organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,6S)-tert-Butyl 2-(benzhydryl­carbamo­yl)-6-methyl­morpholine-4-carboxyl­ate

aShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China, and bCentral Research Institute, Shanghai Pharmaceutical Group Co. Ltd, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
*Correspondence e-mail: xiagx@pharm-sh.com.cn

(Received 22 April 2011; accepted 11 May 2011; online 20 May 2011)

The title compound, C24H30N2O4, was obtained by the reaction of (2R,6S)-4-(tert-but­oxy­carbon­yl)-6-methyl­morpho­line-2-carb­oxy­lic acid with diphenyl­methanamine in dimethyl­formamide solution. The morpholine ring is in a chair conformation. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into chains along the b axis.

Related literature

For a review of the biological relevance and synthesis of C-substituted morpholine derivatives, see: Wijtmans et al. (2004[Wijtmans, R., Vink, M. K. S., Schoemaker, H. E., van Delft, F. L., Blaauw, R. H. & Rutjes, F. P. J. T. (2004). Synthesis, pp. 641-662.]). For applications of morpholine derivatives as drugs, see: Dando & Perry (2004[Dando, T. M. & Perry, C. M. (2004). Drugs, 64, 777-794.]); Hajos et al. (2004[Hajos, M., Fleishaker, J. C., Filipiak-Reisner, J. K., Brown, M. T. & Wong, E. H. F. (2004). CNS Drug Rev. 10, 23-44.]); Hale et al. (1998[Hale, J. J., Mills, S. G., MacCoss, M., Finke, P. E., Cascieri, M. A., Sadowski, S., Ber, E., Chicchi, G. G., Kurtz, M., Metzger, J., Eiermann, G., Tsou, N. N., Tattersall, F. D., Rupniak, N. J. M., Williams, A. R., Rycroft, W., Hargreaves, R. & MacIntyre, D. E. (1998). J. Med. Chem. 41, 4607-4614.]); Versiani et al. (2002[Versiani, M., Cassano, G., Perugi, G., Benedetti, A., Mastalli, L., Nardi, A. & Savino, M. (2002). J. Clin. Psychiatry, 63, 31-37.]). For agrochemical fungicides and bactericides containing a morpholine skeleton, see: Dieckmann et al. (1993[Dieckmann, H., Strockmaier, M., Kreuzig, R. & Bahadir, M. (1993). Fesenius' J. Anal. Chem. 345, 784-786.]). For applications of morpholines as chiral auxiliaries in asymmetric synthesis, see: Dave & Sasaki (2004[Dave, R. & Sasaki, N. A. (2004). Org. Lett. 6, 15-18.]); Enders et al. (1994[Enders, D., Meyer, O., Raabe, G. & Runsink, J. (1994). Synthesis, pp. 66-72.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30N2O4

  • Mr = 410.50

  • Monoclinic, C 2

  • a = 27.248 (4) Å

  • b = 5.8241 (8) Å

  • c = 14.275 (2) Å

  • β = 94.192 (3)°

  • V = 2259.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.37 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 5956 measured reflections

  • 2310 independent reflections

  • 1934 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.109

  • S = 0.96

  • 2310 reflections

  • 279 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O1i 0.93 2.54 3.332 (4) 144
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Morpholines are an important class of heterocyclic compounds found in many naturally occurring or synthetically organic molecules (Wijtmans et al., 2004). Especially, the morpholine moiety has found widespread use in medicinal chemistry, and many drugs contain this subunit. For example, antidepressant drug Reboxetine (Hajos et al., 2004; Versiani et al., 2002), Aprepitant in combination with other agents to prevent and control nausea and vomiting caused by chemotherapy (Dando & Perry, 2004; Hale et al., 1998). The morpholine skeleton is also used to construct a number of agrochemical fungicides and bactericides, such as Fenpropimorph and tridemorph (Dieckmann et al., 1993). Furthermore, morpholines have been applied as chiral auxiliaries in asymmetric synthesis (Dave & Sasaki, 2004; Enders et al., 1994). Herewith we report the crystal structure of the title compound (I).

In (I) (Fig. 1), the morpholine ring is in a chair conformation. Weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules related by translation along axis b into chains.

Related literature top

For a review of the biological relevance and synthesis of C-substituted morpholine derivatives, see: Wijtmans et al. (2004). For applications of morpholine derivatives as drugs, see: Dando & Perry (2004); Hajos et al. (2004); Hale et al. (1998); Versiani et al. (2002). For agrochemical fungicides and bactericides containing a morpholine skeleton, see: Dieckmann et al. (1993). For applications of morpholines as chiral auxiliaries in asymmetric synthesis, see: Dave & Sasaki (2004); Enders et al. (1994).

Experimental top

The schematic representation of the synthesis is given in Fig. 2. To a solution of EDC (125 mg, 0.54 mmol) and HOAt (74 mg, 0.54 mmol) in DMF (2 ml) was added diphenylmethanamine (82 mg, 0.45 mmol) and (2R,6S)-4-(tert-butoxycarbonyl)-6-methylmorpholine-2-carboxylic acid (132 mg, 0.54 mmol) and the mixture stirred at room temperature overnight. The mixture was then partitioned between EtOAc and water. The organic layer was then washed successively with saturated aqueous sodium bicarbonate, brine and then dried (MgSO4). The solution was evaporated to dryness in vacuo and the residue purified by flash column chromatography to give the title compound (124 mg) as a colourless solid. Crystals suitable for X-ray structure analysis were obtained by slow evaporation of a solution in EtOAc at room temperature.

Refinement top

C-bound H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2–1.5 Ueq(C). Atom H2A was located on difference map and isotropically refined. In the absence of any significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1917 sets of Friedel equivalents led to an inconclusive value of 10 (10). Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Schematic representation of the synthesis.
(2R,6S)-tert-Butyl 2-[(diphenylmethyl)carbamoyl]-6-methylmorpholine-4-carboxylate top
Crystal data top
C24H30N2O4F(000) = 880
Mr = 410.50Dx = 1.207 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2344 reflections
a = 27.248 (4) Åθ = 5.7–47.9°
b = 5.8241 (8) ŵ = 0.08 mm1
c = 14.275 (2) ÅT = 293 K
β = 94.192 (3)°Prismatic, white
V = 2259.3 (5) Å30.37 × 0.24 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1934 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.110
Graphite monochromatorθmax = 25.5°, θmin = 2.0°
ϕ and ω scansh = 3227
5956 measured reflectionsk = 67
2310 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0542P)2]
where P = (Fo2 + 2Fc2)/3
2310 reflections(Δ/σ)max = 0.018
279 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C24H30N2O4V = 2259.3 (5) Å3
Mr = 410.50Z = 4
Monoclinic, C2Mo Kα radiation
a = 27.248 (4) ŵ = 0.08 mm1
b = 5.8241 (8) ÅT = 293 K
c = 14.275 (2) Å0.37 × 0.24 × 0.16 mm
β = 94.192 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1934 reflections with I > 2σ(I)
5956 measured reflectionsRint = 0.110
2310 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.15 e Å3
2310 reflectionsΔρmin = 0.23 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38365 (9)0.0550 (5)0.09403 (17)0.0726 (8)
N20.32924 (10)0.1668 (4)0.19729 (14)0.0582 (7)
O10.36972 (10)0.4751 (5)0.15139 (14)0.0892 (8)
O20.30774 (6)0.0299 (3)0.02574 (11)0.0516 (5)
O30.39908 (8)0.0609 (4)0.24661 (13)0.0740 (6)
O40.43729 (7)0.3050 (4)0.14171 (13)0.0649 (6)
C10.34746 (10)0.2991 (5)0.13400 (17)0.0504 (6)
C20.34143 (9)0.2148 (5)0.03370 (16)0.0484 (6)
H20.32840.34070.00630.058*
C30.39051 (10)0.1440 (7)0.00143 (19)0.0702 (9)
H3A0.41250.27500.00310.084*
H3B0.40510.02680.04290.084*
C40.34907 (11)0.1318 (6)0.1033 (2)0.0677 (8)
H4A0.36210.26280.06770.081*
H4B0.34430.17690.16870.081*
C50.30039 (10)0.0621 (5)0.06807 (17)0.0529 (7)
H50.28040.20140.06450.064*
C60.27212 (12)0.1025 (7)0.13283 (19)0.0747 (9)
H6A0.24290.15090.10470.112*
H6B0.26320.02780.19160.112*
H6C0.29220.23390.14350.112*
C70.33164 (10)0.2209 (5)0.29757 (15)0.0528 (7)
H70.34320.37970.30480.063*
C80.28101 (10)0.2103 (5)0.33392 (16)0.0512 (6)
C90.25146 (10)0.0219 (6)0.31751 (19)0.0610 (7)
H90.26320.10260.28500.073*
C100.20460 (11)0.0133 (7)0.3483 (2)0.0739 (9)
H100.18470.11430.33530.089*
C110.18741 (13)0.1950 (8)0.3985 (2)0.0795 (10)
H110.15580.19150.41920.095*
C120.21685 (14)0.3780 (8)0.4174 (2)0.0825 (11)
H120.20560.49850.45290.099*
C130.26342 (13)0.3900 (6)0.38514 (18)0.0684 (8)
H130.28290.51890.39790.082*
C140.36812 (9)0.0700 (5)0.35412 (16)0.0486 (6)
C150.38313 (10)0.1338 (6)0.44504 (18)0.0625 (8)
H150.37160.27020.46920.075*
C160.41486 (12)0.0017 (8)0.5002 (2)0.0775 (10)
H160.42450.04400.56120.093*
C170.43244 (11)0.2042 (8)0.4660 (3)0.0787 (10)
H170.45390.29580.50330.094*
C180.41775 (11)0.2685 (7)0.3760 (2)0.0744 (9)
H180.42930.40510.35210.089*
C190.38604 (11)0.1329 (6)0.32084 (19)0.0606 (7)
H190.37650.17920.25990.073*
C200.40627 (10)0.1365 (5)0.16836 (19)0.0562 (7)
C210.47203 (10)0.3996 (5)0.20592 (19)0.0570 (7)
C220.49962 (12)0.5747 (6)0.1450 (2)0.0765 (9)
H22A0.47690.68630.12390.115*
H22B0.52350.65000.18050.115*
H22C0.51600.49960.09160.115*
C230.50568 (12)0.2101 (6)0.2339 (3)0.0787 (10)
H23A0.51940.13290.17860.118*
H23B0.53170.27430.26740.118*
H23C0.48730.10250.27350.118*
C240.44503 (13)0.5127 (7)0.2886 (2)0.0795 (9)
H24A0.42740.39870.32620.119*
H24B0.46810.58920.32560.119*
H24C0.42220.62280.26700.119*
H2A0.3113 (11)0.060 (6)0.181 (2)0.058 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0724 (14)0.096 (2)0.0528 (13)0.0328 (16)0.0287 (11)0.0251 (14)
N20.0865 (17)0.0596 (16)0.0294 (10)0.0232 (15)0.0104 (10)0.0025 (11)
O10.1344 (19)0.0868 (17)0.0501 (11)0.0546 (17)0.0324 (12)0.0172 (11)
O20.0594 (10)0.0633 (12)0.0333 (8)0.0150 (10)0.0120 (7)0.0012 (8)
O30.0932 (14)0.0820 (16)0.0498 (11)0.0177 (13)0.0264 (10)0.0213 (11)
O40.0692 (11)0.0794 (14)0.0489 (10)0.0184 (12)0.0226 (9)0.0078 (10)
C10.0606 (15)0.0540 (16)0.0374 (13)0.0084 (14)0.0102 (11)0.0000 (12)
C20.0617 (14)0.0529 (15)0.0318 (12)0.0124 (13)0.0101 (10)0.0041 (12)
C30.0651 (16)0.104 (3)0.0432 (14)0.0235 (18)0.0182 (12)0.0143 (16)
C40.0791 (19)0.066 (2)0.0606 (17)0.0091 (17)0.0238 (14)0.0143 (16)
C50.0658 (15)0.0556 (17)0.0388 (13)0.0199 (14)0.0129 (11)0.0045 (12)
C60.086 (2)0.091 (2)0.0453 (15)0.010 (2)0.0075 (14)0.0075 (17)
C70.0807 (17)0.0498 (15)0.0284 (11)0.0124 (14)0.0080 (11)0.0035 (12)
C80.0711 (16)0.0536 (16)0.0291 (11)0.0047 (14)0.0055 (11)0.0035 (12)
C90.0695 (17)0.0628 (19)0.0515 (15)0.0025 (17)0.0093 (13)0.0056 (14)
C100.0677 (18)0.091 (2)0.0636 (18)0.000 (2)0.0090 (15)0.0064 (19)
C110.073 (2)0.104 (3)0.0630 (19)0.024 (2)0.0158 (16)0.008 (2)
C120.104 (3)0.088 (3)0.0577 (18)0.035 (2)0.0246 (17)0.002 (2)
C130.102 (2)0.0628 (19)0.0417 (14)0.0082 (19)0.0094 (15)0.0034 (15)
C140.0553 (13)0.0569 (17)0.0355 (12)0.0131 (13)0.0173 (10)0.0044 (12)
C150.0768 (18)0.072 (2)0.0391 (13)0.0027 (17)0.0048 (13)0.0101 (14)
C160.079 (2)0.101 (3)0.0518 (17)0.007 (2)0.0050 (15)0.0046 (19)
C170.0581 (17)0.105 (3)0.074 (2)0.007 (2)0.0088 (15)0.018 (2)
C180.0694 (18)0.078 (2)0.079 (2)0.0090 (18)0.0257 (16)0.0008 (19)
C190.0711 (17)0.0677 (19)0.0446 (14)0.0044 (16)0.0152 (12)0.0072 (15)
C200.0553 (14)0.0636 (17)0.0517 (16)0.0059 (14)0.0183 (12)0.0122 (14)
C210.0616 (16)0.0558 (16)0.0564 (15)0.0001 (14)0.0221 (12)0.0089 (14)
C220.0780 (19)0.074 (2)0.079 (2)0.0112 (19)0.0170 (16)0.0076 (19)
C230.0762 (19)0.067 (2)0.097 (3)0.0062 (19)0.0353 (17)0.007 (2)
C240.102 (2)0.071 (2)0.0663 (19)0.007 (2)0.0086 (17)0.0084 (17)
Geometric parameters (Å, º) top
N1—C201.352 (4)C9—H90.9300
N1—C41.439 (4)C10—C111.379 (5)
N1—C31.457 (3)C10—H100.9300
N2—C11.312 (3)C11—C121.349 (6)
N2—C71.463 (3)C11—H110.9300
N2—H2A0.81 (3)C12—C131.383 (5)
O1—C11.207 (4)C12—H120.9300
O2—C21.414 (3)C13—H130.9300
O2—C51.443 (3)C14—C191.376 (4)
O3—C201.203 (3)C14—C151.383 (3)
O4—C201.332 (3)C15—C161.375 (5)
O4—C211.472 (3)C15—H150.9300
C1—C21.511 (3)C16—C171.376 (6)
C2—C31.503 (4)C16—H160.9300
C2—H20.9800C17—C181.369 (5)
C3—H3A0.9700C17—H170.9300
C3—H3B0.9700C18—C191.376 (4)
C4—C51.508 (4)C18—H180.9300
C4—H4A0.9700C19—H190.9300
C4—H4B0.9700C21—C241.497 (4)
C5—C61.504 (4)C21—C221.505 (5)
C5—H50.9800C21—C231.507 (4)
C6—H6A0.9600C22—H22A0.9600
C6—H6B0.9600C22—H22B0.9600
C6—H6C0.9600C22—H22C0.9600
C7—C81.510 (4)C23—H23A0.9600
C7—C141.515 (4)C23—H23B0.9600
C7—H70.9800C23—H23C0.9600
C8—C91.371 (4)C24—H24A0.9600
C8—C131.382 (4)C24—H24B0.9600
C9—C101.382 (4)C24—H24C0.9600
C20—N1—C4121.8 (2)C9—C10—H10120.2
C20—N1—C3125.1 (3)C12—C11—C10119.4 (3)
C4—N1—C3113.2 (2)C12—C11—H11120.3
C1—N2—C7123.7 (2)C10—C11—H11120.3
C1—N2—H2A120 (2)C11—C12—C13121.3 (3)
C7—N2—H2A115 (2)C11—C12—H12119.4
C2—O2—C5113.74 (17)C13—C12—H12119.4
C20—O4—C21121.4 (2)C8—C13—C12120.0 (4)
O1—C1—N2124.5 (2)C8—C13—H13120.0
O1—C1—C2119.3 (2)C12—C13—H13120.0
N2—C1—C2116.1 (2)C19—C14—C15117.8 (3)
O2—C2—C3110.7 (2)C19—C14—C7123.3 (2)
O2—C2—C1110.40 (19)C15—C14—C7118.8 (2)
C3—C2—C1110.0 (2)C16—C15—C14120.9 (3)
O2—C2—H2108.6C16—C15—H15119.6
C3—C2—H2108.6C14—C15—H15119.6
C1—C2—H2108.6C15—C16—C17120.6 (3)
N1—C3—C2109.1 (2)C15—C16—H16119.7
N1—C3—H3A109.9C17—C16—H16119.7
C2—C3—H3A109.9C18—C17—C16118.8 (3)
N1—C3—H3B109.9C18—C17—H17120.6
C2—C3—H3B109.9C16—C17—H17120.6
H3A—C3—H3B108.3C17—C18—C19120.6 (3)
N1—C4—C5110.6 (3)C17—C18—H18119.7
N1—C4—H4A109.5C19—C18—H18119.7
C5—C4—H4A109.5C18—C19—C14121.3 (3)
N1—C4—H4B109.5C18—C19—H19119.4
C5—C4—H4B109.5C14—C19—H19119.4
H4A—C4—H4B108.1O3—C20—O4126.3 (3)
O2—C5—C6111.3 (2)O3—C20—N1123.2 (3)
O2—C5—C4110.1 (2)O4—C20—N1110.5 (2)
C6—C5—C4112.9 (2)O4—C21—C24110.7 (2)
O2—C5—H5107.4O4—C21—C22102.1 (2)
C6—C5—H5107.4C24—C21—C22110.7 (3)
C4—C5—H5107.4O4—C21—C23108.8 (2)
C5—C6—H6A109.5C24—C21—C23112.8 (3)
C5—C6—H6B109.5C22—C21—C23111.2 (3)
H6A—C6—H6B109.5C21—C22—H22A109.5
C5—C6—H6C109.5C21—C22—H22B109.5
H6A—C6—H6C109.5H22A—C22—H22B109.5
H6B—C6—H6C109.5C21—C22—H22C109.5
N2—C7—C8110.5 (2)H22A—C22—H22C109.5
N2—C7—C14112.2 (2)H22B—C22—H22C109.5
C8—C7—C14111.9 (2)C21—C23—H23A109.5
N2—C7—H7107.3C21—C23—H23B109.5
C8—C7—H7107.3H23A—C23—H23B109.5
C14—C7—H7107.3C21—C23—H23C109.5
C9—C8—C13118.3 (3)H23A—C23—H23C109.5
C9—C8—C7120.9 (2)H23B—C23—H23C109.5
C13—C8—C7120.8 (3)C21—C24—H24A109.5
C8—C9—C10121.3 (3)C21—C24—H24B109.5
C8—C9—H9119.4H24A—C24—H24B109.5
C10—C9—H9119.4C21—C24—H24C109.5
C11—C10—C9119.6 (4)H24A—C24—H24C109.5
C11—C10—H10120.2H24B—C24—H24C109.5
C7—N2—C1—O12.9 (5)C9—C10—C11—C120.5 (5)
C7—N2—C1—C2180.0 (2)C10—C11—C12—C131.9 (5)
C5—O2—C2—C357.3 (3)C9—C8—C13—C120.8 (4)
C5—O2—C2—C1179.4 (2)C7—C8—C13—C12179.6 (2)
O1—C1—C2—O2170.2 (3)C11—C12—C13—C81.3 (5)
N2—C1—C2—O212.4 (3)N2—C7—C14—C1917.3 (3)
O1—C1—C2—C367.3 (4)C8—C7—C14—C19107.6 (3)
N2—C1—C2—C3110.0 (3)N2—C7—C14—C15165.0 (2)
C20—N1—C3—C2123.2 (3)C8—C7—C14—C1570.1 (3)
C4—N1—C3—C256.1 (4)C19—C14—C15—C160.1 (4)
O2—C2—C3—N155.5 (3)C7—C14—C15—C16177.8 (3)
C1—C2—C3—N1177.8 (3)C14—C15—C16—C170.0 (5)
C20—N1—C4—C5124.0 (3)C15—C16—C17—C180.0 (5)
C3—N1—C4—C555.3 (4)C16—C17—C18—C190.1 (5)
C2—O2—C5—C670.7 (3)C17—C18—C19—C140.2 (4)
C2—O2—C5—C455.4 (3)C15—C14—C19—C180.1 (4)
N1—C4—C5—O252.7 (3)C7—C14—C19—C18177.6 (3)
N1—C4—C5—C672.4 (3)C21—O4—C20—O38.3 (4)
C1—N2—C7—C8126.8 (3)C21—O4—C20—N1170.6 (3)
C1—N2—C7—C14107.5 (3)C4—N1—C20—O30.4 (5)
N2—C7—C8—C951.2 (3)C3—N1—C20—O3178.8 (3)
C14—C7—C8—C974.6 (3)C4—N1—C20—O4178.5 (3)
N2—C7—C8—C13129.2 (3)C3—N1—C20—O42.3 (4)
C14—C7—C8—C13105.0 (3)C20—O4—C21—C2463.9 (4)
C13—C8—C9—C102.1 (4)C20—O4—C21—C22178.2 (2)
C7—C8—C9—C10178.2 (2)C20—O4—C21—C2360.5 (3)
C8—C9—C10—C111.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.932.543.332 (4)144
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC24H30N2O4
Mr410.50
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)27.248 (4), 5.8241 (8), 14.275 (2)
β (°) 94.192 (3)
V3)2259.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.24 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5956, 2310, 1934
Rint0.110
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 0.96
No. of reflections2310
No. of parameters279
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O1i0.932.543.332 (4)144
Symmetry code: (i) x, y1, z.
 

Acknowledgements

HW is indebted to Professor Jianshu Xie for supporting this project and for critical review of the manuscript. We gratefully acknowledge financial support from the Shanghai Pharmaceutical Group Co. Ltd GX is grateful to the Shanghai Postdoctoral Sustentation Fund, China (grant No. 07R214213) for financial support.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDando, T. M. & Perry, C. M. (2004). Drugs, 64, 777–794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDave, R. & Sasaki, N. A. (2004). Org. Lett. 6, 15–18.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDieckmann, H., Strockmaier, M., Kreuzig, R. & Bahadir, M. (1993). Fesenius' J. Anal. Chem. 345, 784–786.  CrossRef CAS Google Scholar
First citationEnders, D., Meyer, O., Raabe, G. & Runsink, J. (1994). Synthesis, pp. 66–72.  CrossRef Google Scholar
First citationHajos, M., Fleishaker, J. C., Filipiak-Reisner, J. K., Brown, M. T. & Wong, E. H. F. (2004). CNS Drug Rev. 10, 23–44.  Web of Science PubMed CAS Google Scholar
First citationHale, J. J., Mills, S. G., MacCoss, M., Finke, P. E., Cascieri, M. A., Sadowski, S., Ber, E., Chicchi, G. G., Kurtz, M., Metzger, J., Eiermann, G., Tsou, N. N., Tattersall, F. D., Rupniak, N. J. M., Williams, A. R., Rycroft, W., Hargreaves, R. & MacIntyre, D. E. (1998). J. Med. Chem. 41, 4607–4614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVersiani, M., Cassano, G., Perugi, G., Benedetti, A., Mastalli, L., Nardi, A. & Savino, M. (2002). J. Clin. Psychiatry, 63, 31–37.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWijtmans, R., Vink, M. K. S., Schoemaker, H. E., van Delft, F. L., Blaauw, R. H. & Rutjes, F. P. J. T. (2004). Synthesis, pp. 641–662.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds