2.119 (2)C6—C71.396 (5)
Mn1—O4ii2.125 (3)C7—C81.367 (6)
Mn1—O12.159 (2)C7—H7A0.9300
Mn1—N12.230 (2)C8—C91.370 (6)
Mn1—N22.315 (3)C8—H8A0.9300
Mn1—O22.445 (2)C9—C101.376 (5)
Mn1—C232.607 (3)C9—H9A0.9300
S1—O61.434 (2)C10—H10A0.9300
S1—O51.435 (2)C11—C161.386 (4)
S1—C141.761 (3)C11—C121.397 (4)
S1—C171.777 (3)C11—C231.493 (4)
O1—C231.263 (4)C12—C131.376 (5)
O2—C231.256 (4)C12—H12A0.9300
O3—C241.259 (4)C13—C141.386 (4)
O3—Mn1i2.119 (2)C13—H13A0.9300
O4—C241.252 (4)C14—C151.380 (4)
O4—Mn1iii2.125 (3)C15—C161.376 (5)
N1—C11.341 (4)C15—H15A0.9300
N1—C51.347 (4)C16—H16A0.9300
N2—C61.333 (4)C17—C221.389 (4)
N2—C101.335 (4)C17—C181.392 (4)
C1—C21.381 (4)C18—C191.385 (4)
C1—H1A0.9300C18—H18A0.9300
C2—C31.374 (6)C19—C201.396 (4)
C2—H2A0.9300C19—H19A0.9300
C3—C41.363 (6)C20—C211.386 (4)
C3—H3A0.9300C20—C241.499 (4)
C4—C51.383 (5)C21—C221.384 (5)
C4—H4A0.9300C21—H21A0.9300
C5—C61.484 (5)C22—H22A0.9300
O3i—Mn1—O4ii104.26 (9)C8—C7—H7A120.9
O3i—Mn1—O1105.09 (9)C6—C7—H7A120.9
O4ii—Mn1—O1107.06 (10)C7—C8—C9121.0 (4)
O3i—Mn1—N199.99 (9)C7—C8—H8A119.5
O4ii—Mn1—N191.88 (9)C9—C8—H8A119.5
O1—Mn1—N1143.33 (9)C8—C9—C10117.3 (4)
O3i—Mn1—N284.55 (9)C8—C9—H9A121.4
O4ii—Mn1—N2162.73 (9)C10—C9—H9A121.4
O1—Mn1—N284.34 (10)N2—C10—C9123.2 (4)
N1—Mn1—N271.77 (10)N2—C10—H10A118.4
O3i—Mn1—O2158.13 (9)C9—C10—H10A118.4
O4ii—Mn1—O293.73 (9)C16—C11—C12118.8 (3)
O1—Mn1—O256.85 (8)C16—C11—C23119.3 (3)
N1—Mn1—O291.62 (8)C12—C11—C23121.7 (3)
N2—Mn1—O281.55 (9)C13—C12—C11121.0 (3)
O3i—Mn1—C23131.24 (10)C13—C12—H12A119.5
O4ii—Mn1—C23105.72 (10)C11—C12—H12A119.5
O1—Mn1—C2328.83 (9)C12—C13—C14118.8 (3)
N1—Mn1—C23116.38 (10)C12—C13—H13A120.6
N2—Mn1—C2377.85 (10)C14—C13—H13A120.6
O2—Mn1—C2328.56 (9)C15—C14—C13121.1 (3)
O6—S1—O5119.26 (14)C15—C14—S1118.4 (2)
O6—S1—C14108.70 (14)C13—C14—S1120.2 (2)
O5—S1—C14107.69 (14)C16—C15—C14119.5 (3)
O6—S1—C17107.56 (14)C16—C15—H15A120.2
O5—S1—C17107.65 (14)C14—C15—H15A120.2
C14—S1—C17105.11 (15)C15—C16—C11120.7 (3)
C23—O1—Mn195.67 (19)C15—C16—H16A119.6
C23—O2—Mn182.89 (19)C11—C16—H16A119.6
C24—O3—Mn1i132.0 (2)C22—C17—C18120.8 (3)
C24—O4—Mn1iii115.8 (2)C22—C17—S1118.9 (2)
C1—N1—C5118.8 (3)C18—C17—S1119.8 (2)
C1—N1—Mn1122.0 (2)C19—C18—C17118.9 (3)
C5—N1—Mn1119.1 (2)C19—C18—H18A120.5
C6—N2—C10118.9 (3)C17—C18—H18A120.5
C6—N2—Mn1116.7 (2)C18—C19—C20120.7 (3)
C10—N2—Mn1124.2 (2)C18—C19—H19A119.6
N1—C1—C2122.7 (3)C20—C19—H19A119.6
N1—C1—H1A118.7C21—C20—C19119.4 (3)
C2—C1—H1A118.7C21—C20—C24120.0 (3)
C3—C2—C1117.9 (4)C19—C20—C24120.5 (3)
C3—C2—H2A121.0C22—C21—C20120.5 (3)
C1—C2—H2A121.0C22—C21—H21A119.8
C4—C3—C2120.0 (3)C20—C21—H21A119.8
C4—C3—H3A120.0C21—C22—C17119.6 (3)
C2—C3—H3A120.0C21—C22—H22A120.2
C3—C4—C5119.8 (3)C17—C22—H22A120.2
C3—C4—H4A120.1O2—C23—O1122.2 (3)
C5—C4—H4A120.1O2—C23—C11119.2 (3)
N1—C5—C4120.8 (3)O1—C23—C11118.3 (3)
N1—C5—C6116.1 (3)O2—C23—Mn168.55 (18)
C4—C5—C6123.1 (3)O1—C23—Mn155.49 (16)
N2—C6—C7121.4 (3)C11—C23—Mn1159.3 (2)
N2—C6—C5116.1 (3)O4—C24—O3123.6 (3)
C7—C6—C5122.5 (3)O4—C24—C20117.7 (3)
C8—C7—C6118.2 (4)O3—C24—C20118.7 (3)
O3i—Mn1—O1—C23157.81 (19)C12—C13—C14—C150.9 (4)
O4ii—Mn1—O1—C2391.7 (2)C12—C13—C14—S1175.4 (2)
N1—Mn1—O1—C2326.3 (3)O6—S1—C14—C15169.5 (2)
N2—Mn1—O1—C2375.0 (2)O5—S1—C14—C1560.0 (3)
O2—Mn1—O1—C238.57 (18)C17—S1—C14—C1554.6 (3)
O3i—Mn1—O2—C2329.0 (3)O6—S1—C14—C1315.9 (3)
O4ii—Mn1—O2—C23116.62 (19)O5—S1—C14—C13114.6 (2)
O1—Mn1—O2—C238.64 (18)C17—S1—C14—C13130.8 (2)
N1—Mn1—O2—C23151.4 (2)C13—C14—C15—C161.0 (5)
N2—Mn1—O2—C2380.1 (2)S1—C14—C15—C16175.6 (2)
O3i—Mn1—N1—C1101.3 (2)C14—C15—C16—C110.1 (5)
O4ii—Mn1—N1—C13.6 (2)C12—C11—C16—C150.9 (5)
O1—Mn1—N1—C1126.0 (2)C23—C11—C16—C15173.6 (3)
N2—Mn1—N1—C1177.9 (3)O6—S1—C17—C2251.6 (3)
O2—Mn1—N1—C197.3 (2)O5—S1—C17—C22178.8 (2)
C23—Mn1—N1—C1112.2 (2)C14—S1—C17—C2264.2 (3)
O3i—Mn1—N1—C579.8 (2)O6—S1—C17—C18120.3 (3)
O4ii—Mn1—N1—C5175.4 (2)O5—S1—C17—C189.4 (3)
O1—Mn1—N1—C553.0 (3)C14—S1—C17—C18124.0 (2)
N2—Mn1—N1—C51.1 (2)C22—C17—C18—C191.5 (5)
O2—Mn1—N1—C581.6 (2)S1—C17—C18—C19170.2 (2)
C23—Mn1—N1—C566.8 (2)C17—C18—C19—C201.2 (4)
O3i—Mn1—N2—C699.5 (2)C18—C19—C20—C212.6 (5)
O4ii—Mn1—N2—C622.3 (5)C18—C19—C20—C24175.7 (3)
O1—Mn1—N2—C6154.7 (2)C19—C20—C21—C221.3 (5)
N1—Mn1—N2—C62.9 (2)C24—C20—C21—C22177.0 (3)
O2—Mn1—N2—C697.4 (2)C20—C21—C22—C171.3 (5)
C23—Mn1—N2—C6126.2 (2)C18—C17—C22—C212.7 (5)
O3i—Mn1—N2—C1075.5 (3)S1—C17—C22—C21169.0 (2)
O4ii—Mn1—N2—C10162.7 (3)Mn1—O2—C23—O114.7 (3)
O1—Mn1—N2—C1030.3 (3)Mn1—O2—C23—C11158.8 (3)
N1—Mn1—N2—C10177.9 (3)Mn1—O1—C23—O216.7 (3)
O2—Mn1—N2—C1087.5 (3)Mn1—O1—C23—C11156.9 (2)
C23—Mn1—N2—C1058.7 (3)C16—C11—C23—O2158.7 (3)
C5—N1—C1—C20.6 (5)C12—C11—C23—O215.8 (4)
Mn1—N1—C1—C2178.4 (3)C16—C11—C23—O115.1 (4)
N1—C1—C2—C30.7 (5)C12—C11—C23—O1170.5 (3)
C1—C2—C3—C40.8 (6)C16—C11—C23—Mn151.5 (7)
C2—C3—C4—C50.8 (6)C12—C11—C23—Mn1122.9 (6)
C1—N1—C5—C40.5 (5)O3i—Mn1—C23—O2166.12 (17)
Mn1—N1—C5—C4178.5 (3)O4ii—Mn1—C23—O267.9 (2)
C1—N1—C5—C6179.7 (3)O1—Mn1—C23—O2164.9 (3)
Mn1—N1—C5—C60.7 (4)N1—Mn1—C23—O232.3 (2)
C3—C4—C5—N10.6 (6)N2—Mn1—C23—O294.7 (2)
C3—C4—C5—C6179.7 (4)O3i—Mn1—C23—O129.0 (2)
C10—N2—C6—C70.4 (5)O4ii—Mn1—C23—O196.9 (2)
Mn1—N2—C6—C7175.7 (3)N1—Mn1—C23—O1162.83 (18)
C10—N2—C6—C5179.5 (3)N2—Mn1—C23—O1100.5 (2)
Mn1—N2—C6—C54.2 (4)O2—Mn1—C23—O1164.9 (3)
N1—C5—C6—N23.3 (4)O3i—Mn1—C23—C1149.8 (6)
C4—C5—C6—N2175.9 (3)O4ii—Mn1—C23—C11175.7 (6)
N1—C5—C6—C7176.6 (3)O1—Mn1—C23—C1178.8 (6)
C4—C5—C6—C74.3 (5)N1—Mn1—C23—C1184.1 (6)
N2—C6—C7—C80.2 (6)N2—Mn1—C23—C1121.7 (6)
C5—C6—C7—C8179.7 (4)O2—Mn1—C23—C11116.4 (7)
C6—C7—C8—C90.3 (7)Mn1iii—O4—C24—O313.8 (4)
C7—C8—C9—C100.7 (7)Mn1iii—O4—C24—C20164.7 (2)
C6—N2—C10—C90.7 (5)Mn1i—O3—C24—O482.8 (4)
Mn1—N2—C10—C9175.7 (3)Mn1i—O3—C24—C2098.7 (3)
C8—C9—C10—N20.9 (6)C21—C20—C24—O423.5 (4)
C16—C11—C12—C131.0 (4)C19—C20—C24—O4154.9 (3)
C23—C11—C12—C13173.4 (3)C21—C20—C24—O3158.0 (3)
C11—C12—C13—C140.1 (4)C19—C20—C24—O323.7 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O5iv0.932.443.123 (4)131
C16—H16A···O6v0.932.593.424 (4)149
C19—H19A···O2vi0.932.543.210 (4)129
C21—H21A···O5vii0.932.513.337 (4)148
Symmetry codes: (iv) x1, y+1/2, z1/2; (v) x, y+1/2, z1/2; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C14H8O6S)(C10H8N2)]
Mr515.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.302 (3), 15.386 (3), 12.255 (3)
β (°) 111.06 (3)
V3)2164.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.52 × 0.47 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.696, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
17821, 4193, 3209
Rint0.071
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.06
No. of reflections4193
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.45

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O5i0.932.443.123 (4)131
C16—H16A···O6ii0.932.593.424 (4)149
C19—H19A···O2iii0.932.543.210 (4)129
C21—H21A···O5iv0.932.513.337 (4)148
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Science and Technology Foundation of Southwest University (grant No. SWUB2007035).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, N., Chen, L., Lian, F., Jiang, F. & Hong, M. (2010). Inorg. Chim. Acta, 363, 3291–3301.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, D. R., Yuan, R., Chai, Y. & Wang, E. (2008). Eur. J. Inorg. Chem. pp. 2610–2615.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds