organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­terephthalic acid–4,4′-bi­pyridine (1/1)

aDepartment of Physics and Mathematics, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and bInstitute of Material Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: xuert@163.com

(Received 29 April 2011; accepted 30 April 2011; online 7 May 2011)

The asymmetric unit of the title compound, C10H8N2·C8H7NO4, contains two half-mol­ecules, which constitute a 1:1 co-crystal. The 2-amino­terephthalic acid mol­ecule is situated on an inversion center being disordered between two orientations in a 1:1 ratio. In the 4,4′-bipyridine mol­ecule, which is situated on a twofold rotational axis, the two pyridine rings form a dihedral angle of 37.5 (1)°. In the crystal, mol­ecules are held together via inter­molecular N—H⋯O and O—H⋯N hydrogen bonds. The crystal packing exhibits ππ inter­actions between the aromatic rings with a centroid–centroid distance of 3.722 (3) Å.

Related literature

For the crystal structures of polymeric coordination polymers with 2-amino­terephthalic acid linkers, see: Ma et al. (2005)[Ma, A.-Q., Cai, G.-Q. & Zhu, L.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 139-140.]; Bauer et al. (2008[Bauer, S., Serre, C., Devic, T., Horcajada, P., Marrot, J., Ferey, G. & Stock, N. (2008). Inorg. Chem. 47, 7568-7576.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C8H7NO4

  • Mr = 337.33

  • Monoclinic, C 2/c

  • a = 16.9501 (18) Å

  • b = 11.1959 (13) Å

  • c = 9.251 (1) Å

  • β = 116.986 (2)°

  • V = 1564.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.33 × 0.19 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.989

  • 3865 measured reflections

  • 1370 independent reflections

  • 894 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.199

  • S = 1.00

  • 1370 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.08 2.931 (5) 172
N1—H1B⋯O2ii 0.86 1.95 2.619 (5) 133
O1—H1⋯N2iii 0.82 1.82 2.635 (3) 170
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bipyridine is a well known molecule often used as a linker in polymeric coordination compounds. 2-Aminoterephthalic acid is also sometimes used as a linker in polymeric compounds (Ma et al., 2005; Bauer et al., 2008). The title compound (I) is a 1:1 cocrystal of the aforementioned linkers. Herewith we present its crystal structure.

In (I) (Fig. 1), the 2-aminoterephthalic acid molecule is situated on an inversion center, therefore, it is disordered (namely, the amino group is disordered between two positions). The carboxyl groups are twisted from the benzene ring plane at 11.4 (1)°. The 4,4'-bipyridine molecule is situated on a twofold rotational axis, and two pyridine rings form a dihedral angle of 37.5 (1)°.

In the crystal structure, the molecules are held together via intermolecular N—H···O and O—H···N hydrogen bonds. The crystal packing exhibits ππ interactions between the aromatic rings with the centroid-to-centroid distance of 3.722 (3) Å.

Related literature top

For the crystal structures of polymeric coordination polymers with 2-aminoterephthalic acid linkers, see: Ma et al. (2005); Bauer et al. (2008).

Experimental top

2-Diaminoterephthalic acid(10 mmol) and 4,4'-bipyridine(10 mmol) were dissolved to methanol (10 ml) and then hydrochloric acid(5 ml) was added. A few minutes later, an methanol solution (10 ml) of tin tetrachloride (5 mmol) was added with stirring. The reaction mixture was stirred for 4 h. The solution was held at room temperature for about two weeks, whereupon yellow crystals of the title compound, which were beyond expectations, were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, N—H = 0.86 Å, O—H =0.82 Å and Uiso(H) =1.2Ueq(C), Uiso(H) =1.2Ueq(N), Uiso(H) =1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. (symmetry code A: x + 3/2, -y + 3/2, -z and B: -x + 1, y, -z + 3/2). For the disordered molecule of 2-aminoterephthalic acid, only one orientation is shown.
2-Aminobenzene-1,4-dicarboxylic acid–4,4'-bipyridine (1/1) top
Crystal data top
C10H8N2·C8H7NO4F(000) = 704
Mr = 337.33Dx = 1.432 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.9501 (18) ÅCell parameters from 1178 reflections
b = 11.1959 (13) Åθ = 2.3–26.0°
c = 9.251 (1) ŵ = 0.10 mm1
β = 116.986 (2)°T = 293 K
V = 1564.4 (3) Å3Block, yellow
Z = 40.33 × 0.19 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1370 independent reflections
Radiation source: fine-focus sealed tube894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2012
Tmin = 0.967, Tmax = 0.989k = 1113
3865 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1295P)2]
where P = (Fo2 + 2Fc2)/3
1370 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H8N2·C8H7NO4V = 1564.4 (3) Å3
Mr = 337.33Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.9501 (18) ŵ = 0.10 mm1
b = 11.1959 (13) ÅT = 293 K
c = 9.251 (1) Å0.33 × 0.19 × 0.11 mm
β = 116.986 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1370 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
894 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.989Rint = 0.075
3865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
1370 reflectionsΔρmin = 0.29 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.8270 (3)0.9576 (4)0.0096 (6)0.0607 (13)0.50
H1A0.83171.01340.05770.073*0.50
H1B0.84780.96780.07790.073*0.50
N20.39951 (15)0.8071 (2)1.0092 (3)0.0600 (7)
O10.67530 (15)0.82272 (19)0.2964 (3)0.0742 (8)
H10.65500.80970.36020.111*
O20.65519 (15)0.62839 (19)0.2565 (3)0.0711 (7)
C10.68006 (18)0.7229 (3)0.2283 (3)0.0520 (8)
C20.71594 (15)0.7367 (2)0.1106 (3)0.0436 (7)
C30.75521 (17)0.8419 (2)0.1014 (3)0.0459 (7)
H30.75950.90410.17130.055*
C40.78845 (17)0.8581 (2)0.0081 (3)0.0462 (7)
H40.81340.93070.01400.055*0.50
C50.39774 (19)0.9000 (3)0.9217 (3)0.0594 (8)
H50.36890.96850.92950.071*
C60.43583 (18)0.9020 (2)0.8196 (3)0.0529 (8)
H60.43280.97070.76060.063*
C70.47874 (16)0.8020 (2)0.8042 (3)0.0451 (7)
C80.47940 (19)0.7037 (3)0.8939 (3)0.0564 (8)
H80.50620.63310.88610.068*
C90.4404 (2)0.7104 (3)0.9947 (4)0.0646 (9)
H90.44270.64361.05630.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.094 (4)0.048 (2)0.071 (3)0.013 (2)0.064 (3)0.013 (2)
N20.0592 (15)0.0888 (17)0.0500 (14)0.0024 (13)0.0404 (13)0.0035 (12)
O10.1089 (18)0.0821 (14)0.0749 (15)0.0006 (12)0.0797 (15)0.0074 (11)
O20.0983 (17)0.0765 (14)0.0719 (15)0.0073 (12)0.0679 (14)0.0144 (11)
C10.0551 (16)0.0688 (19)0.0402 (15)0.0119 (14)0.0287 (13)0.0078 (13)
C20.0456 (14)0.0573 (15)0.0366 (14)0.0069 (12)0.0264 (12)0.0046 (11)
C30.0504 (15)0.0575 (15)0.0381 (14)0.0071 (12)0.0273 (13)0.0029 (11)
C40.0520 (16)0.0550 (15)0.0440 (15)0.0023 (12)0.0324 (13)0.0046 (11)
C50.0643 (18)0.0808 (19)0.0509 (18)0.0050 (15)0.0416 (16)0.0027 (14)
C60.0640 (17)0.0658 (17)0.0448 (15)0.0036 (14)0.0385 (14)0.0031 (12)
C70.0429 (14)0.0644 (16)0.0342 (13)0.0031 (12)0.0229 (12)0.0010 (11)
C80.0624 (17)0.0661 (17)0.0552 (17)0.0057 (14)0.0394 (15)0.0089 (13)
C90.073 (2)0.0802 (19)0.0576 (18)0.0005 (16)0.0443 (17)0.0180 (15)
Geometric parameters (Å, º) top
N1—C41.295 (5)C3—H30.9300
N1—H1A0.8600C4—C2i1.403 (4)
N1—H1B0.8600C4—H40.9300
N2—C51.310 (3)C5—C61.365 (3)
N2—C91.325 (4)C5—H50.9300
O1—C11.304 (3)C6—C71.378 (3)
O1—H10.8200C6—H60.9300
O2—C11.210 (3)C7—C81.376 (3)
C1—C21.476 (4)C7—C7ii1.477 (5)
C2—C31.374 (4)C8—C91.368 (4)
C2—C4i1.403 (4)C8—H80.9300
C3—C41.376 (4)C9—H90.9300
C4—N1—H1A120.0C3—C4—H4120.5
C4—N1—H1B120.0C2i—C4—H4120.5
H1A—N1—H1B120.0N2—C5—C6123.8 (3)
C5—N2—C9116.9 (2)N2—C5—H5118.1
C1—O1—H1109.5C6—C5—H5118.1
O2—C1—O1122.8 (3)C5—C6—C7119.7 (3)
O2—C1—C2123.5 (3)C5—C6—H6120.1
O1—C1—C2113.7 (3)C7—C6—H6120.1
C3—C2—C4i119.0 (2)C8—C7—C6116.6 (2)
C3—C2—C1120.6 (2)C8—C7—C7ii122.47 (18)
C4i—C2—C1120.4 (2)C6—C7—C7ii120.88 (17)
C2—C3—C4122.0 (2)C9—C8—C7119.5 (3)
C2—C3—H3119.0C9—C8—H8120.2
C4—C3—H3119.0C7—C8—H8120.2
N1—C4—C3119.8 (3)N2—C9—C8123.4 (3)
N1—C4—C2i121.1 (3)N2—C9—H9118.3
C3—C4—C2i119.0 (2)C8—C9—H9118.3
N1—C4—H43.0
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iii0.862.082.931 (5)172
N1—H1B···O2i0.861.952.619 (5)133
O1—H1···N2ii0.821.822.635 (3)170
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x+1, y, z+3/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2·C8H7NO4
Mr337.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.9501 (18), 11.1959 (13), 9.251 (1)
β (°) 116.986 (2)
V3)1564.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.33 × 0.19 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3865, 1370, 894
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.199, 1.00
No. of reflections1370
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.082.931 (5)172
N1—H1B···O2ii0.861.952.619 (5)133
O1—H1···N2iii0.821.822.635 (3)170
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y+3/2, z; (iii) x+1, y, z+3/2.
 

Acknowledgements

The authors acknowledge the Scientific Research Fund of Hunan Provincial Education Department (grant No. 10 C0559) and the National Science Foundation of China (grant No. 50672090).

References

First citationBauer, S., Serre, C., Devic, T., Horcajada, P., Marrot, J., Ferey, G. & Stock, N. (2008). Inorg. Chem. 47, 7568–7576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, A.-Q., Cai, G.-Q. & Zhu, L.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 139–140.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds