organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-{[(E)-2-(isonicotinoyl)hydrazinyl­­idene]methyl}-3,4-di­methyl-1H-pyrrole-2-carboxyl­ate dihydrate

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: wangyuan08@hpu.edu.cn

(Received 27 April 2011; accepted 6 May 2011; online 14 May 2011)

In the title compound, C16H18N4O3·2H2O, the dihedral angle between the pyrrole and pyridine rings in the hydrazone mol­ecule is 7.12 (3)°. In the crystal structure, inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the hydrazone and water mol­ecules into double layers parallel to (101). The crystal packing exhibits weak ππ inter­actions between the pyrrole and pyridine rings of neighbouring hydrazone mol­ecules [centroid–centroid distance = 3.777 (3) Å]. The crystal studied was a non-merohedral twin, the refined ratio of twin domains being 0.73 (3):0.27 (3).

Related literature

For the anti­oxidant and DNA-binding properties of hydrazone complexes, see: Liu & Yang (2009[Liu, Y.-C. & Yang, Z.-Y. (2009). J. Inorg. Biochem. 103, 1014-1022.]). For the synthesis and structure of 5-formyl-3,4-dimethyl-1H-pyrrole-2-carboxyl­ate, see: Wu et al. (2009[Wu, W.-N., Wang, Y. & Wang, Q.-F. (2009). Acta Cryst. E65, o1661.]). For the similar structure of ethyl 5-[(3,4-dimethyl-1H-pyrrole-2-carboxyl­imino)-meth­yl]-3,4-dimethyl-1H-pyrrole-2-carboxyl­ate monohydrate, see: Wang et al. (2009[Wang, Y., Wu, W.-N., Zhao, R.-Q., Wang, Q.-F. & Qin, B.-F. (2009). Z. Kristallogr. New Cryst. Struct. 224, 625-626.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N4O3·2H2O

  • Mr = 350.38

  • Monoclinic, P 21 /n

  • a = 8.297 (4) Å

  • b = 18.120 (6) Å

  • c = 11.834 (4) Å

  • β = 91.814 (4)°

  • V = 1778.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]) Tmin = 0.977, Tmax = 0.984

  • 10998 measured reflections

  • 3839 independent reflections

  • 2671 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.176

  • S = 1.02

  • 3839 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1Wi 0.86 2.08 2.919 (4) 164
N4—H4A⋯O2W 0.86 2.24 3.084 (4) 165
O1W—H1C⋯N1 0.69 (5) 2.18 (5) 2.854 (4) 164 (6)
O1W—H1D⋯O2Wii 0.91 (5) 1.88 (5) 2.790 (5) 174 (5)
O2W—H2C⋯O2iii 0.92 (5) 2.06 (5) 2.941 (4) 160 (4)
O2W—H2D⋯O1 0.82 (5) 2.27 (5) 3.048 (4) 159 (5)
O2W—H2D⋯N3 0.82 (5) 2.43 (5) 3.014 (4) 129 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, hydrazone complexes have received extensive attention due to their biological and pharmaceutical activities (Liu et al., 2009). As a part of our studies of hydrazone ligands bearing pyrrole unit (Wang et al., 2009), we present here the crystal structure of the title compound.

In the title compound (Fig. 1), the imine C=N double bond has an E configuration. The dihedral angle between pyrrole (N4/C8–C11, r.m.s. deviation 0.0030 Å) and pyridine rings (N1/C1–C5, r.m.s. deviation 0.0038 Å) in the hydrazone molecule is 7.12 (3)°. In the crystal structure, intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds link the hydrazone and water molecules into doubled layers parallel to (101) plane. The crystal packing exhibits weak ππ interactions between the pyrrole and pyridine rings from the neighbouring hydrazone molecules [centroid-to-centroid distance of 3.777 (3) Å].

Related literature top

For the antioxidant and DNA-binding properties of hydrazone complexes, see: Liu & Yang (2009). For the synthesis and structure of 5-formyl-3,4-dimethyl-1H-pyrrole-2-carboxylate, see: Wu et al. (2009). For the similar structure of ethyl 5-[(3,4-dimethyl-1H-pyrrole-2-carboxylimino)-methyl]-3,4-dimethyl-1H-pyrrole-2-carboxylate monohydrate, see: Wang et al. (2009).

Experimental top

Isonicotinohydrazide (0.137 g, 1 mmol) and ethyl 5-formyl-3,4-dimethyl-1H-pyrrole-2-carboxylate (0.167 g, 1 mmol) (Wu et al., 2009) was dissolved in an ethanol solution. The mixture was stirred for 4 h at room temperture. The resulting solution was left in air for a few days, yielding yellow prism-shaped crystals.

Refinement top

The water H atoms were located in a difference Fourier map and refined with Uiso(H)=1.5Ueq(O). Other H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and were thereafter treated as riding, with Uiso(H) values of 1.5Ueq(C) for methyl groups and 1.2Ueq(C,N) for others. The crystal studied was a twin.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with the displacement ellipsoids shown at the 50% probability level.
Ethyl 5-{[(E)-2-(isonicotinoyl)hydrazinylidene]methyl}- 3,4-dimethyl-1H-pyrrole-2-carboxylate dihydrate top
Crystal data top
C16H18N4O3·2H2OF(000) = 744
Mr = 350.38Dx = 1.309 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.297 (4) Åθ = 2.7–25.3°
b = 18.120 (6) ŵ = 0.10 mm1
c = 11.834 (4) ÅT = 296 K
β = 91.814 (4)°Prism, yellow
V = 1778.3 (11) Å30.23 × 0.21 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3839 independent reflections
Radiation source: fine-focus sealed tube2671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.977, Tmax = 0.984k = 924
10998 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.02P)2 + 3.5P]
where P = (Fo2 + 2Fc2)/3
3839 reflections(Δ/σ)max = 0.069
241 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H18N4O3·2H2OV = 1778.3 (11) Å3
Mr = 350.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.297 (4) ŵ = 0.10 mm1
b = 18.120 (6) ÅT = 296 K
c = 11.834 (4) Å0.23 × 0.21 × 0.16 mm
β = 91.814 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3839 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2671 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.037
10998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.41 e Å3
3839 reflectionsΔρmin = 0.27 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6319 (3)0.46189 (12)0.4160 (2)0.0530 (6)
O21.1091 (4)0.29040 (14)0.9756 (2)0.0660 (8)
O30.9696 (3)0.27423 (12)0.8122 (2)0.0564 (7)
N10.4775 (4)0.68078 (16)0.1780 (2)0.0532 (8)
N20.7766 (3)0.55247 (14)0.5019 (2)0.0406 (6)
H2A0.80430.59820.50240.049*
N30.8374 (3)0.50452 (14)0.5828 (2)0.0420 (6)
N40.9761 (3)0.41573 (14)0.7584 (2)0.0415 (6)
H4A0.91580.38920.71410.050*
C10.4299 (4)0.6106 (2)0.1836 (3)0.0545 (9)
H10.35070.59460.13190.065*
C20.4901 (4)0.56074 (19)0.2606 (3)0.0498 (8)
H20.45220.51240.26040.060*
C30.6076 (4)0.58255 (17)0.3388 (3)0.0385 (7)
C40.6579 (5)0.65506 (18)0.3348 (3)0.0531 (9)
H40.73550.67300.38610.064*
C50.5898 (5)0.70012 (19)0.2527 (3)0.0605 (10)
H50.62670.74850.25000.073*
C60.6727 (4)0.52615 (16)0.4219 (3)0.0380 (7)
C70.9388 (4)0.53192 (17)0.6540 (3)0.0418 (7)
H7A0.96860.58110.64710.050*
C81.0084 (4)0.48875 (17)0.7448 (3)0.0412 (7)
C91.1112 (4)0.51125 (18)0.8322 (3)0.0428 (8)
C101.1406 (4)0.44984 (18)0.9021 (3)0.0423 (7)
C111.0555 (4)0.39167 (17)0.8543 (3)0.0411 (7)
C121.1778 (5)0.5870 (2)0.8501 (3)0.0654 (11)
H12A1.17540.61310.77950.098*
H12B1.28700.58370.87890.098*
H12C1.11370.61290.90330.098*
C131.2480 (5)0.4481 (2)1.0061 (3)0.0589 (10)
H13A1.18940.46541.06950.088*
H13B1.33980.47920.99540.088*
H13C1.28350.39841.02010.088*
C141.0502 (4)0.31492 (18)0.8893 (3)0.0452 (8)
C150.9548 (5)0.19650 (18)0.8342 (3)0.0609 (10)
H15A0.89780.18830.90340.073*
H15B1.06050.17380.84200.073*
C160.8642 (7)0.1652 (2)0.7371 (4)0.0830 (15)
H16A0.76230.19000.72810.125*
H16B0.84610.11350.74980.125*
H16C0.92470.17150.67000.125*
O1W0.4291 (4)0.80318 (15)0.0290 (3)0.0654 (8)
H1C0.428 (7)0.770 (3)0.059 (5)0.098*
H1D0.528 (6)0.813 (3)0.001 (4)0.098*
O2W0.7783 (3)0.34071 (15)0.5656 (2)0.0588 (7)
H2C0.704 (6)0.305 (3)0.544 (4)0.088*
H2D0.744 (6)0.380 (3)0.541 (4)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0688 (16)0.0297 (12)0.0598 (15)0.0029 (11)0.0066 (12)0.0035 (10)
O20.102 (2)0.0431 (14)0.0513 (15)0.0040 (14)0.0203 (15)0.0099 (12)
O30.0790 (18)0.0327 (12)0.0562 (15)0.0080 (12)0.0160 (13)0.0066 (11)
N10.0622 (19)0.0453 (17)0.0512 (18)0.0079 (14)0.0106 (15)0.0081 (14)
N20.0489 (15)0.0314 (13)0.0412 (15)0.0009 (11)0.0045 (12)0.0071 (11)
N30.0514 (16)0.0334 (14)0.0412 (15)0.0061 (12)0.0007 (12)0.0060 (11)
N40.0479 (15)0.0373 (14)0.0388 (14)0.0002 (12)0.0063 (12)0.0009 (11)
C10.055 (2)0.056 (2)0.051 (2)0.0028 (17)0.0150 (17)0.0018 (17)
C20.053 (2)0.0374 (18)0.058 (2)0.0064 (15)0.0077 (17)0.0021 (16)
C30.0430 (17)0.0327 (16)0.0396 (17)0.0022 (13)0.0000 (13)0.0006 (13)
C40.069 (2)0.0373 (18)0.052 (2)0.0048 (16)0.0192 (18)0.0029 (15)
C50.079 (3)0.0298 (18)0.072 (3)0.0034 (17)0.017 (2)0.0099 (17)
C60.0437 (17)0.0295 (16)0.0410 (17)0.0023 (13)0.0040 (14)0.0027 (13)
C70.0525 (19)0.0333 (16)0.0396 (17)0.0013 (14)0.0019 (15)0.0003 (13)
C80.0459 (18)0.0379 (17)0.0399 (17)0.0056 (14)0.0024 (14)0.0016 (14)
C90.0515 (19)0.0367 (17)0.0404 (17)0.0011 (14)0.0029 (15)0.0014 (13)
C100.0501 (19)0.0384 (17)0.0383 (17)0.0027 (14)0.0022 (14)0.0018 (14)
C110.0502 (18)0.0368 (17)0.0359 (16)0.0040 (14)0.0030 (14)0.0018 (13)
C120.092 (3)0.042 (2)0.061 (2)0.008 (2)0.011 (2)0.0002 (18)
C130.072 (3)0.056 (2)0.047 (2)0.0001 (19)0.0138 (18)0.0002 (17)
C140.057 (2)0.0384 (18)0.0404 (18)0.0043 (15)0.0020 (15)0.0007 (14)
C150.086 (3)0.0304 (18)0.065 (2)0.0057 (18)0.004 (2)0.0070 (16)
C160.118 (4)0.043 (2)0.086 (3)0.005 (2)0.025 (3)0.005 (2)
O1W0.0706 (18)0.0443 (16)0.081 (2)0.0111 (14)0.0049 (16)0.0186 (14)
O2W0.0681 (18)0.0384 (14)0.0692 (18)0.0038 (12)0.0093 (14)0.0031 (13)
Geometric parameters (Å, º) top
O1—C61.214 (4)C7—H7A0.9300
O2—C141.204 (4)C8—C91.382 (5)
O3—C141.336 (4)C9—C101.403 (4)
O3—C151.438 (4)C9—C121.492 (5)
N1—C51.312 (5)C10—C111.380 (4)
N1—C11.334 (5)C10—C131.497 (5)
N2—C61.347 (4)C11—C141.452 (4)
N2—N31.377 (3)C12—H12A0.9600
N2—H2A0.8600C12—H12B0.9600
N3—C71.273 (4)C12—H12C0.9600
N4—C81.361 (4)C13—H13A0.9600
N4—C111.366 (4)C13—H13B0.9600
N4—H4A0.8600C13—H13C0.9600
C1—C21.366 (5)C15—C161.468 (5)
C1—H10.9300C15—H15A0.9700
C2—C31.380 (4)C15—H15B0.9700
C2—H20.9300C16—H16A0.9600
C3—C41.380 (4)C16—H16B0.9600
C3—C61.506 (4)C16—H16C0.9600
C4—C51.376 (5)O1W—H1C0.69 (5)
C4—H40.9300O1W—H1D0.91 (5)
C5—H50.9300O2W—H2C0.92 (5)
C7—C81.435 (4)O2W—H2D0.82 (5)
C14—O3—C15117.4 (3)C11—C10—C9106.7 (3)
C5—N1—C1115.2 (3)C11—C10—C13127.2 (3)
C6—N2—N3118.5 (3)C9—C10—C13126.1 (3)
C6—N2—H2A120.7N4—C11—C10108.9 (3)
N3—N2—H2A120.7N4—C11—C14121.6 (3)
C7—N3—N2115.7 (3)C10—C11—C14129.4 (3)
C8—N4—C11108.5 (3)C9—C12—H12A109.5
C8—N4—H4A125.8C9—C12—H12B109.5
C11—N4—H4A125.8H12A—C12—H12B109.5
N1—C1—C2124.1 (3)C9—C12—H12C109.5
N1—C1—H1117.9H12A—C12—H12C109.5
C2—C1—H1117.9H12B—C12—H12C109.5
C1—C2—C3119.6 (3)C10—C13—H13A109.5
C1—C2—H2120.2C10—C13—H13B109.5
C3—C2—H2120.2H13A—C13—H13B109.5
C4—C3—C2117.2 (3)C10—C13—H13C109.5
C4—C3—C6124.5 (3)H13A—C13—H13C109.5
C2—C3—C6118.3 (3)H13B—C13—H13C109.5
C3—C4—C5118.1 (3)O2—C14—O3123.9 (3)
C3—C4—H4120.9O2—C14—C11125.5 (3)
C5—C4—H4120.9O3—C14—C11110.7 (3)
N1—C5—C4125.7 (3)O3—C15—C16106.3 (3)
N1—C5—H5117.1O3—C15—H15A110.5
C4—C5—H5117.1C16—C15—H15A110.5
O1—C6—N2123.4 (3)O3—C15—H15B110.5
O1—C6—C3121.3 (3)C16—C15—H15B110.5
N2—C6—C3115.3 (3)H15A—C15—H15B108.7
N3—C7—C8121.7 (3)C15—C16—H16A109.5
N3—C7—H7A119.2C15—C16—H16B109.5
C8—C7—H7A119.2H16A—C16—H16B109.5
N4—C8—C9108.5 (3)C15—C16—H16C109.5
N4—C8—C7122.9 (3)H16A—C16—H16C109.5
C9—C8—C7128.6 (3)H16B—C16—H16C109.5
C8—C9—C10107.4 (3)H1C—O1W—H1D112 (5)
C8—C9—C12126.5 (3)H2C—O2W—H2D107 (4)
C10—C9—C12126.1 (3)
C6—N2—N3—C7177.9 (3)C7—C8—C9—C10177.6 (3)
C5—N1—C1—C20.3 (6)N4—C8—C9—C12179.8 (3)
N1—C1—C2—C30.1 (6)C7—C8—C9—C121.8 (6)
C1—C2—C3—C40.3 (5)C8—C9—C10—C110.4 (4)
C1—C2—C3—C6179.4 (3)C12—C9—C10—C11179.9 (3)
C2—C3—C4—C51.0 (5)C8—C9—C10—C13178.8 (3)
C6—C3—C4—C5178.7 (3)C12—C9—C10—C131.8 (6)
C1—N1—C5—C41.1 (6)C8—N4—C11—C100.5 (4)
C3—C4—C5—N11.5 (7)C8—N4—C11—C14177.4 (3)
N3—N2—C6—O11.4 (5)C9—C10—C11—N40.0 (4)
N3—N2—C6—C3178.1 (3)C13—C10—C11—N4178.3 (3)
C4—C3—C6—O1174.7 (3)C9—C10—C11—C14176.6 (3)
C2—C3—C6—O15.0 (5)C13—C10—C11—C141.7 (6)
C4—C3—C6—N25.8 (5)C15—O3—C14—O20.7 (5)
C2—C3—C6—N2174.5 (3)C15—O3—C14—C11179.5 (3)
N2—N3—C7—C8178.2 (3)N4—C11—C14—O2175.6 (3)
C11—N4—C8—C90.8 (4)C10—C11—C14—O28.2 (6)
C11—N4—C8—C7177.7 (3)N4—C11—C14—O34.3 (5)
N3—C7—C8—N42.6 (5)C10—C11—C14—O3172.0 (3)
N3—C7—C8—C9175.5 (3)C14—O3—C15—C16179.3 (4)
N4—C8—C9—C100.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1Wi0.862.082.919 (4)164
N4—H4A···O2W0.862.243.084 (4)165
O1W—H1C···N10.69 (5)2.18 (5)2.854 (4)164 (6)
O1W—H1D···O2Wii0.91 (5)1.88 (5)2.790 (5)174 (5)
O2W—H2C···O2iii0.92 (5)2.06 (5)2.941 (4)160 (4)
O2W—H2D···O10.82 (5)2.27 (5)3.048 (4)159 (5)
O2W—H2D···N30.82 (5)2.43 (5)3.014 (4)129 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H18N4O3·2H2O
Mr350.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.297 (4), 18.120 (6), 11.834 (4)
β (°) 91.814 (4)
V3)1778.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10998, 3839, 2671
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.176, 1.02
No. of reflections3839
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1Wi0.862.082.919 (4)164
N4—H4A···O2W0.862.243.084 (4)165
O1W—H1C···N10.69 (5)2.18 (5)2.854 (4)164 (6)
O1W—H1D···O2Wii0.91 (5)1.88 (5)2.790 (5)174 (5)
O2W—H2C···O2iii0.92 (5)2.06 (5)2.941 (4)160 (4)
O2W—H2D···O10.82 (5)2.27 (5)3.048 (4)159 (5)
O2W—H2D···N30.82 (5)2.43 (5)3.014 (4)129 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 21001040).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .  Google Scholar
First citationLiu, Y.-C. & Yang, Z.-Y. (2009). J. Inorg. Biochem. 103, 1014–1022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Wu, W.-N., Zhao, R.-Q., Wang, Q.-F. & Qin, B.-F. (2009). Z. Kristallogr. New Cryst. Struct. 224, 625–626.  CAS Google Scholar
First citationWu, W.-N., Wang, Y. & Wang, Q.-F. (2009). Acta Cryst. E65, o1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds